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Diffusive transport of waves in a periodic waveguide
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We study the propagation of waves in quasi-one-dimensional finite periodic systems whose classical (ray)
dynamics is diffusive. By considering a random matrix model for a chain of L identical chaotic cavities, we show
that its average conductance as a function of L displays an ohmic behavior even though the system has no disorder.
This behavior, with an average conductance decay N/L, where N is the number of propagating modes in the leads
that connect the cavities, holds for 1 � L �

√
N. After this regime, the average conductance saturates at a value

of O(
√

N) given by the average number of propagating Bloch modes 〈NB〉 of the infinite chain. We also study the
weak localization correction and conductance distribution, and characterize its behavior as the system undergoes
the transition from diffusive to Bloch ballistic. These predictions are tested in a periodic cosine waveguide.
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I. INTRODUCTION

Wave propagation in periodic media has been studied
quantitatively at least from the advent of quantum mechanics
and the quantum theory of solids. Bloch-Floquet theorem,
the underlying theoretical tool, allows us to identify the
propagating and nonpropagating states that form bands as
functions of the quasimomentum. The group velocity of the
propagating waves is given by the derivatives of the energy
bands with respect to the quasimomentum, thus explaining
the ballistic character of the Bloch states [1]. Another well
studied subject is wave propagation in disordered systems [2].
Here, three regimes are usually recognized depending on the
system size L. When L is smaller than the mean free path
�̂ the propagation is in the ballistic regime, if �̂ � L � ξ ,
with ξ the localization length, the system is in the diffusive
regime, and if ξ � L it is in the localized regime. In three
dimensional systems ξ could be either finite or infinite and the
transition between these two regimes is called the Anderson
transition. In waveguides (quasi-one-dimensional systems) [3]
ξ ∼ N�̂ with N the number of modes in the scattering leads,
so the diffusive regime can be observed in the semiclassical
limit. The conductance is a natural quantity [4] to study these
wave properties in electronic, optical, and acoustical systems.
In disordered systems, its scaling with L is such that in the
ballistic regime it is independent of L, in the diffusive regime
it scales as 1/L, and in the localized regime it decreases
exponentially with L. While the ballistic and diffusive regimes
have been observed in electronic systems (for a review see [5]),
localization has been more elusive but recently [6] has been
experimentally observed with acoustic waves.

Since the experimental realization of photonic and
phononic crystals [7] many interesting properties of waves
in periodic media have been found [8]. In this work we will
consider a new one, namely the existence of a diffusive regime
for waves in periodic media, a property usually associated to
disordered systems. In fact, it is not always appreciated that the
diffusive regime is a semiclassical property of some chaotic
systems and disorder is not essential for its appearance.

There exists a wealth of literature where the classical
(ray) dynamics of particles in periodic billiards is studied

in relation to transport processes. The Lorentz channel [9]
is probably the best known example because it is one of the
few cases where hyperbolicity, the mathematical expression
of hard chaos, has been proved. The Lorentz channel consists
in a quasi-one-dimensional region populated by hard wall
disks placed regularly in a lattice. Particles travel freely
except for the elastic collisions with the obstacles. If the
geometry of the lattice is such that there are no trajectories
allowed to travel infinitely without collisions, then an initial
density of trajectories will spread such that its variance grows
proportional to time t , i.e., it will exhibit normal diffusion.
Otherwise, diffusion is anomalous [10] and the particle density
variance grows as t ln t . In this work we always assume normal
diffusive dynamics. The essential ingredient for this diffusive
behavior is the chaotic dynamics of the particle in the billiard
unit cell. Hence a natural question to ask is to what extent
this classical diffusive behavior appears in the wave transport
properties of periodic systems, especially when we think in the
contrast between the well known ballistic wave propagation
of Bloch states and the diffusive character of the classical
dynamics. One approach to this problem is the one considered
in [11] where they studied the dependence of spectral statistics
on the diffusion coefficient of a ring of L identical chaotic cells.
Another approach is to study the time evolution of a wave
packet [12]. Unfortunately, this is numerically difficult if we
are interested in the semiclassical regime. One can simplify this
task by considering model systems like the spatially extended
multibacker map [12], where the diffusive to ballistic transition
was exhibited in the mean square displacement.

In this work, we consider a time-independent approach
based on the scattering matrix and focus on finite quasi-
one-dimensional periodic systems. Besides solving the wave
equation in a particular waveguide system, namely the cosine
billiard, we use random matrix theory (RMT), which has been
successfully used to model the wave properties of chaotic
cavities [13] and of disordered wires, and also to study spectral
properties of extended systems [11]. Here, we employ RMT
to study scattering in chaotic periodic waveguides. Since the
unit cell of the periodic billiard is an open chaotic cavity, its
scattering matrix can be modeled by elements of the Dyson
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circular ensembles [13]. Using this matrix, the scattering
matrix of the slab with L identical cells is constructed, from
where physical properties, like conductance, can be computed
[14]. Averaging this conductance over the appropriate Dyson
ensemble of random matrices we can obtain a prediction for
the average conductance of a periodic waveguide composed of
generic chaotic cavities, which we verify in the cosine billiard.

