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We investigate two coupled oscillators, each of which shows an attracting heteroclinic cycle in the absence
of coupling. The two heteroclinic cycles are nonidentical. Weak coupling can lead to the elimination of the
slowing-down state that asymptotically approaches the heteroclinic cycle for a single cycle, giving rise to
either quasiperiodic motion with separate frequencies from the two cycles or periodic motion in which the two
cycles are synchronized. The synchronization transition, which occurs via a Hopf bifurcation, is not induced
by the commensurability of the two cycle frequencies but rather by the disappearance of the weaker frequency
oscillation. For even larger coupling the motion changes via a resonant heteroclinic bifurcation to a slowing-down
state corresponding to a single attracting heteroclinic orbit. Coexistence of multiple attractors can be found for
some parameter regions. These results are of interest in ecological, sociological, neuronal, and other dynamical
systems, which have the structure of coupled heteroclinic cycles.
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I. INTRODUCTION

A heteroclinic cycle is an invariant set consisting of the
union of a set of saddles {S1, . . . ,Sn} and the trajectories
backward asymptotic to each saddle Si and forward asymptotic
to the next one Si+1 [1]. Such a structure has been frequently
found in neuronal dynamics [2–7], fluid mechanics [8–10],
ecology [11–14], sociology [15–19], and other dynamical
systems. A heteroclinic cycle has some significantly different
characteristics from other types of dynamical states, such as
limit cycles or chaotic attractors. One of these characteristics
is the slowing-down effect: When the trajectory gets close to
the heteroclinic cycle, the system may spend a longer and
longer time in the vicinity of each saddle before quickly
switching to the vicinity of the next saddle. The residence time
in the vicinity of each saddle increases exponentially, and the
oscillation slows down as the return time diverges [10,20]. The
slowing-down effect can be avoided by introducing external
noise [2,21–23] or diffusion terms [10] to the heteroclinic
cycle. When systems displaying heteroclinic cycles are cou-
pled, they can show rich nontrivial behaviors [1,24–27], which
are significant in demonstrating and understanding a wide
range of interesting phenomena in different fields. Synchro-
nization, one of the most characteristic collective behaviors
in dynamical systems [28–37], has also been reported in a
periodically driven heteroclinic cycle system [2] and in ex-
periments on two coupled subsystems with heteroclinic cycle
structures [5].

Recently the dynamical behavior of a small number of
coupled systems that have the structure of heteroclinic cycles
has attracted increasing interest [5–7,38–40]. For example,
synchronization of two coupled heteroclinic cycles is of
significance for understanding the microcircuit dynamics
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in neuronal systems [5]. The inhibitory neurons and the
asymmetry of the inhibitory connections can make the typical
dynamics of a microcircuit process a heteroclinic cycle [2].
Synchronization makes it possible for the microcircuits to
coordinate with each other [5]. In another example, in
studies of the mechanism of the coexistence of a large
number of competing species in a basically homogeneous
environment, it is valuable to consider the case that the habitat
is subdivided into two patches [38–40]. The dynamics of
two coupled heteroclinic cycles can therefore contribute to
the exploration of the fundamental mechanism underlying
the phenomena of coexisting species and more complex
situations.

In this paper we study in detail the dynamical behavior of
two coupled subsystems, each of which shows an attracting
heteroclinic cycle in the absence of coupling. These two
heteroclinic cycles are nonidentical. We show that interactions
between these two cycles can change their dynamical behavior
to avoid the slowing-down state and the sensitivity to small
perturbations. In the case of weak interactions, the oscillatory
dynamics can be maintained just as in the case of added
noise, but now with two independent periodic cycles of
incommensurate frequencies. When the interactions become
stronger, a range of interesting behavior is found, including
a slowing-down state, coexistence of multiple attractors, and
synchronization. Interestingly, the synchronization transition
is not induced by the commensurability of the two cycle
frequencies but rather by the disappearance of the weaker
frequency oscillation, and the synchronized frequency can
be either bigger or smaller than both the desynchronized
frequencies.

