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Inwardly rotating spirals in nonuniform excitable media
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Inwardly rotating spirals (IRSs) have attracted great attention since their observation in an oscillatory reaction-
diffusion system. However, IRSs have not yet been reported in planar excitable media. In the present work we
investigate rotating waves in a nonuniform excitable medium, consisting of an inner disk part surrounded by
an outer ring part with different excitabilities, by numerical simulations of a simple FitzHugh-Nagumo model.
Depending on the excitability of the medium as well as the inhomogeneity, we find the occurrence of IRSs, of
which the excitation propagates inwardly to the geometrical spiral tip.
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I. INTRODUCTION

Inwardly propagating waves, e.g., inwardly propagating
concentric waves and inwardly rotating spirals (IRSs), were
first observed in the oscillatory Belousov-Zhabotinsky (BZ)
reaction that dispersed in water droplets of a water-in-oil
aerosol OT (AOT) microemulsion (BZ-AOT system) [1,2].
Subsequently, inwardly propagating waves were discovered
in other systems, such as the chlorite-iodide-malonic acid
(CIMA) reaction [3,4], the oscillatory CO oxidation on Pt
(110) [5], an artificial tissue of oscillatory cells [6], and
glycolysis [7]. Numerous theoretical and numerical studies
have also been carried out to investigate the behaviors of these
inwardly propagating waves [8–17].

However, in excitable systems which are typical in the heart
tissue and other biological systems, the existence of IRSs
is still an unsettled issue. Although pairs of inwardly and
outwardly rotating spirals have been observed on spherical
surfaces of excitable media [18,19], the appearances of IRSs
are highly topologically constrained. In Refs. [20,21], the
authors conclude that IRSs cannot exist in homogeneous planar
excitable media.

As is known, real systems are commonly spatially inho-
mogeneous. But, theoretical [22–26] and experimental [27]
investigations on the effects of inhomogeneity in excitable
and oscillatory systems are mainly focusing on the outwardly
rotating spiral waves. In Ref. [28], Lázár et al. study the
chemical wave propagation in an annular membrane with
a slow inner and a fast outer zone, and observe inwardly
rotating waves in the slow inner zone. However, compared to
annular domains, rotating waves in holeless domains would be
more scientifically interesting [29], because most experimental
examples of spiral waves have no hole in the center. Recently,
we reported the sink spiral in holeless oscillatory medium
with a disk-shaped inhomogeneity [30]. Unlike the outward
group velocities of inwardly and outwardly rotating spirals in
homogeneous oscillatory media, the group velocity of the sink
spiral point inward. The followings are two examples of the
holeless excitable medium with a disk-shaped inhomogeneity:
In the genesis of ischemic arrhythmias, the ischemic area with
reduced excitability and conduction velocity is surrounded
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by the normal tissue [31,32]; in Dictyostelium amoebae, high
excitable PST cells aggregate to the center of the mound,
and leave the periphery of the mound in a relatively low
excitable state [33]. Besides the two above examples in the
real world, the light sensitive BZ reaction [34] and the CO
oxidation on Pt(110) with different metal components on the
Pt(110) surface [35] can also build the holeless medium with
a disk-shaped inhomogeneity.

In this paper, for the sake of simplicity, we simplify the outer
zone to be a thin ring, and examine the wave propagation in a
nonuniform excitable medium consisting of an inner disk part
surrounded by this outer ring part with different excitabilities.
We show that IRSs could arise and their formation greatly
depends on the properties of the medium as well as the
inhomogeneity.

II. NUMERICAL MODEL AND RESULTS

The following two-variable reaction-diffusion model of the
simple FitzHugh-Nagumo type [36,37] is used:

∂u

∂t
= D�u + (3u − u3 − v),

∂v

∂t
= ε(u − δ).

In Fig. 1(a), we divide the medium into two parts: the inner
disk part and the outer ring part, fix ε = 0.013 and D = 1, and
change parameters δring and δdisk for different excitabilities. We
apply the phase field method (or so-called smoothed boundary
method) [38] to add a no-flux boundary condition outside the
ring part: We set phase field φ to be 1 inside the ring part and
0 outside, and use the relaxation method to smooth its value
in the interface; the reaction-diffusion model is then changed
to be

∂u

∂t
= ∇(log φ) · (D∇u) + ∇(D∇u) + (3u − u3 − v),

∂v

∂t
= ε(u − δ).