The plan of the paper is the following. In Sec. II we
review the basic tools to analyze scattering in waveguides, and
introduce the so called cosine periodic billiard and a random
matrix model for periodic waveguides. In Sec. III, we show
numerically in the random matrix model and in the cosine
billiard that for system length 1 � L �

√
N the average

conductance behaves diffusively, i.e., as N/(L + 1) and at a
length of the order

√
N , the so-called diffusive-Bloch ballistic

transition occurs and the average conductance saturates to
a constant value. In two different subsections, we analyze
conductance fluctuations and weak localization correction as
the systems undergoes the transition from diffusive to Bloch
ballistic. Finally, in Sec. IV we offer some conclusions.

II. WAVEGUIDE SYSTEM

In this paper, the physical problem we address regards
scattering in a waveguide composed of a slab made of a finite
periodic chain of two dimensional chaotic cavities connected
by leads (see Figs. 1 and 2). The leftmost and rightmost leads
extend to x going to minus and plus infinity. The wave function
φ is governed by the Helmholtz equation

∇2φ + k2φ = 0, (1)

with Dirichlet boundary conditions at the walls, and where k

is the wave number. Experimental realizations of this system
can be built with microwave cavities [15]. The number of cells
in the slab is L and we choose the x direction as the waveguide
axis.

A natural way to describe the wave function φ(x,y) in the
waveguide is to project it on the local transverse basis, that is,
writing the wave function as

φ(x,y) =
∞∑

n=1

[c+
n (x) + c−

n (x)] ρn(x,y), (2)

where ρn(x,y) are the local transverse modes which satisfy
the boundary conditions on each x, and c+

n (x) [c−
n (x)] is the

FIG. 1. Cosine billiard chain with five unit cells connected to two
plane leads. The unit cell boundaries are defined in Eqs. (12)–(13)
as a function of the amplitudes A1 and A2 shown in the figure. The
width W of the leads is A1.

x

y

FIG. 2. A schematic plot of a periodic chain of chaotic billiards.
The leads that connect the chaotic cavities have a width W such that if
the wave number is k there are N = [Wk/π ] modes that propagates
along them. The cavity has an area Ac and the length of the unit cell is
a, which we set to 1 unless we specify it otherwise. For the analysis of
conductance the number of cells L is finite (here L = 4), the leftmost
and rightmost leads extend to x minus and plus infinity, and we deal
with a scattering system.

right-going (left-going) longitudinal mode. In the particular
case of a hard-wall waveguide,

ρn(x,y) =
√

2

h(x)
sin

(
nπ

y − h1(x)

h2(x) − h1(x)

)
, (3)

n = 1, . . . ,∞, where h1(x) < h2(x) are the walls’ height
as a function of the longitudinal coordinate x. This set of
functions satisfies the null boundary conditions ρn(x,h1(x)) =
ρn(x,h2(x)) = 0 everywhere in the guide. The longitudinal
modes are obtained by inserting Eq. (2) in Eq. (1), which
transforms the original partial differential equation into a
system of coupled ordinary differential equations, which can
be efficiently solved numerically [16].

In a plane lead, h1(x) and h2(x) are constant, so Eq. (1) is
separable since ρn(x,y) = ρn(y) is independent of x. In this
region, the longitudinal modes c±(x) are given by

e±
n (x) = e±iknx

√
kn

, (4)

where k2
n = k2 − (nπ/W )2 is the longitudinal wave number,

W = h2 − h1 is the lead width, and the normalization is to
impose unit flux. In this region, there are

N =
⌊

Wk

π

⌋
(5)

propagating modes because for n > N the longitudinal wave
number kn is imaginary, implying null flux. These are called
evanescent modes and decay exponentially with x. The far
field wave function in the leads can be described with a 2N

dimensional complex vector composed of coefficients An and
Bn for n = 1, . . . ,N and we can write the wave function as

φ(x,y) =
N∑

n=1

[Ane
+
n (x) + Bne

−
n (x)] ρn(y). (6)

Let Ar (Br) be the N dimensional complex vector of right-
going (left-going) amplitudes in the right lead and Al (Bl) the
same on the left lead. We denote the incoming and outgoing
(or incident and scattered) fields in vector notation as

ψin =
(

Al

Br

)
and ψout =

(
Bl

Ar

)
. (7)

The scattering matrix S is defined as the linear transformation
that maps incoming to outgoing fields,

ψout = Sψin, (8)
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and has a block structure,