II. HETEROCLINIC CYCLE MODEL

We start our study from the model proposed by Busse
and Heikes [8] to describe the turbulence in a rotating layer
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of convecting fluid, which consists of three variables Ai(i =
1, 2, 3):⎧⎪⎨

⎪⎩
τdA1/dt = A1

(
ε − A2

1 − g+A2
2 − g−A2

3

)
,

τdA2/dt = A2
(
ε − A2

2 − g+A2
3 − g−A2

1

)
,

τdA3/dt = A3
(
ε − A2

3 − g+A2
1 − g−A2

2

)
.

(1)

The dynamics of the model is a typical heteroclinic cycle
passing through the saddles at Ai = √

ε for positive initial
conditions. The typical slowing-down effect can be found in
this model: The residence time in the vicinity of each saddle
increases exponentially as time progresses, and the oscillation
slows down.

Equation (1) has the typical form of a broad range of
heteroclinic cycle systems, so that its dynamical behavior is
of general significance. For example, it has the same form as
a Gause-Lotka-Volterra-type three-competitors system [20],
where the variables can represent the population densities in
ecology systems, or the rates of neuronal activity in neuronal
systems [2].

In this paper we discuss two interacting heteroclinic cycles
(A1,A2,A3) and (B1,B2,B3). We do not wish to induce too
much asymmetry. Thus, the choice of coupling should preserve
the symmetry of simultaneously alternating the coordinates
of the two subsystems in turn (A1,B1 → A2,B2 → A3,B3 →
A1,B1). A simple choice is linear coupling, in which case the
equations of motion can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τadA1/dt = A1
(
εa − A2

1 − g+A2
2 − g−A2

3

) + ξ (B1 − A1),

τadA2/dt = A2
(
εa − A2

2 − g+A2
3 − g−A2

1

) + ξ (B2 − A2),

τadA3/dt = A3
(
εa − A2

3 − g+A2
1 − g−A2

2

) + ξ (B3 − A3),

τbdB1/dt = B1
(
εb − B2

1 − g+B2
2 − g−B2

3

) + ξ (A1 − B1),

τbdB2/dt = B2
(
εb − B2

2 − g+B2
3 − g−B2

1

) + ξ (A2 − B2),

τbdB3/dt = B3
(
εb − B2

3 − g+B2
1 − g−B2

2

) + ξ (A3 − B3).

(2)

We are interested in the effect of coupling on the dynamical
behavior of heteroclinic cycles. In the following discussion, we
study the coupling-induced oscillation phenomena in Sec. III,
and the underlying mechanism in Sec. IV.

III. QUASIPERIODIC AND PERIODIC OSCILLATIONS

We first investigate the model Eq. (2) by fixing parameters
τa = τb = 1, εa = 1, and εb = 4 and vary the coupling strength
ξ . These values of τa,b and εa,b guarantee a reasonable
difference between these two cycles.

In the absence of coupling, ξ = 0, the two cycles
(A1,A2,A3) and (B1,B2,B3) exhibit the slowing-down behav-
ior. On the other hand, for ξ �= 0, even if ξ is very small, we find
the interesting phenomenon that the slowing-down dynamics
is eliminated; instead the dynamics display a two-frequency
quasiperiodic motion. When the coupling is increased beyond
a first critical value ξc, the system arrives at a periodic
oscillatory state—a type of synchronized state. When the
coupling strength is further increased beyond a second critical
value ξ

′
c, the system changes to another slowing-down state

corresponding to an attracting single heteroclinic cycle in
six-dimensional space. This can be viewed as the second type
of synchronized state in the system.