When the width of the interface become just a few space
units (su), in our case 6 su, as proved by Ref. [38], the
no-flux boundary condition is implicitly added in the above
revised reaction-diffusion model. The explicit Euler integra-
tion method is applied with a discrete step in space �x = 0.3
and in time �t = 0.02. The system size is 1024×1024 grid
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FIG. 1. (Color online) (a) Initial stimulus. The arrow indicates the initial stimulus rotates clockwise; the dotted line is the border between
the inner disk part and the outer ring part. Rdisk = 134.4 su and Rring = 144 su. (b) The IRS at 4500 time units (tu). (c) Space time plot along
the horizontal cut through the medium center. The parameters are δring = −1.42 and δdisk = −1.63.

points. The initial stimulus is added on the top of the ring part,
and circulates clockwise.

IRSs are obtained in the medium with a weakly excitable (or
even subexcitable) disk part and a relatively higher excitable
ring part. As shown in Fig. 1(b), the initial stimulus propagates
into the inner disk part. Due to the higher excitability, the
excitation in the ring part travels faster than the one in
the disk part. Thus the wave in the ring part drags the whole
wave rotating clockwise, and acts as a source which sustains to
excite the neighbor unexcited medium in the disk part. And
the free geometrical tip acts as a sink where the excitation
propagating from the source is quenched. The space time plot
in Fig. 1(c) demonstrates that the excitation propagates towards
the center of the medium.
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FIG. 2. (Color online) Phase diagram of patterns for δdisk vs
δring. The circles denote the IRS patterns, the diamonds the unsteady
patterns, the squares the intermediate patterns, and the triangles the
no-excitation propagation patterns. Note that the IRS in Fig. 1(b) is
the longest wave in our simulation, and longer waves with several
wavelengths are not observed, even at a larger medium (with system
size 4096×4096 grid points).

In addition to IRSs, we also observe unsteady patterns,
intermediate patterns, and no-excitation propagation patterns.
In Fig. 2, we give the phase diagram of the types of
patterns in the δdisk vs δring plane. To notify, the rotor boundary
(∂R) lies at δ = −1.628, and the propagation boundary (∂P )
at δ = −1.667, by the use of the method in Ref. [39]. Both
boundaries do not coincide with the border of IRSs.

The intermediate pattern between inwardly and outwardly
rotating spirals lies at the right of Fig. 2, i.e., rising δdisk to some
critical point. In our simulation, it is δdisk = −1.62, which is
still weakly excitable, not subexcitable. When δdisk = −1.62,
as shown in Fig. 3(a), the central and outer parts in such a
spiral are wound in opposite directions, as the twisted spiral
in periodically forced oscillatory media [40]. The central and
outer parts compete with each other; the central part acts as
an outwardly rotating spiral and the outer part as an IRS. The
wave finally drifts out of the medium. Further enhancing δdisk,
the central part suppresses the outer part, and the outwardly
rotating spiral dominates the whole medium.

The no-excitation propagation pattern is located at the left
and bottom of Fig. 2. As shown in Fig. 3(b), no excitation
propagates into the disk part. However, for this pattern, δdisk

is larger than the propagation boundary (δ = −1.667), so the
disk part is still excitable.

The IRS gets unsteady as increasing δring, plotted at the top
of Fig. 2. This is because large δring makes the period of rotation

(a) (b)

FIG. 3. (a) The intermediate pattern between inwardly and
outwardly rotating spirals. δdisk = −1.62 and δring = −1.55. (b) The
no-excitation propagation pattern. δdisk = −1.66 and δring = −1.5.
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FIG. 4. The unsteady pattern. The parameters are δdisk = −1.63
and δring = −1.2.

shorter than the refractory time in the disk part. As shown in
Fig. 4, after the IRS forms, it breaks up at the interface between
disk and ring parts [Fig. 4(a)]. The wave segment in the disk
part shrinks as it rotates, whereas the excitation in the ring part
continues rotating [Fig. 4(b)]. Unless the disk part is restored
to the excitable state, the excitation does not propagate into it
and grow into an IRS again. These breakups and growths of
the IRS repeat.

The space time plot in Fig. 1(c) implies that the trajectory
of a spiral tip is not a rigid circle. Therefore we study the tip
path and illustrate it in Fig. 5. At the right part of the IRS
region in Fig. 2, the IRS has a long arm [Fig. 5(a)] and the
spiral tip meanders. However, in the left part of the IRS region
in Fig. 2, the tip moves along a circle [Fig. 5(b)] and the core
radius is relatively large.