S =
(

r t ′
t r ′

)
(9)

with r the left (r ′ the right) reflection matrix and t the left to
right (t ′ the right to left) transmission matrix, each of them
of dimension N × N . The scattering matrix of a chain of
L identical cavities (such as Fig. 2) can be obtained from a
standard concatenation rule [17], starting from the knowledge
of the unit cell scattering matrix, i.e., SL = fL(Suc) with
f1(Suc) = Suc, where Suc and SL are the unit cell and L-cells’
scattering matrices, respectively. It is also useful to consider
the transfer matrix ML, which maps the field on the left lead
ψl to the field in the right lead ψr = MLψl, where

ψr =
(

Ar

Br

)
and ψl =

(
Bl

Al

)
. (10)

The concatenation rule for transfer matrices is a simple
multiplication, so if Muc is the transfer matrix of the unit
cell, then ML = (Muc)L and if λi are the eigenvalues of Muc

then λL
i are the eigenvalues of ML. The consequence of this

for the infinite one dimensional (1D) periodic systems are well
known [18]. Since the wave function of the infinite periodic
system must remain bounded along the chain, the only allowed
states are those associated to the eigenvalues that satisfies
|λi | = 1. The number of these states is called the number of
propagating Bloch states [19] and will be denoted by 2NB(k).
Since in this case we can write λi = eiθ(k), we can invert the
relation and obtain the allowed energy bands k = kn(θ ).

As we have already mentioned, in this paper we are
interested in the transport properties of finite periodic systems,
in particular in the dimensionless conductance of a chain with
L cells, which can be obtained directly from the transmission
part of the SL matrix by the Landauer formula [14],

gk(L) = tr[tL tL
†]. (11)

A. Cosine waveguide

As our particular model we will employ the periodic cosine
billiard. We define the unit cell as the region enclosed by
h1(x) < y < h2(x) for each x ∈ [−1,1], where

h1(x) = A1

2
[1 + cos (πx)] and (12)

h2(x) = A1 + A2

2
[1 + cos (πx)]. (13)

The classical limit of Eq. (1) corresponds to noninteracting
free particles within the system; collisions against the billiard
boundaries h1 and h2 are elastic, thus the particle speed v

is constant. Note that our cosine billiard always has finite
horizon, i.e., it does not allow unbounded collision-free
trajectories for any values of A1 > 0 and A2 > 0, and is
chaotic choosing these parameters appropriately [20]. We
always consider configurations displaying strongly chaotic
dynamics such that classical particles in the cavity follow a
normal diffusion process, i.e., x2 ∼ Dt , where the average (·)
is computed for each time t over an initially spatially bounded
ensemble of initial conditions [20] with unit random velocity.

We note that the unit cell mirror symmetry x → −x is not
relevant for the classical transport properties of the billiard
but makes the numerical solution of the quantum scattering
problem faster (the transmission and reflexion matrices t and
r are the same in both directions). However, this induces
an antiunitary symmetry in the quantum Hamiltonian, which
plays a role in the statistical and transport properties of the
waveguide as we discussed in [20].

We will solve numerically the scattering wave problem in
this billiard as a function of L and compute the conductance
(11). In general, all quantities dependent on the Muc spectrum
[in particular gk(L)] are highly fluctuating as a function of k

over variations of the order of the (unit cell) mean level spacing
[11]. Averaging over a k interval several mean level spacings
wide gives a smooth function that changes on much larger k

scales. We call the ensemble of wave numbers (or energies)
realizations in this interval the semiclassical ensemble. In
the following sections, we will compute these averages for
the cosine billiard and the results will be compared with the
predictions that follows from the RMT periodic waveguide
model that we discuss below. If the typical size of the cavity
is much larger than the leads width W , then it is possible to
define the semiclassical ensemble over a wave number interval
such that N is constant. This assumption is important to make
the connection to our RMT model.

B. RMT periodic waveguide model

The RMT model is constructed by taking a 2N × 2N

random matrix from the Dyson circular orthogonal (unitary)
ensemble COE (CUE) and using it as the scattering matrix Suc

of a chaotic unit cell with (without) time-reversal invariance.
Modeling the scattering matrix of a chaotic cavity by elements
of these ensembles is a common method [21] known to
be accurate in the prediction of statistical properties. The
connection to the physical system is made by replacing k

dependent quantities by RMT realization dependent quantities.
The averages over the RMT ensemble take the place of
averages over the semiclassical ensemble. Using the S matrix
composition rule SL = fL(Suc), the scattering matrix of the
L cells connected by leads with N modes is obtained. Thus
we have a RMT ensemble for periodic chains of L chaotic
cavities.

