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Poincaré recurrences of DNA sequences
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We analyze the statistical properties of Poincaré recurrences of Homo sapiens, mammalian, and other DNA
sequences taken from the Ensembl Genome data base with up to 15 billion base pairs. We show that the probability
of Poincaré recurrences decays in an algebraic way with the Poincaré exponent β ≈ 4 even if the oscillatory
dependence is well pronounced. The correlations between recurrences decay with an exponent ν ≈ 0.6 that leads
to an anomalous superdiffusive walk. However, for Homo sapiens sequences, with the largest available statistics,
the diffusion coefficient converges to a finite value on distances larger than one million base pairs. We argue that
the approach based on Poncaré recurrences determines new proximity features between different species and
sheds a new light on their evolution history.
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The Poincaré recurrence theorem of 1890 [1] states that,
after a certain time, a dynamical Hamiltonian trajectory in a
bounded phase space always returns to the close vicinity of
an initial state. Even if recurrences definitely take place, the
question about their properties, or more exactly, the question
of what are the statistics of Poincaré recurrences and what are
their correlation properties, still remain an unsolved problem
for systems of dynamical chaos even after an impressive
development of the theory of dynamical complexity [2–4].
The two limiting cases of periodic and fully chaotic motion are
well understood: In the first case the recurrences are periodic
while in the latter case the probability of recurrences P (t) with
time being larger than t drops exponentially at t → ∞ [2–4].
Thus the latter case is similar to a coin flipping, where the
probability to stay on the same side after more than t flips
decays at 2−t . However, in generic Hamiltonian systems the
probability P (t) decays algebraically with t , as P (t) ∼ 1/tβ

due to long trappings in the vicinity of stability islands showing
the Poincaré exponent β ≈ 1.5 [5–10]. A detailed theoretical
explication of this slow algebraic decay is still lacking. Usually
the consecutive recurrences in dynamical systems are not
correlated since a trajectory passes across the domains of a
chaotic component.

The Poincaré recurrences represent a powerful tool for the
analysis of statistical properties of symbolic trajectories of var-
ious types [2–4]. Surprisingly, this powerful tool of dynamical
systems has not been applied for detailed statistical studies of
the DNA sequence, which also can be viewed as a symbolic
trajectory. There have been only a few earlier attempts going
in this direction including researchers in dynamical systems
[11] and bioinformatics [12–14]. However, in [11] only short
recurrence times with t � 4 have been considered and it
was concluded that the probability of recurrences decays
exponentially. The studies in bioinformatics were not aware
of the concept of Poincaré recurrences, but their approach
had certain links with them aiming to use digital signal
representations of genomic data [12]. The relative frequency
analysis applied in [13,14] has certain similarities with the
Poincaré recurrences approach, but the distance times still
remain very short with t � 20 in [13] and t � 100 in [14]. No
detailed comparative analysis with the exponential decay of
Poincaré recurrences of random sequences or algebraic decay
was presented there.

In this work, we apply the powerful approach of Poincaré
recurrences to the available mammalian DNA sequences taken
from the publicly available database [15]. The comparison with
random data sequences and the known results for dynamical
maps [5–10] allowed us to establish new, interesting features
for the Poincaré recurrences of the DNA sequence. Our
approach allowed to analyze the recurrences with time t being
by five to six orders of magnitude larger than those reached
in [11–14]. For the Homo sapiens (HS) database we performed
statistical analysis for 1.5 × 1010 base pairs (bp). This amount
of statistical data is four to five orders of magnitude larger
compared to the previous studies of anomalous diffusion
performed in [16–18] for DNA sequences. Using this large
statistics we find that the DNA Poincaré recurrences are
characterized by an algebraic decay with β ≈ 4 for the HS
database. For such a value of the Poincaré exponent β, the
uncorrelated recurrences should lead to a usual diffusive
random walk with a linear growth of the corresponding second
moment σ ∼ Dt [6,7], with an effective time t given by the
sequence length L measured in number of bp. At the same time
the early studies for random walk in DNA sequences [16–18],
with the total length of t < 106 bp, established that such a
walk belongs to the Levy-type walks, with an anomalous
superdiffusive growth of the second moment σ ∼ t1+μ and
a growing diffusion coefficient D(t) = σ/t ∼ tμ with μ > 0.
Our studies show that this apparent contradiction is resolved
by the presence of long-range correlations CP (t) between
the Poincaré recurrences in DNA that make them different
compared to dynamical chaos systems where such correlations
are usually absent [5–10]. We show that CP (t) is characterized
by a global algebraic decay with an exponent ν ≈ 0.6. Such a
slow decay leads to an anomalous superdiffusion on scales
of t < 106 bp with the exponent μ being in agreement
with the previous studies [16–18]. However, for t > 106 bp
the diffusion coefficient D(t) for HS becomes finite due
to cancellations of odd and even correlation terms which
show a global algebraic decay with an exponent ν ≈ 0.6. We
argue that the obtained results for the statistics of Poincaré
recurrences of the DNA sequence open new possibilities for
the genome evolution analysis.