In the following, we show the bifurcation process and
related nonlinear dynamics in detail. The range of dynamical
behavior of the system (2) for small coupling ξ is shown in
Fig. 1. In the first row of Fig. 1 the coupling is ξ = 5 × 10−5.
Panel (a) shows the evolution of A1(t). In order to give a more
direct impression of the dynamical behavior, in panel (b) we
project the trajectory of the variables Ai of the first cycle onto
the two-dimensional X1-Y1 plane defined by{

X1 = |A1| + |A2| cos 2π/3 + |A3| cos 4π/3,

Y1 = |A2| sin 2π/3 + |A3| sin 4π/3;
(3)

i.e., we let the projections of the three variables Ai uniformly
distribute around the origin with relative orientation 2π/3
to each other. The behavior of each oscillator is similar to
that of a single heteroclinic cycle driven by small noise, in
that the trajectory stays near each saddle for a long time. In
contrast to a periodic state, the residence times near the saddles
vary from cycle to cycle. The inset of panel (b) expands the
region near the saddle showing that the trajectory is not a
limit cycle but is quasiperiodic motion. To show this more
clearly, a Poincaré section satisfying A1 = A2, A3 > A2 is
constructed, as in panel (c). A loop on this section demonstrates
the two-frequency quasiperiodic nature of the oscillation. The
Fourier transforms of the time series of A1 and B1 are shown
in panel (d). The two oscillators show the same peaks, albeit
with different intensities.

The full range of behavior as the coupling strength is varied
is shown in Fig. 2 by plotting the dependence of the periods
2π/ωi against log10 ξ . Like the average period induced by
noise [21], for small values of ξ the dependence approximates
to straight lines until a critical point ξc, where we find that the
weaker oscillation disappears.

To compare the case of small coupling with that influenced
by noise, we show some results of simulations in the presence
of noise rather than the coupling terms. A Gaussian white-noise
term ηi(t) is added to each equation for τdAi/dt of Eq. (1). To
relate to the system (2) where the coupling terms in the three
dimensions are not independent, we correlate ηi(t) in the form⎧⎪⎨

⎪⎩
η1(t) = ζ (t) cos θ,

η2(t) = ζ (t) cos(θ − 2π/3),

η3(t) = ζ (t) cos(θ − 4π/3),

(4)

where ξ (t) is taken from a Gaussian distribution{〈ζ (t)〉 = 0,

〈ζ (t)ζ (s)〉 = 2Dδ(t − s),
(5)

and θ is taken from a uniform distribution f (θ ) from 0 to π :

f (θ ) =
{

1
π
, 0 < θ � π

0, otherwise
. (6)

In this case, the dynamics of the single cycle can be driven
away from the slowing-down state to maintain the oscillatory
motion. Stone and Holmes [21] proved that the average period
〈T 〉 is a linear function of the logarithmic noise intensity:

〈T 〉 = K0 + K1| log10 D|. (7)
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FIG. 1. Dynamics of two coupled heterocycles [Eq. (2)] for different coupling strengths: ξ = 5 × 10−5 for the first row (a)–(d); ξ = 0.09072,
which is slightly smaller than the critical value for the bifurcation to a periodic orbit, for the second row (e)–(h); and ξ = 0.09537, which is
slightly larger than the critical value, for the third (i)–(l). The first column shows the time series. The second column shows the projections of
the phase space onto the X1-Y1 plane, with the inset in panel (b) expanding the region near a saddle to show the quasiperiodic nature of the
orbit. The third column exhibits the Poincaré section: A1 = A2,A3 > A2. The fourth column shows the Fourier transform of the two oscillators.
Other parameter values are τa = τb = 1, εa = 1, εb = 4, g− = 0.5, and g+ = 2.