If we denote by μ the Dyson measure of the RMT ensemble
and note that the conductance (11) is a functional of SL, we
can express the averaged conductance of the RMT model as

〈gN (L)〉 =
∫

dμ(Suc)g[SL(Suc)]. (14)

We perform this computation numerically.
To end this section we would like to remark that modeling a

chaotic cavity by RMT is justified if the particle stays trapped
inside the cavity for a long time [21]. To be more precise, the
RMT model assumes that the particle escape time is much
longer than its correlation decay characteristic time, so the
particle effectively undergoes a random walk between unit
cells. Therefore the case of anomalous diffusion mentioned
in the Introduction is excluded from our analysis. In order
to study this case, the Dyson ensembles should be properly
modified.
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III. CONDUCTANCE OF A FINITE PERIODIC CHAIN
OF CHAOTIC CAVITIES

Landauer’s formula can be written more explicitly as

gk(L) = tr[tL tL
†] =

N∑
i=1

Ti(L), (15)

where {Ti(L)}Ni=1 are the N eigenvalues of the N × N matrix
tL tL

†, which are bounded in the real interval [0,1]. They are
related to the eigenvalues {
i(L),
i(L)−1}Ni=1 of the 2N × 2N

matrix ML M†
L by

Ti(L) = 4

2 + 
i(L) + 
−1
i (L)

, i = 1, . . . ,N, (16)

a relation that follows from the polar decomposition [22].
To simplify notation, we drop the explicit k dependence in
all quantities below; we note that N = [Wk/π ] is also k

dependent.
The conductance (15)—and in general any other transport

property dependent of the transmission eigenvalues Ti—is
a function of ML M†

L eigenvalues. In view of the simple
description of the infinite periodic system in terms of allowed
and forbidden states it is interesting to link the eigenvalues
{
i(L),
i(L)−1}Ni=1 to the eigenvalues λi of Muc. Oseledets’
theorem [23] provides us with such a relation, given by [22]


i(L) −→
L→∞

ai(L)e−2L ln |λi |, (17)

where ai(L) is a positive and (generically) bounded function
of L. Then, using relation (16), we can decompose g(L)
[Eq. (15)] in two terms, one with the sum of the NB

nondecaying transmission modes Ti related by Eqs. (16) and
(17) to the 2NB propagating Bloch modes |λi | = 1 (which
we choose to have indices i = 1, . . . ,NB), and another with
the sum of the transmission modes related to evanescent
Bloch states |λi | �= 1 (for which we choose to have indices
i = NB + 1, . . . ,N ). The second term has a decay length

� =
(

min
|λi |>1

{ln |λi |}
)−1

, (18)

determined by the slowest to decay nonpropagating state.
From Eqs. (17) and (16) we deduce that the NB transmission
eigenvalues Ti associated to Bloch modes is of order 1, so for
chains of length L � �,

g(L) � NB + 4am(L) e−2L/�, (19)

where am is the Oseledets function ai associated to the mode
with decay length �. The equality in Eq. (19) is nongeneric
and occurs if Muc is a normal matrix (as we discuss below),
in which case Ti(L) = 1 for all Bloch modes. More generally,
for chains of length L � �, all transmission modes contribute
to the conductance,

g(L) = NBP (L) +
N∑

i=NB+1

4

2 + 
i(L) + 
−1
i (L)

(20)

with 0 < P (L) < 1 an O(1) quasiperiodic function of L.
The function P (L) takes into account the fact that there
exists a repulsion between the eigenvalues Ti(L) associated
to propagative Bloch modes and that these quantities fluctuate

10 20 30 40 50 60
L

0.2

0.4

0.6

0.8

1.0
Ti

FIG. 3. The first five transmission eigenvalues Ti(L) in a cosine
billiard with A1 = 0.5 and A2 = 4.5 for k = 30.2157π . For this
energy, NB = 4 and the associated Ti are plotted with circles. In
addition, the slowest to decay evanescent mode is also plotted with
squares. It can be seen that the ballistic transmission modes tend to
spread in the [0,1] interval and therefore 〈g(L)〉 < NB in the generic
case.

quasiperiodically as a function of L (see Fig. 3). This effect
makes the conductance strictly lower than NB in the generic
case, and can be thought of as a geometric consequence of
Muc being not normal, i.e., not diagonalizable in an orthogonal
base. The transmission eigenvalues repulsion is also observed
in disordered chains [22].

We remark that P (L), NB , and the spectrum λi are k de-
pendent. Intervals where NB(k) = 0 corresponds to forbidden
bands and Eq. (20) shows, as expected, that for k values in
a forbidden band, g(L) decrease exponentially with L, while
in allowed bands, where NB(k) � 1, the conductance remains
finite as L → ∞. As k increases, the probability of finding an
energy gap decreases, nevertheless gaps play an important role
in some statistical measures (see Fig. 5).