To study the statistics of the Poincaré recurrence of
mammalian DNA sequences we use the enormous database
[15] considering a DNA sequence as a very long trajectory in
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the space of four nucleobases A, G, C, T. Similar to [16], a walk
along the DNA sequence length, marked as an effective time t ,
is described by a discrete variable u(t) which takes values “+”
for A, G of purine domain and “−” for C, T of pyrimidine
domain (AG-CT). The differential distribution of Poincaré
recurrences p1(t) is given by a relative number of segments of
a fixed sign of length t while the integrated distribution P (t)
gives the relative number of recurrences with times larger than
t . The probabilities of domains AG and CT are close to 0.5
for the HS and mammalian sequences. Thus the recurrences
for both domains are very close to each other so that we show
one average distribution P (t) for AG-CT corresponding to the
recurrences or crossings of the line u = 0. A similar situation
takes place for AC and GT domains so that we show for them
one average distribution P (t) for AC-GT. For domains AT and
CG the probabilities are approximately 0.6 and 0.4 and here
we show separately the recurrence probability P (t) for AT and
CG domains. For Poincaré recurrences P (t) of HS sequences
these four cases are shown in Fig. 1 (left panel). On average we
find an algebraic decay P (t) ∼ 1/tβ with β ≈ 4. A formal fit
for AG-CT data at t > 10 gives β = 3.68 ± 0.02, but there are
visible large-scale oscillations with a certain similarity to those
seeing in dynamical maps [5,7,9]. The dependence P (t) = 2−t

for a random sequence describes AG-CT and AC-GT data only
on short times t < 5 while for larger times algebraic behavior
becomes dominant.
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FIG. 1. (Color online) Statistics of Poincaré recurrences P (t)
for DNA sequences. Top left panel: DNA data of HS for Poincaré
recurrences of domains AG-CT, AC-GT, AT, and CG (see text). The
lower dashed curve shows the exponential behavior P (t) = 2−t valid
for random sequences, the upper dashed line shows the average power
law P (t) ∼ t−4 for comparison. Top right panel: AG-CT data for
DNA sequences of the species: Felis catus (FC, Cat), Homo sapiens
(HS, Human), Gorilla gorilla (GG, Gorilla), Canis familiaris (CF,
Dog), Loxodonta africana (LA, Elephant), Xenopus tropicalis (XT,
African Clawed Frogs) and Danio rerio (DR, Zebrafish). Bottom left
panel: Convergence of the statistics of AG-CT Poincaré recurrences
P (t) for Homo sapiens as the length L of the considered DNA
sequence increases from L = 105 to L = 1.5 × 1010. Bottom right
panel: AC-GT data sets for the same species as in the top right panel.

We note that P (t) is a positively defined quantity and thus
it is statistically very stable: the sequences of size L well
reproduce the initial part of P (t) almost up to values ∼1/L as
it is shown in Fig. 1 (bottom left panel), where L varies in a
large interval of 105 � L � 1.5 × 1010 bp. Thus our maximal
size L ≈ 1.5 × 1010 bp corresponds to five times the whole
human genome size 3 × 109 bp that allows us to obtain more
reliable statistical results for Poincaré recurrences. We note
that we consider the recurrences’ distances t not larger than
107 bp so that such distances remain significantly smaller than
the size of one human genome and the size of the largest
chromosome 2 × 108 bp.

It should be noted that there are other statistical studies of
the DNA sequence which analyze the nearest-neighbor spacing
distribution of a basis [19,20], being linked to level statistics
of words [21], and the further analysis of 1/f like noise
exponents as in [22]. We hope that the statistics of Poincaré
recurrences will give important complementary tools for a
deeper understanding of DNA sequence properties.

