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Annular billiard dynamics in a circularly polarized strong laser field
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We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a
circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We
show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,”
which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise
or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative
to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased
from 1010 to 1014 W cm−2. We attribute this robust separation of phase space to the existence of twistless tori.
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I. INTRODUCTION

The electrical and chemical properties of fullerenes,
namely, buckyballs and nanotubes, remain the focus of thor-
ough investigations [1]. The buckminsterfullerene molecule
C60 is a prototypical nanocluster because of its stability and
nearly spherical shape. In particular, it is an ideal cage in which
to trap so-called endohedral atoms, resulting in molecular
systems with peculiar properties [2], i.e., enhanced stability
with respect to temperature. In recent years, there has been a
significant interest in subjecting C60 to extreme conditions to
probe its electronic and structural stability properties. A class
of experiments on C60 driven by strong laser pulses shows that
its ionization and fragmentation properties are very sensitive to
the laser intensity and polarization [3]. In particular, the yields
show remarkable changes with the ellipticity of the laser field.

Motivated by these findings, we consider the motion of
an electron inside the valence shell of C60. The goal is to
understand the electronic dynamics prior to photoionization.
In strong linearly polarized laser fields, the ionized electron
can return to the remaining ion by recolliding with the cage
[4,5] when the laser field changes sign. This collision can
lead to additional ionization or even fragmentation [3] of the
molecule.

We investigate in particular the classical dynamics of a
one-electron model in the shell of fullerene C60 subjected to a
strong circularly polarized laser field. In a circularly polarized
field, the dynamics is best visualized in a frame corotating
with the laser field where a conserved quantity emerges, the
Jacobi constant [6]. All results presented in this paper are in the
rotating frame in which the circularly polarized laser becomes
a static field with definite upfield and downfield directions.
We restrict the dynamics to a two-dimensional configuration
space (the plane of polarization) for the valence electron. The
valence electron experiences an averaged potential, which, as
we later show (Sec. II A), is very close to a spherical square
well potential, where the electron bounces between the walls
like a particle in an annular billiard. We choose a billiard
model for its simplicity both analytically and numerically and
because it serves as a faithful representation of the full model
potential while not allowing ionization to occur.

Annular billiards occur in the literature in at least two
contexts: Fermi acceleration and the study of quantum chaos
by comparison with classical and quantum mechanical compu-
tations [7–14]. Chaotic dynamics arises either from pulsating
boundaries or from an off-center inner wall. In our treatment
the two walls are fixed and concentric. The main distinction
here from other works on annular billiards is that in the
rotating frame the electron moves along curved paths between
successive wall collisions. The introduction of a Coriolis term
into the Hamiltonian upon the transformation to the rotating
frame is, of course, akin to introducing an effective uniform
magnetic field (and another frequency, the Larmor frequency)
in which an electron moves on a curved path [15–19]. The
laser wavelength is taken as 780 nm (corresponding to a
frequency of 0.0584 a.u.) and its intensity is varied from zero
to 1014 W cm−2, which are values consistent with what is
routinely performed in experiments on C60 [1].

Our principal finding is that trajectories of the electron
fall into three possible types that originate from specific parts
of phase space. We identify various phase space structures
that keep these trajectory types distinct from one another. Our
classification is as follows. First there are “whispering gallery
orbits” (WGOs). These trajectories hit only the outer wall and
their direction of travel, either clockwise or counterclockwise,
is determined by which of the two regions in phase space
they originate. The second type, which we call daisies from
their typical shape, hits both walls and can rotate either
clockwise or counterclockwise. Both daisies and WGOs are
called positive or negative based upon their direction of travel,
counterclockwise or clockwise, respectively. The third type
is mainly influenced by a very simple elliptic periodic orbit
bouncing between the two walls in the downfield direction. The
shape of these trajectories on the Poincaré section resembles a
popular snack food, the Pringles curved potato chip [20], thus
their designation as “pringle orbits.”

We show that all the trajectories maintain their distinct
characteristics with changing intensity because of a special
class of invariant tori that do not fulfill the usual twist hy-
pothesis required by the Kolmogorov-Arnold-Moser (KAM)
theorem. These tori are usually denoted as twistless tori or
shearless curves (of the Poincaré map) or meandering curves
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when they are associated with separatrix reconnection [21–23].
Numerical studies show that these tori are very robust against
perturbation and are natural candidates for the partitioning
of phase space into regions where well-defined, qualitatively
distinct trajectories can be found.

The plan of the article is as follows. In Sec. II we
introduce the model and dynamical rules of the billiard and
its corresponding Hamiltonian and reflection guidelines. In
Sec. III we give a qualitative analysis of different electron
trajectories and then relate them to the organization of phase
space. Next, we analyze the dynamics by using Poincaré
section and frequency map analysis [24] in order to gain
deeper insight into the properties and organization of phase
space when the laser intensity is increased and in particular
concerning the role of twistless tori in the partitioning of phase
space into three principal regions.