A. Digression: the disordered chain

We will contrast our results for the periodic RMT chain
with a disordered RMT chain, where the composition of the
scattering matrix is performed each time with a different
realization of the CUE or COE ensemble. The statistical
properties of the conductance of this disordered chain are
expected to be well described by the statistical properties of
the disordered wire, which allow an analytical study [22]. One
of the theoretical frameworks to study this model is through a
Fokker-Planck equation for the probability P (T1, . . . ,TN ; L).
In this approach, the system size L is a continuous variable and
the transmission coefficients are random variables that evolve
stochastically as L increase. There are important hypotheses
in the derivation of this Fokker-Plank equation (called DMPK
equation in this context [24,25]), for instance, the disorder is
spatially homogeneous and the scattering produced by a short
slab of the wire is isotropic and weak. From P (T1, . . . ,TN ; L) it
is possible to obtain all the desired statistical information of the
conductance, which can be written as ĝ(L) = ∫

dT PL(T )T
with PL(T ) = N

∫
dT2 . . . dTNP (T ,T2, . . . ,TN ; L) (with N

a normalization constant). From the solution of the DMPK
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equation, it is possible to show that the conductance behaves
diffusively, i.e., as ĝ(L) = N�̂/(L + 1) for �̂ < L < �̂N , and
then, for L > �̂N , as ĝ(L) ∝ exp(−L/2βN�̂) with β = 1(β =
2) for systems with (without) time-reversal invariance and
�̂ the mean free path in the disordered medium up to a
numerical constant [22]. From this analysis it also follows
that the localization length for the disordered wire is �̂N . It
is also possible to characterize the fluctuations, for instance,
to give an explicit expression for PL(T ). For instance,
PL(T ) = N�̂

2L
1

T
√

1−T
, the so called Dorokhov distribution, in

the diffusive regime �̂ < L < �̂N . This result is linked to the
distribution of the localization lengths spectrum �̂n = ln |λ̂n|
defined from the eigenvalues of the disordered M matrix
satisfying |λ̂n| > 1. Acording to Dorokhov [24] �̂n(N )−1 ∼
n/N�̂ for n = 1, . . . ,N . It is interesting to note that as a
consequence of �̂−1

n linear dependence on n, Eq. (16) implies
that ĝ(L) ∼ 1/L in the interval �̂ � L � �̂N . There are two
other important results that follow from the DMPK equation.
First, there is a weak localization correction (WLC) that has
to be added to ĝ(L) in the metallic (ohmic) regime in time-
reversal invariant systems, which for large N is δĝ(L) = −1/3
independent of L. Second, the conductance distribution in the
metallic regime turns out to be Gaussian with O(1) variance,
independent of the system length and of the disorder properties
(universal conductance fluctuations), and then changes from
this Gaussian form to a log-normal distribution as the size of
the wire reaches the localization length.

Other approaches have been used to study the conductance
of a disordered wire, for instance using a random matrix theory
for the description of the Hamiltonian in the scattering region
[26], but in the appropriate limits of the weakly disordered wire
these descriptions were shown to be equivalent. It is expected
that the disordered RMT chain is well described by this model,
except perhaps in the transition between the different regimes.
Our numerical results [see Fig. 4 (lower panel)] confirm this
expectation, for instance, a transition from the diffusive to the
localized regime when the system reaches a length L ∼ O(N )
corresponding to the localization length.

B. Average conductance of the periodic waveguide

In this section we focus on the average conductance 〈g(L)〉
and resistance 〈1/g(L)〉, that we compute in the semiclassical
and RMT ensembles for a periodic waveguide. From the
decomposition (20) of g(L) as a sum of propagating and
decaying modes, it is clear that for small values of L we
have 〈g(L)〉 ∼ O(N ), as in the disordered case [22] and, for L

large enough, 〈g(L)〉 � 〈NB〉 is independent of L. The average
number of propagating Bloch modes in the infinite periodic
waveguide, 〈NB〉, was studied in [19] and [20], where it was
shown that for the diffusive waveguides we consider it scales
as 〈NB〉 ∼ √

N . Therefore, as L increases, there is a transition
from the ballistic propagation 〈g(L)〉 ∼ O(N ) through short
systems to the Bloch-ballistic propagation 〈g(L)〉 � 〈NB〉 ∼
O(

√
N ) through long finite periodic systems. In order to study

this transition we compute 〈g(L)〉 as a function of L for
the cosine periodic waveguide and for the RMT model of
a periodic waveguide. We focus in particular in the limit of
large N , i.e., the semiclassical limit.

0 5 10 15 20 25 30
L0

10
20
30
40
50
N g

1 2 5 10 20 50
L

0.1

0.25

0.5

g N

0 10 20 30 40 50
L

0.01

0.02

0.05

0.10

0.20

0.50
g N

FIG. 4. Upper panel: For the periodic RMT chain, plots of
〈g(L)/N〉 as a function of L for N = 10 (dots), 20 (squares),
30 (triangles up), 40 (triangles down), and 50 (diamonds) for the
COE case. As N increase, convergence to the linear dependence on
1/(L + 1) (line) and the scaling with N of the diffusive regime are
clearly observed. The departure from this law to an L independent
regime signals the diffusive to Bloch ballistic transition. In the inset
we depict 〈N/g(L)〉 for the same values of N and the line L + 1
predicted by Ohm’s law. The divergence of this quantity that follows
after the ohmic behavior is discussed in the text. Lower panel: For the
disordered RMT chain (see Sec. III A), plots of 〈g(L)/N〉. Symbols
correspond to the same matrix dimension as in upper panel (N = 10
not shown). The continuous line for L < 20 represents Ohm’s law
and for L > 20 an exponential decay as expected in the localized
regime.