The comparison of statistics of Poincaré recurrences for
HS, mammalian, and two other species are shown in Fig. 1
for the AG-CT case (a similar average behavior is found for
AC-GT data). The total sequence lengths L for other species
are by a factor of 3 shorter compared to the HS case. Up to
t ≈ 20 of all considered species show the same decay of P (t),
but at a larger value of t there is a separation of curves so
that each species is characterized by its own statistics P (t).
On average, all species show an algebraic decay with β ≈ 4
even if there is a strong oscillation with a flat region of P (t)
for GG sequence (the AC-GT data from Fig. 1 show a very
similar behavior in this case). It is interesting to note that the
curves of Poincaré recurrences are very close for HS and GG
sequences up to t ≈ 200 and for HS and FC sequences up to
maximal t ≈ 103. However, for the AC-GT data set the curves
for these sequences become different for t > 20 (Fig. 1).

It is important to understand how the statistics of Poincaré
recurrences is related to the anomalous superdiffusive walk
discussed in [16–18]. The walk is described by a displacement
variable y(t) = ∑t

τ=1 u(τ ) whose growth can be characterized
by a diffusion coefficient defined as D(t) = σ/t with the
second moment σ = 〈�y(t)2〉, �y(t) = y(t + t0) − y(t0) −
〈y(t + t0) − y(t0)〉 and the average 〈· · ·〉 is done with respect
to the initial position (or “time”) t0. In the case of a standard
diffusive process the diffusion coefficient D converges to a
finite value at large times. However, the results of [16] gave an
algebraic superdiffusive growth D(t) ∼ tμ with the exponent
μ ≈ 0.34 for the HS sequence of length L ∼ 105 and t � 103.
Our results are obtained on a significantly larger scale of
t being four orders of magnitude larger compared to those
reached in [16–18]. Our results for diffusion D(t) are shown
in Fig. 2. For the HS sequence we have large statistics and large
exact segments without nondetermined bp marked as N in the
database [15]. We find μ ≈ 0.4 for the range 10 < t < 106

(fit gives μ = 0.349 ± 0.001) in a satisfactory agreement with
previous studies [16–18]. Other species also show an algebraic
growth of D(t) with similar values of μ (Fig. 2). For the AC-GT
data we also find a similar behavior with μ ≈ 0.6 for the HS
sequence (Fig. 2). However, for the HS sequence with the most
exact and long data set we find a saturation of D(t) for large
times 106 � t � 107.
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POINCARÉ RECURRENCES OF DNA SEQUENCES PHYSICAL REVIEW E 85, 016214 (2012)

 1

 10

 100

1071061051041031021011

D
(t

)

t

∼t 0.4

AG-CT

non-cor

HS
CF

non-cor
sim-cor

 1

 10

 100

1071061051041031021011

D
(t

)

t

AG-CT

GG

LA

XT

FC
HS
GG
CF
LA
XT
DR

 1

 10

 100

1071061051041031021011

D
(t

)

t

∼t 0.6

AC-GT

non-cor

HS
CF

non-cor
sim-cor

 1

 10

 100

1071061051041031021011

D
(t

)

t

AC-GT

GG
LA

XT

FC
HS
GG
CF
LA
XT
DR

FIG. 2. (Color online) Top left panel: Diffusion coefficient
D(t) = 〈�y2(t)〉/t for AG-CT data sets of DNA sequences of HS
and CF. The lower green curve (non-cor) is the diffusion coefficient
obtained for a model with individual recurrences being distributed as
the Poincaré recurrences of HS in Fig. 1, but assuming that subsequent
Poincaré recurrences are not correlated. The black crosses (sim-cor)
represent the diffusion coefficient obtained from Eq. (3) using the
Poincaré recurrence correlation function CP (n) for HS (see text and
Fig. 4 below). The dashed line shows a power law D ∼ t0.4. Top
right panel: Diffusion coefficient D(t) for AG-CT data sets of the
same species as in the right panel of Fig. 1. Bottom panels: Diffusion
coefficient D(t) for AC-GT data sets for the same cases as in top
panels; the dashed line in the left panel represents a power-law
dependence D(t) ∼ t0.6.