This is illustrated by numerically simulating Eqs. (1) and (4)–
(6) in Fig. 3. We define a phase variable φ(t) of the trajectory
as

φ = arctan
Y

X
+ nπ, (8)

and then the average period is limt→∞ 2πt/φ.
In the case of a small coupling between two cycles, the

coupling terms play a vital role in modifying the principal
frequency of the oscillator in a similar way to the mean effect
of small noise. By comparing Figs. 2 and 3, one can notice
that the linear dependence of the period on the logarithmic
coupling strength is very similar to the dependence on the
logarithmic noise strength for a single noisy cycle. However,
from another point of view, the coupling is also sufficiently
weak that the two cycles have independent frequencies.

As the coupling strength ξ increases, the dynamics of the
coupled cycles becomes distinctly different from that of the
single heteroclinic cycle, and the saddle no longer plays a
prominent role, as shown in the second row of Fig. 1 for ξ =
0.09072, panels (e)–(h). The motion is again quasiperiodic,
but now the same frequency dominates the power spectrum

for both cycles—for the parameters used, with εb = 4 larger
than εa = 1, the frequency of the stronger power belongs to
the second cycle.

FIG. 2. Dependence of the periods 2π/ω on the logarithm of the
coupling strength log10 ξ . Parameter values for the single cycle are
the same as in Fig. 1. The inset shows the ratio of the two frequencies
in the quasiperiodic state.
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FIG. 3. Average period of a single heteroclinic cycle with added
noise, Eqs. (1) and (4)–(6). The period exhibits a linear dependence
on the logarithmic noise intensity. The parameters are ε = 1, with
other values the same as in Fig. 2. Fitted values for K0 and K1 of
Eq. (7) are 2.242 and 6.916, respectively.

When the coupling strength is increased to some critical
value ξc, synchronization is achieved so that the dynamics
of the two cycles become periodic, as shown in the third
row of Fig. 1, panels (i)–(l). This bifurcation does not come
from the commensurability of the two frequencies but from
the disappearance of the weaker oscillation frequency. The
development of a second frequency with a continuously
growing amplitude (as the coupling is decreased) is a typical
Hopf bifurcation from a periodic orbit.

In order to give a more direct impression of the synchroniza-
tion phenomenon, we show in Fig. 4 the correlation between
the X variables of the two cycles for the same three values
of ξ as in Fig. 1. When ξ is small, the coupling terms play
a role similar to noise, so that the two cycles exhibit a weak
correlation. Just below the critical coupling ξc for the bifur-
cation to the periodic state, the frequency from the stronger
subsystem dominates both cycles, so that the quasiperiodic
behavior is also obvious on the X2-X1 plane. The periodic
oscillation in the synchronized state, where X2 exhibits a
simple curve against X1, is typical phase synchronization,
where a Hopf bifurcation occurs at the transition [33]. The
difference here is that the stronger subsystem dominates,
while the two oscillators usually play equal roles in the other
cases of phase synchronization of linearly coupled limit-cycle
oscillators [41] (e.g., the synchronized frequency in these
examples is the mean of the separate frequencies) or chaotic
oscillators [33]. This type of synchronization behavior has
some similarities to generalized synchronization [32], where
the dynamical variables from one system turn out to be a
function of the variables of another one. The present case is
similar in that the slave (weaker) cycle strictly follows the
master (stronger) cycle.

The synchronization behavior in our work is also obviously
different from the case where the cycle is forced by a periodic
input as analyzed by Rabinovich et al. [2]. In the present case,
there is no intrinsic frequency when the coupling ξ = 0: The
emergent frequencies originate from the coupling effect.

In Fig. 2, when ξ < ξc, the ratio of the two angular
frequencies monotonically increases, as shown in the inset.
When the coupling strength ξ is increased above the critical
value ξc, the two coupled cycles possess the same period in the

FIG. 4. Dynamics on the X2-X1 plane for the same three values
of ξ and the same values of the other parameters as in Fig. 1.

synchronized state. The synchronized frequency can be larger
than both of the desynchronized frequencies. However, when
the coupling becomes stronger, the synchronized frequency
decreases to a small value, as shown in Fig. 2 for ξ > 0.3.
We will reveal the mechanism underlying the change of the
synchronized frequency in the next section.