In Fig. 4 (upper panel) we present the scaled averaged
conductance 〈g(L)/N〉 as a function of L for our RMT model
with Suc taken from the COE ensemble and compare it with
the characteristic 1/(L + 1) decay of the ohmic behavior [3].
We observe that the numerical data follow

〈g(L)〉COE =
⎧⎨
⎩

N

(L + 1)
1 � L �

√
N

〈NBP (L)〉 √
N � L

(21)

with the ohmic behavior, 〈g(L)〉 = N/(L + 1), up to a given
length O(

√
N ) close to 〈NB〉 where a transition to an L

independent regime is observed. This is the diffusive to
Bloch-ballistic transition.
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L0.0
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1 g L

FIG. 5. Average resistance 〈1/g(L)〉k (black dots) for the cosine
billiard with A1 = 0.5, A2 = 4.5, and k = 30.33π . The full line
shows the ohmic regime holding for L < 10. Also, several realiza-
tions of 1/g(L) are displayed in gray: a few cases with NB = 0
grow exponentially and the rest reach an asymptotic oscillating
value 1/g∞(L) ∼ O(1/NB ). The exponential growth of the average
resistance 〈R〉k for L > 10 is explained by the presence of the rare
cases with NB = 0.

The ohmic regime manifests itself also in the resistance,

〈R〉 =
〈

1

g(L)

〉
, (22)

which is plotted in the inset of Fig. 4 (upper panel) for the RMT
model and in Fig. 5 for a cosine waveguide. Qualitatively,
we found that Ohm’s law 〈R〉 = (L + 1)/N holds for small
L, before 〈g(L)〉 reaches its asymptotic value. This regime
is followed by localizationlike exponential growth of the
resistance. The latter may seem surprising but is a consequence
of the non-null probability of NB = 0. In fact, although this
probability decays to zero as N → ∞ [27], it dominates in
the average 〈1/g(L)〉 for long chains. However, in the limit of
large N , for particular realizations of 1/g(L) the most probable
is 1/g(L) = 1/[NBP (L)] < ∞ with NB �= 0.

The existence of the ohmic regime is a consequence of the
full ML M†

L matrix spectrum and it is observed for lengths
L � �, where several nonpropagating Ti still contribute to
the sum in the right hand side of Eq. (20). This is clearly
observed in Fig. 6 where the average conductance of the
cosine billiard (filled squares) is compared to the average
of Eq. (20) eliminating the second term of the right hand
side (filled circles). In order to understand this ohmic regime
we remember (see Sec. III A) that, for the disordered wire,
it can be explained by the scaling of Dorokhov localization
lengths spectrum [24] �̂n(N )−1 ∼ n/N�̂, n = 0, . . . ,N − 1.
Now, it turns out that, in our model for periodic waveguides,
the spectrum |λn| of Muc = Muc(Suc) with Suc taken from
COE has a similar property, namely �−1

n = ln |λn| ≈ n/N for
〈NB〉 � n � N , from which we conclude the existence of an
ohmic regime, in periodic diffusive waveguides (see Fig. 7).
This is a statistical characteristic of the transfer matrix
spectrum, which can be recast stating that

p(|λ|) ∼ 1

|λ| , for
〈NB〉
N

< ln |λ| � 1 (23)

g L
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FIG. 6. Average conductance of the cosine billiard (filled circles)
is compared to the average of Eq. (20) eliminating the second term
of the right hand side (filled squares).

with p(|λ|) the marginal pdf of the spectrum absolute values
|λn|. From this follows that 1/g ∼ L for L � N/〈NB〉 ∼√

N , which can also be understood from the two following
arguments. First, if we consider that the conductance in
the diffusive regime 〈g(L)〉 ≈ N/(1 + L) must match its
asymptotic average value 〈g∞(L)〉 ∼ 〈NB〉, we obtain that this
happens at L ∼ N/〈NB〉.