II. DYNAMICAL RULES

A. Hamiltonian model

A typical electron inside the shell experiences the influence
of the electrostatic potential created by the positive charges
of both the nucleus and the electronic density, combined with
the influence of the laser field. The effective single-particle
potential is computed using density-functional theory from
a jellium approximation for the positive-charge background
[25]. It contains steep walls in the potential around the radius of
the fullerene (r0 = 6.69 a.u.) [25–28] with a certain thickness
[29]. The Hamiltonian is expressed in atomic units (a.u.) and
in the dipole approximation reads

H(x,p,t) = |p|2
2

+ V (|x|) + x · E(t), (1)

where x = (x,y) is the position of the electron in the
polarization plane, p = (px,py) is its canonically conjugate
momentum, and | · · · | denotes the Euclidean norm. The cir-
cularly polarized laser field is given by E(t) = E0(ex sin ωt +
ey cos ωt), where E0 is the electric-field amplitude, ω is the
laser frequency, kept fixed at 0.0584 a.u., and ex and ey are
unit vectors along the x and y axes, respectively. The laser
intensity is the time-averaged Poynting vector of our laser
field and is related to E0 by the relationship I = αE2

0 , where
α = 7.044 × 1016 when the laser intensity is measured in
W cm−2. Figure 1 shows the potential V (r), where r = |x|, as
given in Ref. [28]. We note that the potential is very stiff at the
boundaries of the shell. This is a common feature of various
models for C60 [25–27]. This property holds for ions Cq+

60
[26] also. An approximate potential consisting of a spherical
square-well potential, where the potential is equal to −V0 for
r ∈]r0 − δ,r0 + δ[ and zero elsewhere, has been proposed in
Refs. [30,31]. This model has succeeded in explaining the
oscillations in the photoionization cross section of C60 [30].

We build a billiard model along these lines, where the steep
walls of the potential are replaced with infinite walls and the
dynamics in the annular region between the two walls is given
solely by the interaction of the electron with the electric field,
later referred to as the laser-driven dynamics:

H(x,p) = |p|2
2

+ x · E(t), (2)

FIG. 1. (Color online) Potential V experienced by a valence
electron in the fullerene as given in Ref. [28]. The lower plane
corresponds to the accessible billiard region (white space) with a
sample trajectory (blue curve).

and reflection rules are applied whenever the trajectory reaches
r = rin or rout, which are 5.14 and 8.24 a.u., respectively, in
our computations.

First, we perform a canonical change of variables into a
rotating frame (with the laser field). The new coordinates
(x̄,ȳ,p̄x,p̄y) are given by

(
x̄

ȳ

)
= �(t)

(
x

y

)
,

(
p̄x

p̄y

)
= �(t)

(
px

py

)
,

where

�(t) =
(

sin ωt cos ωt

cos ωt − sin ωt

)
.

In the new set of variables, the Hamiltonian becomes time
independent and reads

K(x,y,px,py) = p2
x

2
+ p2

y

2
− ω(xpy − ypx) + E0x, (3)

where we have dropped the overbars for simplicity. The
resulting Hamiltonian has two degrees of freedom and the
value of the Hamiltonian is the Jacobi constant of celestial
mechanics [6].

B. Topology of phase space

The accessible part of phase space changes depending on
the field frequency and amplitude, and the value of the Jacobi
constant. A revealing way to visualize the accessible part in
position space is to compute the zero-velocity surface [6]. By
applying Hamilton’s equations to Eq. (3) we arrive at

ẋ = px + ωy,

ẏ = py − ωx,

so that the Jacobi constant becomes

K(x,y,ẋ,ẏ) = ẋ2

2
+ ẏ2

2
− 1

2
ω2(x2 + y2) + E0x. (4)
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FIG. 2. (Color online) Section (y = 0) of the zero-velocity
surface in the accessible part of the billiard for I = 1014 W cm−2

and ω = 0.0584 a.u. The (red) arrows show the deformation of the
zero-velocity surface as intensity is increased. The dashed horizontal
lines are the Jacobi values used in Figs. 3 and 8.

Setting ẋ = ẏ = 0 gives the zero-velocity surface

V(x,y) = − 1
2ω2(x2 + y2) + E0x,

which charts the lower limit of the accessible parts of the
billiard as K is varied. A cross section of the zero-velocity
surface is shown in Fig. 2 for y = 0. Depending on the value
of K, three possibilities arise. If K is smaller than −ω2r2

out/2 −
E0rout, then there is no accessible part to the dynamics. If K is
between −ω2r2

out/2 − E0rout and −ω2r2
in/2 + E0rin, then only

a portion of the annular region is accessible. In this range
of values, several truncations of the annulus are possible; in
particular, we distinguish two types: one that is homotopic
to an annulus and one that is only a portion of an annulus
(see Fig. 3). For K larger than −ω2r2

in/2 + E0rin, the entire
annulus is accessible to the dynamics. As the laser intensity
is increased, the difference between the right and left sides
of the well is amplified. In this paper we mainly consider
Jacobi constants larger than −ω2r2

in/2 + E0rin such that the
full annular region of the billiard is accessible to the dynamics.
For I = 1014 W cm−2 and ω = 0.0584 a.u. this critical value
of K is approximately equal to 0.19.