Szücs et al. [5] have reported that when two neuronal mi-
crocircuit oscillators are coupled, the synchronized frequency
can be either larger or smaller than both of the desynchronized
frequencies, depending on the form of the coupling. In our
work, we use a coupling form different from any one used in
Ref. [5] but also observe the upward and downward shifts of
synchronized frequency. We will show in the next section that
the upward (or downward) shift of synchronized frequency
is induced by the increasing (or decreasing) distance of the
trajectory to the saddles in phase space. We can therefore
understand the results in Ref. [5] as depending on whether this
coupling form used tends to increase (or decrease) the distance
of the trajectory to the saddles in phase space.

IV. SLOWING-DOWN STATE AND COEXISTENCE OF
MULTIPLE ATTRACTORS

As the coupling ξ increases further toward another critical
value ξ

′
c, the coupled cycles again approach a slowing-down

state, implying that a heteroclinic cycle in the six-dimensional
space becomes stable. In Fig. 2 the period slows down at
the second critical value ξ

′
c ≈ 0.3394. A periodic orbit for

ξ = 0.33 just below this critical value and a slowing-down
state for ξ = 0.35 above the critical value are shown in Fig. 5.

In order to identify the heteroclinic cycle in the six-
dimensional space, we begin the analysis with the fixed point
structure of the coupled dynamical equations (2). First of
all, the fixed points Si (i = 1,2,3, Aj ≡ Ãj �= 0, and Bj ≡
B̃j �= 0 for j = i, Aj = Bj = 0 for j �= i) are determined.
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We describe the behavior near the S1 fixed point; the behavior
near the other fixed points follows by cyclically permuting the
indices, since the structure of the three fixed points is identical.
By introducing the ratio of amplitudes c1 at the fixed point S1

so that B̃1 = cÃ1, one gets⎧⎪⎪⎨
⎪⎪⎩

εa + ξ (c1 − 1) = Ã1
2
,

εb + ξ (1 − c1)/c1 = B̃1
2
,

c2
1Ã1

2 = B̃1
2
,

(9)

and the three quantities c1, Ã1, and B̃1 can be obtained by
solving these equations.

Choosing τa = τb = 1 as before, the linear stability equa-
tion near this fixed point is

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δA1

δB1

δA2

δB2

δA3

δB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

M1

M2

M3

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δA1

δB1

δA2

δB2

δA3

δB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where the submatrices are

M1 =
(

εa − 3Ã1
2 − ξ ξ

ξ εb − 3B̃1
2 − ξ

)
(11)

with two eigenvalues λ11 > λ12,

M2 =
(

εa − g−Ã1
2 − ξ ξ

ξ εb − g−B̃1
2 − ξ

)
(12)

with two eigenvalues λ21 > λ22, and

M3 =
(

εa − g+Ã1
2 − ξ ξ

ξ εb − g+B̃1
2 − ξ

)
(13)

with two eigenvalues λ31 > λ32. In each two-dimensional
subspace {δAi,δBi}, the length of a vector grows at a rate
determined by the larger eigenvalue, i.e., proportional to
exp(λi1t), and the ratio of Bi to Ai for the components growing
away from the fixed point is close to the value given by the
corresponding eigenvector, as shown in Fig. 5.

In the parameter region of the slowing-down state of
system (1), both λ11 and λ12 are negative, corresponding to
an attracting four-dimensional surface in which the two cycles
are embedded. Moreover, λ21 > 0, and λ31 < 0, corresponding
to a divergence of the vector in the subspace {δA2,δB2} and
a convergence of the vector in the subspace {δA3,δB3}. Thus
this fixed point is a saddle. There are corresponding results
for S2 and S3, and heteroclinic orbits directly linking the three
saddles again form a heteroclinic cycle.