Second, if we consider a wave packet representing an
electron in a periodic system, we expect from semiclassical
arguments to observe chaotic diffusion if many energy bands
contribute to the superposition. This is the case if the diffusion
time tD = L2/D is smaller than the unit-cell Heisenberg
time tH = mAc/h̄, where we recall that D = D1v, with v

the particle’s speed, D1 a proportionality constant and m

the electron mass. Then, we obtain that tD < tH if and only
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FIG. 7. (Color online) Average inverse decay lengths spectrum
�−1

n = ln |λn| for the COE periodic chain model. The plot shows N�−1
n

for N = 10,20,30,40,50,60,70 (circles, squares, up triangles, down
triangles, stars, diamonds). The integer n is the absolute-value-sorted
λn eigenvalue index. For this system 〈NB〉 = 4.7. As can be seen in the
plot N�−1

n is close to zero for n � 〈NB〉 and is followed by a range with
linear growth N�−1

n ∼ n (dashed line), which explains the existence of
the ohmic regime in the periodic chain for L < 〈NB〉/N . In the inset,
part of the pdf P (N�−1) for N = 70 is plotted, showing a constant
range for 10 � N�−1 � 30, which is equivalent to P (|λ|) ∼ |λ|−1

[see Eq. (23)].
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if L �
√

AcD1k ∼ √
N , which is the expected result. For

longer times (correspondingly L �
√

N ) the energy bands are
resolved and the wave packet starts to propagate ballistically.

C. Weak localization

Having established the existence of the diffusive regime we
turn to the issue of weak localization. So far we have focused
only on time reversal symmetric systems, which are described
by the COE ensemble. On the other hand, the CUE ensemble
models chaotic cavities where time reversal invariance has
been broken, for instance, a two-dimensional degenerate
electron gas in a diffusive periodic structure subject to a
perpendicular magnetic field. For a chaotic quantum dot, i.e.,
a chain of length L = 1, it is well known that the conductance
is given by [5]

〈g(L = 1)〉 = N

2
+

(
1 − 2

β

)
1

4
, (24)

where β = 1 for the COE case and β = 2 for the CUE
case. The difference δg(1) = 〈g(1)〉COE − 〈g(1)〉CUE = −1/4
is called weak localization correction (WLC) and can be
explained semiclassically by the enhancement of the reflection
probability due to constructive interference of time-reversed
trajectories in time-reversal invariant systems [28]. In the
disordered wire, the WLC is observer in the metallic (ohmic)
regime and is of slightly larger magnitude with δĝ(L) = −1/3
independent of L.

Now we consider the WLC in a periodic chain. It can
be assumed that a weak magnetic field will not change the
diffusion coefficient of a chain of strongly chaotic systems,
thus we can extract the WLC in the periodic chain as a function
of L analogously to the quantum dot as δg(L) = 〈g(L)〉COE −
〈g(L)〉CUE. In Fig. 8 we plot δg(L), which for an N -dependent
L range is close to the weak localization correction of a
disordered wire [22]. Although weak localization is usually
associated to the metallic regime, here we see that in periodic
systems it extends for large L with a correction δg(L) ≈ −0.2
that persists during the Bloch-ballistic regime.

Recently, the WLC for a periodic system was studied [29]
assuming that the Ehrenfest time of the cavity is larger than
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L0.0
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0.8
1.0

Var g COE

N
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L
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0.30

0.25

0.20

δg

FIG. 8. (Color online) For the RMT model, plots of the WLC
δg(L) for N = 10,20,30,40,50 using the same symbols as in Fig. 4.
In the inset we plot the conductance variance Var[g(L)] for N = 1 to
N = 50 for the COE case.

the ergodic time [30] of the (closed) cavity. We have in
mind the opposite case, where the Ehrenfest time is smaller
than the ergodic time, ensuring that RMT is a good model for
the periodic waveguide.

D. Conductance fluctuations

In the previous discussion we noticed that finite periodic
waveguides with chaotic cells possess a diffusive regime where
〈g(L)〉, including its WLC, are similar to those of the metallic
regime in a disordered wire. We now address conductance
fluctuations. In a disordered wire in the metallic regime, the
conductance has a Gaussian distribution with O(1) variance,
independent of the system length and of the disorder properties.
The conductance distribution changes from this Gaussian form
to a log-normal distribution as the size of the wire reaches the
localization length. In our periodic chain, we also found that in
the diffusive regime the conductance has Gaussian fluctuations
(see Fig. 10), however, its variance Var[g(L)] = βL depends
linearly on L (see inset in Fig. 8) but with a slope β ≈ 0.05
sufficiently small to ensure that the average is representative
of a typical value, e.g., we check that 1/〈g(L)〉 ≈ 〈1/g(L)〉 in
this regime. Let us consider the second order expansion

〈g−1(L)〉
〈g(L)〉−1

= 1 − Var[g(L)] 〈g(L)〉−2 + O(〈g(L)〉−3). (25)

Since 〈g(L)〉 = N/(L + 1) we have that, deep in the
ohmic regime, where L � √

N < N , Var[g(L)] � L and
Var[g(L)] 〈g(L)〉−2 � 1. Hence keeping the dominant term
in Eq. (25) we obtain 〈1/g(L)〉 ∼ 1/〈g(L)〉. The inset in
Fig. 8 shows that the variance grows linearly with L for
L �

√
N and then reaches a constant value with Var[g(L)] ∼

O(
√

N ), signaling the diffusive to Bloch-ballistic transition.
From the RMT quantum dot description we know that
Var[g(L = 1)] = 1/8. On the other hand, the limit value
Var[g(L → ∞)] can be understood from the fluctuations of
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FIG. 9. (Color online) Transmission pdf PL(T ) of a cosine peri-
odic waveguide chain model with N = 50 for L = 5 in the diffusive
regime. The continuous line represents Dorokhov’s distribution for a
disordered wire PL(T ) = N

2L

1
T

√
1−T

. Histogram is computed with the
same parameters as Fig. 3. The inset shows the histogram of PL(T )
for L = 25, deep in the Bloch-ballistic regime and the continuous
line is the corresponding Dorokhov distribution.
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FIG. 10. (Color online) Conductance pdf PL(g) of a COE periodic
chain model with N = 50 for several values of L. We see that up to
L = 9 the distribution is clearly gaussian (black line) and at L = 17
peaks start to develop. At L = 50 the distribution has reached its
long-chain stationary form consisting of a multimodal structure which
arises from the asymptotic quasiperiodic behavior of g around its
average ∼NB . Given an integer n the peak just below g = n is due
to realizations with NB = n. Note that for NB = 1 the peak is very
narrow and its center is close to 1 but for bigger NB the peaks start
to spread and locate further away from their respective integer upper
boundary. This issue is addressed in the main text. Note that the x-axis
range covered changes in each plot.

NB , which are of order O(
√

N ) [27]. The similarities and
differences between the diffusive regime of periodic systems
and disordered systems is also illustrated in Fig. 9 where we
compare the histogram of the probability distribution function
PL(T ) of transmission eigenvalues Ti for the periodic cosine
waveguide with the Dorokhov’s distribution for a disordered
wire [22,24]. We can observe that qualitatively the distributions
resemble each other but they differ quantitatively; for instance,
for the periodic waveguide there is a slight increase in the
population of transmission eigenvalues larger than 0.8 and a
corresponding decrease in the eigenvalues smaller than that.
On the other hand, as illustrated in the inset in Fig. 9, deep in the
Bloch-ballistic regime large transmission probabilities occur
much more often than in the diffusive regime as expected.

A remarkable feature that characterizes the Bloch-ballistic
regime is the conductance distribution multimodal shape
observed in Fig. 10. In fact, as we have already mentioned,

the conductance in the Bloch-ballistic regime is dominated
by the first term in Eq. (20) that represents the sum

∑NB

i=1 Ti

over the NB nondecaying Ti . Therefore the fluctuations of
g(L) are related to the fluctuations of these Ti and also to
the fluctuations in their number NB , which take only integer
values. The sharp peaks of the conductance distribution PL(g)
at g = 0 and g = 1 correspond to realizations with NB = 0
and NB = 1, respectively. We see that peaks at larger values
of g becomes less sharp and also are not located at integer
values of g. This is due to the repulsion between transmission
coefficients, which we have discussed in Sec. III. Owing to
this repulsion, only one Ti ∼ 1 and the rest are necessarily
smaller, spreading in the [0,1] interval as shown in Fig. 3,
thus g(L) = ∑NB

i=1 Ti < NB .

IV. CONCLUSIONS

In this work we have studied the propagation of waves
in diffusive periodic quasi-one-dimensional systems, by nu-
merically computing the conductance of a cosine-shaped
waveguide and by employing a RMT model to describe the
system. We have shown that wave propagation in such systems
displays a diffusive regime for systems of length L in the range
1 � L � √

N , where the conductance varies from O(N ) to
O(

√
N ). This should be compared with the diffusive regime

of disordered systems which holds for 1 � L � N , where the
conductance varies from O(N ) to O(1). The ohmic behavior
of bulk disordered wires has been studied for a long time [31]
and more recently was reported in surface disordered wires [3].
Here we have shown that this regime is also observed in
periodic chains of cavities with diffusive classical dynamics.

On the other hand, for periodic waveguides with length
L � √

N , wave propagation acquires the ballistic character
of the Bloch states of the associated unfolded infinite periodic
system, with a constant average conductance 〈g(L)〉, which
is close to (and bounded by) 〈NB〉. We found that there is a
WLC in the conductance both in the ohmic and Bloch-ballistic
regimes. In the former, we observe a value similar to disordered
wires with δg(L) ≈ 0.3, whereas in the latter the corrections
are somewhat smaller with δg(L) ≈ 0.2.

A difference we have observed between the ohmic regimes
in disordered and periodic systems is in the conductance
fluctuations. While the conductance variance Var[g(L)] is
O(1) for the disordered wire, in diffusive periodic waveguides
it grows linearly with L up to L ∼ √

N and then reaches a
constant asymptotic value. The passage between these two
regions signals the diffusive to Bloch-ballistic transition.
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