We study the dependence of the core radius of the IRS on
δ. As mentioned above, when the spiral arm is long enough,
the core is not a circle. Therefore, we use two variables to
measure the core radius: One is the minimal core radius,
which is defined as the nearest tip location to the center of the
medium; the other is the mean core radius, which is obtained
by averaging the distance from tip locations to the center of the
medium. In Fig. 6, we present the dependence of the minimal
and mean core radii on δdisk and δring separately; both the
minimal and mean core radii decrease with the increase of
δdisk and δring. Figure 6 also shows that the more excitable the
disk and/or ring part is, the more different the minimal and
mean core radii become, and therefore, the more irregular the
tip path becomes.

(a) (b)

FIG. 5. Tip path. The locations of the tip are obtained by
calculating the maximum of |∇u × ∇v| [40]. The solid line
stands for the tip path through several rotations after the transient
(about initial three rotations). (a) δdisk = −1.63 and δring = −1.42;
(b) δdisk = −1.635 and δring = −1.58.
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FIG. 6. (Color online) Minimal (yellow solid surface) and mean
(red mesh surface) core radii of IRSs.

III. DISCUSSION

As shown in Fig. 1(b), the curvature of the IRS is concave.
Generally, in homogeneous media, the concave-shaped waves
are unstable, but the stability in our case is established on
the properties of the medium and inhomogeneity: In order to
match the higher rotation speed in the ring part, the wave in
the disk part must be accelerated. In two-dimensional excitable
media, the velocity-curvature relationship of waves fronts can
be written in the form of an eikonal equation [29,41]:

cn = cp − Dk,

where cn is the normal velocity, cp is the plane wave velocity,
D is the diffusion coefficient, and k is the wave curvature.
To accelerate the wave in the disk part, k should be negative
according to the eikonal relation, i.e., the shape of the wave
in the disk part should be concave. This situation is similar
with the concave wave stabilized in a sandwichlike medium
consisting of a lower excitable stripe amid two higher excitable
ones [41,42].

Besides the eikonal equation, k, cn, and the tangential
velocity cτ of a rigidly IRS also obey the following system
of differential equations [41]:

dcn

ds
= ω + kcτ ,

dcτ

ds
= −kcn,

where ω is the angular velocity and s is the arc length along the
wave front. The kinematic model above has succeeded in many
aspects of spiral waves in homogeneous media [37,43], but
needs further study in nonuniform media, such as the medium
with a disk-shaped inhomogeneity [44]. Although we lack a
rigorous analysis, we can still give an illuminating discussion
about IRSs using the dispersion relation for periodic excitation
waves in one-dimensional (1D) excitable media.

It is known that the dispersion relation plays a key
role in the occurrence of IRSs in oscillatory systems: As
Refs. [2,20] show, one of the essential conditions for IRSs
in oscillation media is that the dispersion dω/dk is negative at
the characteristic wave number k0. From this point of view, we
intend to study the dispersion relation in 1D excitable media,
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FIG. 7. (Color online) Scheme of the dispersion core radius. The
parameters are δdisk = −1.63 and δring = −1.42, which are the same
as in Fig. 1(b).

to grasp some of the criteria for the occurrence of IRSs in
nonuniform excitable media.

The dispersion curves are obtained by the method in
Ref. [40], in which an excitation is circulating along a 1D ring
medium with given δ, whose perimeter (2πR) is gradually
shortened until the excitation is collapsed at some minimal
perimeter. In the case of our disk-shaped inhomogeneous
medium, we plot the dispersion relations of both disk and
ring parts, as shown in Fig. 7, for instance δring = −1.42 (thin,
blue solid line) and δdisk = −1.63 (red dashed line), the same
parameters as in Fig. 1(b).

For a rigid IRS, each of the points at the wave has its own
concentric circle orbit, shown as dashed lines in Fig. 8. Now,
we can investigate the dispersion relation of an excitation in
a 1D ring with the same perimeter of this concentric circle
orbit. The radius of the outer ring part in this paper is fixed at
R = 134.4. Therefore, cp/R in the ring part is 0.054 (blue star
point in Fig. 7). We also superimpose each of the points’ cp/R

in the inner ring part at its corresponding radius of concentric
circle orbit, as a thick, black solid line (the tip is especially
plotted as a black circle point) in Fig. 7.