The diffusion coefficient is related to the
correlation function c(t) = 〈u(t + t0)u(t0)〉 as D(t) =
(1/t)

∑t
l=1

∑l−1
j=−l+1 c(j ) and hence a divergence of D

implies a slow correlation decay c(t) ∼ tμ−1 if c(t) is
monotonic. On the other hand, this correlation function can
also be expressed as

c(t) =
∞∑

n=1

(−1)n−1
∞∑

t1+...+tn>t

(t1 + · · · + tn − t) pn(t1, . . . ,tn),

(1)

where pn(t1, . . . ,tn) is the joint distribution of n subsequent
Poincaré recurrence times t1, . . . ,tn. In this sum each term
represents the case where n subsequent recurrences are
needed to cover the interval 0,1, . . . ,t and the prefactor
t1 + · · · + tn − t accounts for the number of different initial
positions of the first recurrence to allow this. If we assume
that subsequent Poincaré recurrences are not correlated [i.e.,
pn(t1, . . . ,tn) = p1(t1) · . . . · p1(tn)], and that P (t1) obeys the
power law P (t1) ∼ t

−β

1 [i.e., p1(t1) = P (t1) − P (t1 + 1) ∼
t
−β−1
1 we find that in the above expression the first term

for n = 1 dominates the limit t → ∞ and we find that
c(t) ≈ ∑∞

t1=t+1 P (t1) ∼ tP (t) ∼ t1−β]. We mention that this
result was previously also obtained for chaotic Hamiltonian
dynamics [6,7]. Therefore we should have a good convergence
of D with β ≈ 4. However, this relation is obtained for the
case of uncorrelated Poincaré recurrences that may not be the

FIG. 3. (Color online) Left panel: Density plot of the normalized
two point correlator p̃2(t1,t2) of two subsequent Poincaré recurrences
t1 and t2 for AG-CT data sets of HS. The shown range 1 � t1,t2 �
12 represents 99.4% of probability. Red (dark gray), green (light
gray), and blue (black) colors represent maximal, zero, and minimal
correlator values, respectively; horizontal and vertical axes show t1
and t2; maximal correlator values are located in the right half of
the bottom line and the top half of the left column. Right panel:
Normalized two-point correlator p̃2(t1,t3) of t1 and t3 for three
subsequent Poincaré recurrences t1, t2, t3 with t1 and t3 on the axes;
maximal correlator values are located in the top right corner.

case for DNA sequences. Indeed, if we generate uncorrelated
recurrences with the distribution P (t) being the same as in
Fig. 1 for the AG-CT sequence of HS and compute with them
the diffusion coefficient then we find a clear saturation of D(t)
at a finite value D = 1.77 (the green curve in Fig. 2, left panel),
being significantly smaller then the actual data of D(t) ∼ 100.

To visualize the correlations between Poincaré recurrences
we also compute the joint probability p2(t1,t2) of two sub-
sequent Poincaré recurrences t1 and t2 for the HS sequence
of Fig. 1. The normalized two-point correlator is p̃2(t1,t2) =
p2(t1,t2)/[p1(t1) p1(t2)] − 1, where p1(t1) = P (t1) − P (t1 +
1) is the probability of one individual recurrence of length
t1. Its dependence on t1, t2 is shown in Fig. 3. The correlator is
maximal for t1 = 1 (i.e., below the average recurrence time
〈t1〉 = 2.27) and t2 � 8 (i.e., above average) or vice versa
thus indicating anticorrelations between t1 and t2. In the right
panel of Fig. 3 we show the normalized two-point correlator
p̃2(t1,t3) for t1 and t3 taken from three subsequent Poincaré
recurrence times t1, t2, t3. In this case t1 and t3 are correlated
(i.e., if t1 is above average it is more likely that t3 is also above
average).