The eigenvalues λ22 and λ32 also play important roles in
the attractors in such type of dynamical systems [42]. In our
system, λ32 is always negative, but λ22 can be either negative or
positive, depending on the coupling strength. We first discuss
the case λ22 < 0.

When λ22 < 0, the dynamical behavior near the saddles
is almost the same as that near a saddle of the system (1).
This heteroclinic cycle in the six-dimensional space can be
proven to be structurally stable in this case, since each of the

FIG. 5. Ratio of B1 to A1 for the periodic orbit at (a) ξ = 0.33
and (b) ξ = 0.35. Other parameters are the same as Fig. 3. The
horizontal lines are theoretical predictions of the ratio near the
saddles. Noticing that there are two constant values of B1/A1 given
by the eigenvectors in each subspace {Ai,Bi} near the saddle Si , the
dashed and dotted lines are, respectively, the values given by the
eigenvectors corresponding to the larger eigenvalue near S2 and S3.
The solid line is the value c1 calculated from Eq. (9) near the saddle
S1.

heteroclinic orbits lies within a symmetry-invariant subspace
(Ai , Bi , Ai+1, Bi+1) (where Ai+1 and Bi+1 are defined as
A1 and B1 when i = 3). In the subspace (A1, B1, A2, B2)
for example, the heteroclinic orbit directionally connects S1

to S2. S1 is a saddle in this four-dimensional subspace. It
has a three-dimensional stable manifold corresponding to the
negative eigenvalues λ11, λ12, and λ22, and a one-dimensional
unstable manifold corresponding to the positive eigenvalue
λ21. S2 is a sink in this subspace, since the eigenvalues λ31, λ32,
λ11, and λ12 are all negative. According to the method of Krupa
[43], such a heteroclinic orbit lying within symmetry-invariant
subspaces is structurally stable.

The structurally stable heteroclinic cycle of the last
paragraph can be repelling or attracting, depending on the
parameter values. We can find the condition for the cycle to be
attracting following the method of Krupa and Melbourne [25],
although the analysis is simpler in the present case because
our saddles are identical. The condition for the cycle to be
attracting is

λ21 + λ31 < 0. (14)

The role of the heteroclinic cycle on varying the coupling ξ is
displayed in Fig. 6 by giving the value of B̃1 at the fixed point
S1 and the range of B1 in the trajectory near S1 for the same
parameter values used in Fig. 2. As we have seen, when the
coupling increases, the system bifurcates from quasiperiodic
to periodic motion and then back to the slowing-down state.
During these transitions, the size of the heteroclinic cycle
(measured by the value of B̃1) becomes monotonically smaller,
as shown in Fig. 6. Meanwhile, initially the amplitude of
the quasiperiodic orbit shrinks more rapidly, so that the
trajectory moves away from the unstable heteroclinic cycle.
After the quasiperiodic orbit bifurcates to the periodic orbit,
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FIG. 6. Values of the amplitude B̃1 at the saddle S1 and the
minimum and maximum amplitudes of B1 in the trajectory near
the saddle S1 as a function of the coupling strength ξ . The values ξc

and ξ ′
c give the bifurcation from quasiperiodic to periodic, and from

periodic to the slowing-down state, respectively.

its amplitude eventually begins to increase, until it touches the
heteroclinic cycle. This is the resonant heteroclinic bifurcation
point given by Eq. (14) at which the cycle becomes attracting,
and for larger couplings ξ the heteroclinic cycle becomes
the only attractor. Comparing Fig. 6 and Fig. 2, one can
easily understand that the upward (or downward) shift of
synchronized frequency is induced by the increasing (or
decreasing) value of the distance between the trajectory and
the saddles in phase space (the distance between filled points
and unfilled points in Fig. 6), consistent with the analysis by
Stone and Holmes [21].