In Fig. 7, we plot a horizontal dashed line from the star
point to cross the dispersion relation curve of the disk part at

FIG. 8. Points of the wave in their concentric circle orbits (dashed
lines).
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FIG. 9. (Color online) The radii of dispersion (green solid
surface) and minimal (red mesh surface) cores.

the square point. The abscissa value of the red square point is
defined as the dispersion core radius. Figure 7 shows that all
the cp/R in the dispersion curve corresponding to the disk part
are less than the one corresponding to the ring part. In other
words, for a steady IRS, all radii of the concentric circle orbits
in the disk part (thick, black solid line), including the minimal
core radius (black circle point), are larger than the dispersion
core radius (red square point). This probably is an essential
condition for the emergence of the IRS.

We guess that the essential condition above is satisfied
through the whole region of the IRS in Fig. 2. Figure 9
supports our guess: The radii of minimal cores are larger than
those of the dispersion cores for all steady IRSs except at
δdisk = −1.625. This is just the border between the IRSs and
the intermediate patterns in Fig. 2; at this border, the radii of
dispersion cores are nearly equal to those of the minimal cores
(for details, see Fig. 10).
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FIG. 10. (Color online) The radii of dispersion and minimal cores
at δdisk = −1.625.
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IV. CONCLUSION

In this work, we have found the existence of IRSs in an ex-
citable system with a disk-shaped inhomogeneity. Depending
strongly on the properties of the medium and inhomogeneity,
IRSs and other patterns emerge. Using the dispersion relation,
we also propose an essential condition for the occurrence of
the IRSs: The dispersion core radius is less than the minimal
core radius; the intermediate pattern between inwardly and
outwardly rotating spirals occurs when the essential condition
is violated. To check whether our results are sensitively model
independent, we also study rotating waves in the Barkley
model [45] with a disk-shaped inhomogeneity and observe
IRSs in this excitable system, which suggests our findings are
robust. Note that our inhomogeneous medium is similar to the
leading-circle model [46] in cardiac arrhythmias: The outer
ring part serves as the leading circle; the inner disk part is like
the excitable tissue excited by the impulse shedding inwardly
from the leading circle to the core. Moreover, by contrast to

the excited and refractory core predicted in the leading-circle
model, which is contradicted by the evidence that the core
of functional reentry is excitable, yet remains nonactivated
[47], the centripetal propagation wave in the IRS circulates
around an excitable but nonexcited core. Considering the
inhomogeneity in the heart tissue [31,32], we expect the
existence of IRSs in the cardiac system. Finally, we also hope
our results could be reproduced in the experiments such as the
BZ reaction [34] and the CO oxidation on Pt(110) [35], which
will make our work more interesting.
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Numer. Methods Partial Differential Equations 22, 435 (2006).

[39] W. Jahnke, W. E. Skaggs, and A. T. Winfree, J. Phys. Chem. 93,
740 (1989); A. T. Winfree, Chaos 1, 303 (1991).

[40] O. Rudzick and A. S. Mikhailov, Phys. Rev. Lett. 96, 018302
(2006).

[41] V. S. Zykov, Simulation of Wave Processes in Excitable Media
(Manchester University Press, Manchester, UK, 1987).

[42] V. S. Zykov and S. C. Müller, Chaos Solitons Fractals 10, 777
(1999).

[43] V. S. Zykov, Physica D 238, 931 (2009).