Thus in a sequence of Poincaré recurrences t1,t2,t3, . . . , the
odd elements represent steps of length t1,t3, . . . , of one sign of
u(t) and the even elements represent steps of length t2,t4, . . . ,

of the other sign. The anticorrelations between t1 and t2 or t2
and t3 as well as the correlations between t1 and t3 indicate
that once a preferential direction is chosen it is more likely for
it to be enhanced thus explaining the diffusion enhancement
compared to the uncorrelated Poincaré recurrences which give
a finite coefficient D ≈ 1.7. To work out this point on a
more quantitative level we consider the displacement after
n Poincaré recurrences at time t = t1 + · · · + tn ≈ n〈t1〉. We
can write for it

y(t1 + · · · + tn) = (−1)s
n∑

l=1

(−1)l−1tl, (2)
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where (−1)s is the sign of the first segment associated to t1.
For n � 1 this leads to

D(n〈t1〉) = 1

n〈t1〉
n∑

l=1

⎛
⎝CP (0) + 2

l−1∑
j=1

(−1)j CP (j )

⎞
⎠ , (3)

where CP (j ) = 〈t1 t1+j 〉 − 〈t1〉2 is the Poincaré recurrence
correlation function and the average is done over all recur-
rences [23]. We note that the above model of uncorrelated
Poincaré recurrences corresponds to CP (j ) = 0 for j > 0. In
this case Eq. (3) gives D = CP (0)/〈t1〉 = 4.01/2.27 = 1.77
in a perfect agreement with the data of Fig. 2.

The Poincaré recurrence correlation function CP (n) is
computed from DNA sequence data and its dependence
on the recurrence index or number n ≈ t/〈t1〉 is shown in
Fig. 4 for AG-CT data sets of HS and CF. For HS data this
correlation function has alternate signs for odd and even n

up to n ≈ 3 × 103. For larger n values these terms have the
same sign and moreover these terms become approximately
equal for n > 105. This leads to the cancellation of the odd
and even terms in Eq. (3) and the saturation of the growth of
diffusion coefficient at t > 106 as it is clearly seen in Fig. 2.
Such a saturation of D(t) takes place in spite of a rather slow
algebraic decay of correlation CP (n) ∼ n−ν with ν ≈ 0.6 (for
even terms an error-weighted fit gives ν = 0.575 ± 0.003 at
10 � n � 3 × 106 and for odd terms ν = 0.479 ± 0.005 at
10 � n � 103). From the found correlation function CP (n)
we can determine the dependence D(t) using Eq. (3) that
gives a good agreement with the data obtained by a direct
computation of D(t) as it is shown in Fig. 2 (deviations
at t < 10 are due to an approximate validity of the relation
t = t1 + · · · + tn ≈ n〈t1〉 at small t). We note that the relation
between exponents μ = 1 − ν, corresponding to a simple
estimate D ∼ t |CP (t)|, remains valid in absence of odd or
even terms cancellation at t < 106. For the CF data set we
find approximately the same algebraic decay with ν ≈ 0.6
(Fig. 4, right panel). In this case the total number of recurrences
Nr is statistically smaller compared to the HS case and in
addition, undetermined letters N of bp are broadly scattered
over the sequence. Due to that, here we do not find large
number Nr (n) of recurrence times at large n that force us
to stop at n < 2.5 × 105 where a saturation of D(t) growth
is not visible [for the HS case we have Nr (n) ≈ 5 × 109

recurrences at n = 106 but many of them are correlated and
the statistical error of CP (n) is about 5% here while for smaller
n it becomes smaller than the symbol size in Fig. 4]. For the
AC-GT data sets, shown in Fig. 4, we find an algebraic decay
with exponent ν ≈ 0.4 corresponding to the value μ ≈ 0.6
from corresponding Fig. 2. The convergence of the odd or
even terms of CF (n) for the HS case takes place at n > 105

leading to saturation of the diffusion rate at t > 106 also
visible for AC-GT data (Fig. 2). For CF data we have lower
statistics for large n and t and the saturation of D(t) remains
invisible.

The analysis of the statistical accuracy of the computation
of correlation function CP (n) is presented in Fig. 5. Here we
show the variation of relative statistical error �CP (n)/|CP (n)|
in the value of CP (n) as a function of n. This error increases
from a level of 10−3 at n < 100 up to 0.1 at n ≈ 2 × 106
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FIG. 4. (Color online) Top panels: Poincaré recurrence correla-
tion function CP (n) = 〈t1 tn+1〉 − 〈t1〉2 of t1 and tn+1 in a sequence
of subsequent Poincaré recurrences tj for HS (left panel) and CF
(right panel) sequences for AG-CT data sets. Blue (black) crosses
correspond to even n and red (gray) squares to odd n. The dashed line
shows a power law CP (n) ∼ n−0.6. For clarity, positive and negative
values of CP (n) are shown on two separate logarithmic scales which
are put together at CP = ±10−4 shown by the straight horizontal
line. Bottom panels: Same as in top panels, but for AC-GT data sets
for HS (left panel) and CF (right panel); the dashed line shows the
dependence CP (n) ∼ n−0.4.