Considering this bifurcation process in the reverse direction
(decreasing ξ ), the sequence of dynamical behaviors looks
similar to the case where periodic or quasiperiodic oscillations
are induced by the intermittent dynamics from a heteroclinic
cycle [44,45]. In those systems, the heteroclinic cycle can be
derived by ignoring the small higher-order terms. When these
terms are taken into consideration, intermittent dynamics are
induced, including chaos, quasiperiodic, and periodic solutions
[44]. However, in our system, the violation of Eq. (14) gives a
resonant heteroclinic bifurcation, so that the heteroclinic cycle
just loses its stability, in contrast to the more familiar case
where the heteroclinic cycle is destroyed by higher-order terms
or other kinds of perturbations. Furthermore, in our work, we
focus on the interaction between the two subsystems, rather
than the perturbations that emerge when reducing a general
system to a heteroclinic cycle structure, so as to be more
relevant to the collective behavior of two coupled systems,
in each of which there is an attracting heteroclinic cycle.

When λ22 > 0, the situation becomes more complicated.
In this domain we numerically find that even when the
heteroclinic cycle is stable, stable quasiperiodic or periodic
orbits may also exist, so that there can be multiple attractors.
The phase diagram on varying both ξ and εb is displayed
in Fig. 7. (Figures 2 and 6 correspond to a cut at ε

1/2
b =

2.) For large εb, increasing the coupling gives transitions
from quasiperiodic to periodic oscillations, and finally to the

FIG. 7. Phase diagram varying ξ and εb while fixing τa = τb = 1,
εa = 1, g− = 0.5, g+ = 2. Filled circles are the Hopf bifurcation
points from quasiperiodic to periodic oscillation, and unfilled circles
are the critical points to the slowing-down state, both of which are
numerically calculated with the initial conditions near the point {A1 =
A2 = A3 = √

εa/3,B1 = B2 = B3 = √
εb/3}. The triangles are the

critical points to the slowing-down state when we use states near
a saddle as the initial conditions for simulation. The dashed line is
calculated from Eq. (14) (λ21 + λ31 < 0 to the left), and the solid line
is λ22 = 0 (λ22 < 0 above the line). Below the intersection of these
two lines, the unfilled circles diverge from the dashed line. In the
region between the unfilled circles and triangles multiple attractors
coexist.

slowing-down state, as shown in Figs. 2 and 6. For smaller
εb � 3.880 (ε1/2

b � 1.970), on the other hand, λ22 may still be
positive when λ21 + λ31 < 0 (the region below the solid line
and above the dashed line in Fig. 7). For these values of εb,
regions of multiple attractors may exist.

In the multiple-attractors regions, if we run a simulation
using an initial condition near one of the saddles, we find the

FIG. 8. An example of multiple attractors when τa = τb = 1,
εa = 1, εb = 1.9, g− = 0.5, g+ = 2, ξ = 0.016: (a) slowing-down
state with the initial condition near a saddle; (b) stable quasiperiodic
orbit with the initial condition near A1 = A2 = A3 = √

εa/3,B1 =
B2 = B3 = √

εb/3. If the state shown in panel (b) is used as the initial
condition and ξ is increased to 0.01815, the dynamics is driven to the
attracting heteroclinic cycle, but the transient looks quite similar to
quasiperiodic oscillation. This is shown in panel (c).
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FIG. 9. Fourier transforms of one of the amplitudes in the noisy
system for parameter values τa = τb = 1, εa = 1, g− = 0.5, g+ = 2,
and Gaussian noise intensity 10−10. Note the two base frequencies
when εb = 1.9, ξ = 0.02 (a), but only a single base frequency when
εb = 4, ξ = 0.34 (b).

critical points shown as the triangles in Fig. 7, which are well
predicted by Eq. (14). But if we use an initial condition near
the point A1 = A2 = A3 = √

εa/3,B1 = B2 = B3 = √
εb/3,

we continue to find quasiperiodic or periodic attractors above
the dashed line in Fig. 7 where λ21 + λ31 < 0. Figure 8(a) and
8(b) provide an example of the different attractors for the same
parameter values.