016213-5

http://dx.doi.org/10.1126/science.1064167
http://dx.doi.org/10.1103/PhysRevLett.88.088303
http://dx.doi.org/10.1103/PhysRevLett.88.088303
http://dx.doi.org/10.1103/PhysRevLett.100.198304
http://dx.doi.org/10.1103/PhysRevLett.100.198304
http://dx.doi.org/10.1103/PhysRevLett.106.188303
http://dx.doi.org/10.1103/PhysRevLett.106.188303
http://dx.doi.org/10.1021/jp0498015
http://dx.doi.org/10.1021/jp0498015
http://dx.doi.org/10.1103/PhysRevE.68.020902
http://dx.doi.org/10.1016/j.bpj.2010.04.018
http://dx.doi.org/10.1016/j.bpj.2010.04.018
http://dx.doi.org/10.1103/PhysRevLett.87.084101
http://dx.doi.org/10.1103/PhysRevLett.87.084101
http://dx.doi.org/10.1524/zpch.2002.216.4.521
http://dx.doi.org/10.1103/PhysRevLett.90.088302
http://dx.doi.org/10.1103/PhysRevLett.90.088302
http://dx.doi.org/10.1103/PhysRevE.68.016208
http://dx.doi.org/10.1103/PhysRevLett.92.089801
http://dx.doi.org/10.1103/PhysRevLett.92.089801
http://dx.doi.org/10.1021/jp049213r
http://dx.doi.org/10.1021/jp049213r
http://dx.doi.org/10.1103/PhysRevLett.95.084501
http://dx.doi.org/10.1103/PhysRevE.74.026107
http://dx.doi.org/10.1103/PhysRevE.74.026107
http://dx.doi.org/10.1209/0295-5075/79/34002
http://dx.doi.org/10.1103/PhysRevE.80.036211
http://dx.doi.org/10.1103/PhysRevE.80.036211
http://dx.doi.org/10.1103/PhysRevE.76.016201
http://dx.doi.org/10.1103/PhysRevE.76.016201
http://dx.doi.org/10.1209/0295-5075/91/34001
http://dx.doi.org/10.1209/0295-5075/91/34001
http://dx.doi.org/10.1038/339609a0
http://dx.doi.org/10.1103/PhysRevE.70.056203
http://dx.doi.org/10.1103/PhysRevE.70.056203
http://dx.doi.org/10.1103/PhysRevE.74.036208
http://dx.doi.org/10.1103/PhysRevE.74.036208
http://dx.doi.org/10.1016/j.physleta.2004.09.004
http://dx.doi.org/10.1103/PhysRevE.52.R5739
http://dx.doi.org/10.1103/PhysRevE.52.R5739
http://dx.doi.org/10.1016/S0167-2789(97)00256-X
http://dx.doi.org/10.1103/PhysRevLett.82.859
http://dx.doi.org/10.1103/PhysRevLett.82.859
http://dx.doi.org/10.1103/PhysRevE.63.031905
http://dx.doi.org/10.1103/PhysRevE.63.031905
http://dx.doi.org/10.1103/PhysRevE.75.016214
http://dx.doi.org/10.1103/PhysRevE.75.016214
http://dx.doi.org/10.1103/PhysRevE.72.056205
http://dx.doi.org/10.1103/PhysRevE.72.056205
http://dx.doi.org/10.1063/1.166270
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1103/PhysRevE.77.056207
http://dx.doi.org/10.1103/PhysRevE.77.056207
http://dx.doi.org/10.1063/1.166286
http://dx.doi.org/10.1103/PhysRevE.57.4622
http://dx.doi.org/10.1103/PhysRevE.79.035101
http://dx.doi.org/10.1063/1.1450565
http://dx.doi.org/10.1103/PhysRevLett.66.2274
http://dx.doi.org/10.1016/j.physd.2009.07.018
http://dx.doi.org/10.1016/j.physd.2009.07.018
http://dx.doi.org/10.1063/1.1840311
http://dx.doi.org/10.1063/1.1840311
http://dx.doi.org/10.1002/num.20103
http://dx.doi.org/10.1021/j100339a047
http://dx.doi.org/10.1021/j100339a047
http://dx.doi.org/10.1063/1.165844
http://dx.doi.org/10.1103/PhysRevLett.96.018302
http://dx.doi.org/10.1103/PhysRevLett.96.018302
http://dx.doi.org/10.1016/S0960-0779(98)00027-7
http://dx.doi.org/10.1016/S0960-0779(98)00027-7
http://dx.doi.org/10.1016/j.physd.2008.06.009


GAO, FENG, CAI, LI, YING, AND ZHANG PHYSICAL REVIEW E 85, 016213 (2012)

[44] V. S. Zykov (private communication).
[45] D. Barkley, M. Kness, and L. S. Tuckerman, Phys. Rev. A 42,

2489 (1990).
[46] M. A. Allessie, F. I. Bonke, and F. J. Schopman, Circ. Res. 41,

9 (1977).

[47] T. Ikeda, T. Uchida, D. Hough, J. J. Lee, M. C. Fishbein, W. J.
Mandel, P.-S. Chen, and H. S. Karagueuzian, Circulation 94,
1962 (1996); H. S. Karagueuzian, C. A. Athill, M. Yashima,
T. Ikeda, T.-J. Wu, W. J. Mandel, and P.-S. Chen, Pacing Clin.
Electrophysiol. 21, 2360 (1998).

016213-6

http://dx.doi.org/10.1103/PhysRevA.42.2489
http://dx.doi.org/10.1103/PhysRevA.42.2489
http://dx.doi.org/10.1111/j.1540-8159.1998.tb01182.x
http://dx.doi.org/10.1111/j.1540-8159.1998.tb01182.x