for HS and at n ≈ 104 for CF [a strong increase of error at
n ≈ 3 × 103 for HS is related to a sign change of C(n)]. The
relative error increases with n since at large n we have a smaller
number of recurrences Nr contributing in the computation of
C(n). For the HS case the number of nondetermined N letters
allows to have a significantly larger number of recurrences Nr

compared to the CF case, and due to this we obtain statistically
good values of C(n) at significantly larger values of n.

Let us give now the formal fit parameter values for the
dependencies discussed above. The fit of Poincaré recurrences
for the data of Fig. 1 at t > 10 gives the Poincaré exponent β =
3.68 ± 0.02 (AG-CT), 3.65 ± 0.04 (AC-GT), 3.75 ± 0.03
(AT), and 4.04 ± 0.05 (CG). The fit of D(t) ∼ tμ for the
AG-CT data of HS in Fig. 1 gives μ = 0.3486 ± 0.0008 for the
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FIG. 5. (Color online) Relative statistical error �CP (n)/|CP (n)|
of the Poincaré recurrence correlation function for HS (left panel) and
CF (right panel) sequences for AG-CT data sets shown in top panels
of Fig. 4. Blue (black) crosses correspond to even n and red (gray)
squares to odd n. The straight horizontal line indicates the value of
10%.
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range 10 � t � 106, but there are two intervals with distinct
values μ = 0.5010 ± 0.0003 for 10 � t � 3 × 103 and μ =
0.2859 ± 0.0003 for 3 × 103 � t � 106 so that we give in
the text the average μ ≈ 0.4. For the AC-GT data of HS the
whole range of D(t) is well characterized by a fit exponent μ =
0.5553 ± 0.0004 for 100 � t � 106 (see Fig. 2). Furthermore,
for the AC-GT data the correlation function behaves also as
CP (n) ∼ n−ν where for HS the exponent obtained from an
error-weighted fit is ν = 0.367 ± 0.004 for even terms and
ν = 0.320 ± 0.004 for odd terms, both at 10 � n � 104. Even
if formal statistical errors are quite small we should note that
there are rather pronounced oscillations and for that reason we
give in the above discussions only approximate values of the
exponents.

The presented results determine the statistics of Poincaré
recurrences of DNA sequences and link their properties to the
statistics of sequence walks studied previously [16–18]. The
anomalous diffusion of walks is related to enormously long
correlations between far away recurrences. For most detailed
HS sequences the diffusion coefficient of these walks becomes
finite due to cancellations of slow decaying correlations. For
other species larger statistical samples are required to see if
the diffusion coefficient saturation is present. The Poincaré
recurrences P (t) are statistically very stable and show a clear
difference between various species. The statistical analysis
of human and mammalian DNA sequences is now an active

research field with links to genome evolution (see, e.g.,
[24–26]) and the approach based on Poincaré recurrences
should bring here new useful insights.

The obtained properties of Poincaré recurrences can be used
for the verification of various theories of genome evolution
(see, e.g., [24–28]). Such theories should reproduce well the
main statistical features of Poincaré recurrences described
here. Indeed, the data of Fig. 1 show that for t < 5 the recur-
rences for all analyzed species behave like a random sequence
of coin flipping. Thus the genome evolution generates random
uncorrelated short-range recurrences. However, for the range
5 � t � 20 we have a beginning algebraic decay of P (t), but
still all the species follow practically the same curve. This
indicates the existence of a common period of initial evolution
history. For t > 20 we observe a strong divergence of Poincaré
curves of different species. Surprisingly, the curves of HS and
FC (as well as LA and XT) remain very close to each other up
to the largest recurrences with t ≈ 400 for AG-CT data sets.
At the same time, for AC-GT data sets a close proximity of
recurrences is observed for HS, LA, and XT (as well as for
FC and CF) up to the largest values t ≈ 300. This shows the
various aspects of proximity between species which should
be investigated in further studies. We hope that the new tool
of Poincaré recurrences will allow to analyze the proximity
between species under a new angle, lightening new sides of
life evolution.
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