When we use an initial condition near the point A1 = A2 =
A3 = √

εa/3,B1 = B2 = B3 = √
εb/3 for the numerical cal-

culation, we can even find some cases in which the dynamics
bifurcates from quasiperiodic oscillations to the slowing-down
state without a region of periodic oscillations. This case hap-
pens when the destabilization of the quasiperiodic orbit occurs
before the Hopf bifurcation. The unstable quasiperiodic orbit
induces a quasiperiodic transient near the critical coupling,
so that the slowing-down state takes the form of a slowing
quasiperiodic oscillation, as in Fig. 8(c).

If we now add Gaussian noise to the system, the slowing-
down state is avoided as for a single cycle, but the resulting
behavior is sensitive to the location in the phase diagram. The
Fourier transform of the absolute value of one of the amplitudes
plotted in Fig. 9 shows the different possibilities. (We use the
absolute value since the noise can cause transitions into the
negative sectors of the amplitude space.) When the slowing-
down state is near the boundary to a quasiperiodic oscillation
and the transient to the slowing-down state in the absence of
noise is quasiperiodic, two base frequencies are observed in
the Fourier spectrum of the noisy system (panel (a)). However,
near the boundary to a periodic orbit where the noise-free
transient is periodic, there is only one base frequency (panel
(b)).

V. CONCLUDING REMARKS

In this paper the dynamics of two coupled systems each
showing a heteroclinic cycle has been investigated. Our
findings reveal that, similar to the role of noise or diffusion, the

coupling terms can prevent the heteroclinic cycles from slow-
ing down. A variety of bifurcation and dynamical behavior has
been observed, including the transition from a quasiperiodic
state with two frequencies deriving from the two cycles to
a periodic state in which the cycles are synchronized, via
a Hopf bifurcation. This process does not happen through
the commensurability of the two frequencies but from the
disappearance of the weaker frequency oscillation. The two
cycles play different roles in this process, with the master cycle
dominating the dynamics and destroying the slave cycle. The
synchronized frequency can be either larger or smaller than
the individual desynchronized frequencies. When the coupling
strength becomes too large, the dynamics of the coupled
system fall back to the slowing-down state, as observed in
the uncoupled (single-cycle) case. A resonant heteroclinic
bifurcation occurs in this case. We have also found a regime
where multiple attractors can coexist. Another observation
is that sometimes the quasiperiodic oscillation can bifurcate
directly from the heteroclinic cycle.

In this work, we demonstrate the rich variety of dynamical
behavior by using the Busse-Heikes model with linear cou-
pling, which is a typical heteroclinic cycle system with one
of the simplest coupling forms used in coupled oscillatory
systems. We have also simulated some other models with
different forms of coupling, e.g., a model of two coupled
three-competitor systems, and find similar results in some
regions of the system parameters. In all the models studied,
the symmetry of simultaneously interchanging the coordinates
of the two subsystems in turn is always kept, even in the
presence of the coupling terms, but the uncoupled systems
are taken to be dissimilar. These two characteristics referring
to the symmetry are important for the observed dynamical
behavior. This asymmetry between the uncoupled systems is
the basis for the quasiperiodic oscillation where the principal
frequencies of the two oscillators induced by the coupling are
nonidentical. It is also the basis for the observation that in
the synchronized (periodic) state one oscillator can dominate,
whereas the interchange symmetry retained plays a vital role
in making the new heteroclinic cycle structurally stable.

Our results can give a precise understanding of the upward
or downward shift or the synchronized frequency observed for
coupled oscillators in neuronal system [5] and also shed some
light on a similar phenomenon in magnetic system [46,47],
and the rich dynamical behavior we find suggests further
experiments in these and related systems. The dynamical
behavior of two coupled heteroclinic cycles is also progress
toward better understanding systems of a large number of
cycles.
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