C. Dynamical rules

The dynamics is computed in a piecewise fashion because
of the walls. It is composed of segments of laser-driven
dynamics, as given by the Hamiltonian in Eq. (3), until the
particle reaches one of the walls. At this instant, the reflection
rule is applied, which mimics an elastic scattering at the limit
of an infinitely stiff potential.

Concerning the laser-driven dynamics, the equations of
motion associated with the Hamiltonian in Eq. (3) are

FIG. 3. Accessible regions (white) of the billiard for different
Jacobi values at I = 1014 W cm−2 and ω = 0.0584 a.u. Jacobi values
correspond to the dashed lines in Fig. 2.

given by

x(t) = E0

ω2
+

[(
x0 − E0

ω2

)
+ px,0t

]
cos ωt

+
[(

py,0 − E0

ω

)
t + y0

]
sin ωt, (5a)

y(t) =
[
y0 +

(
py,0 − E0

ω

)
t

]
cos ωt

−
[(

x0 − E0

ω2

)
+ px,0t

]
sin ωt, (5b)

px(t) =
(

py,0 − E0

ω

)
sin ωt + px,0 cos ωt, (5c)

py(t) =
(

py,0 − E0

ω

)
cos ωt − px,0 sin ωt + E0

ω
, (5d)

where x0, y0, px,0, and py,0 are the initial conditions (at time
t = 0).

At time t = tR , the electron reaches either one of the two
walls and we apply the reflection condition before the next
phase of laser-driven dynamics. The reflection conditions are
more easily expressed in polar coordinates as they correspond
to the radial momentum changing sign while the other
coordinates are unchanged (see Fig. 4). By definition of the
billiard, the rebound takes place at time t = tR , satisfying

√
x2(tR) + y2(tR) = ri,

where i denotes the wall index, i.e., i ∈ {in,out}. Before the
rebound (i.e., at t = t−R ), we compute the radial momentum pr

from the value of (x,y,px,py) by pr = (xpx + ypy)/r . Then
the rebound condition is given by a change of sign of the radial
momentum

pr (t+R ) = −pr (t−R ).
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FIG. 4. (Color online) Schematic representation for computation
of the rebound condition. The solid dark (blue) and light (red) lines
are real trajectories, differing only by a small perturbation in the
initial conditions. The dashed light (red) and dark (blue) lines are
representations of the linearized dynamics. The angle θ is the angle
of rotation used in the Hamiltonian in Eq. (7).

As a consequence, the values of the momenta after the rebound,
denoted p+

x and p+
y , are given by

p+
x = − (x2 − y2)p−

x + 2xyp−
y

r2
, (6a)

p+
y = −2xyp−

x + (x2 − y2)p−
y

r2
. (6b)

We note that the Hamiltonian in Eq. (3) is left unchanged by
the reflection rule, that is, K(t+R ) = K(t−R ), which is easily seen
from the expression of the kinetic energy in polar coordinates,
which is equal to p2

r /2 + p2
θ /2r2

i .

D. Linearization of the flow

In this section we consider the linear effect of the rebound
condition on neighboring trajectories. The motivation for
doing so is twofold. First the tangent rebound condition can
be used to compute the tangent flow of trajectories to deduce
the linear stability of periodic orbits. Second, as the billiard
model corresponds to the limit of an infinitely stiff potential
for a Hamiltonian system, the billiard model should preserve
the Hamiltonian structure. We have already checked that the
rebound condition preserves the Hamiltonian, thus the last
prescription is that the symplectic two-form is preserved or,
equivalently, the tangent rebound matrix is symplectic.

The tangent rebound matrix can be seen as an extension of
the tangent flow [32] to include the impact of the rebound on
neighboring trajectories (to first order). For that, we consider a
first trajectory with initial conditions x0,y0,px,0,py,0 at t = 0
in the neighborhood of one of the two walls, i.e., x2

0 + y2
0 ≈ r2

i ,
where i ∈ {in,out}, and such that the rebound time tR � 1.
Then we look at the impact of a perturbation of these
initial conditions to x0 + dx0,y0 + dy0,px,0 + dpx,0,py,0 +
dpy,0 immediately after the rebound. Because the rebound time

is not the same for the two trajectories, we have to consider a
small laser-driven propagation before and after the rebound
to deduce the tangent rebound properties. The situation is
schematically depicted in Fig. 4.

The computation of the tangent rebound matrix is more
easily seen in a rotated Cartesian set of coordinates x̃,ỹ,p̃x,p̃y ,
for some angle θ to be specified later. In the rotated frame, the
corresponding Hamiltonian reads

K(x,y,px,py) = p2
x

2
+ p2

y

2
− ω(xpy − ypx)

+E0x cos θ + E0y sin θ, (7)

where we have dropped the tildes for simplicity. Since we
are interested only in the linear properties of the rebound
condition, throughout this section we consider all the equations
linearized to the first order.

As explained in Sec. II C, the dynamics is computed
piecewise with a first stage of laser-driven propagation until
the electron reaches the wall, then the rebound condition, and
finally a new stage of laser-driven propagation. In the rotated
frame and before the rebound, i.e., t < tR , the laser-driven
dynamics given by the Hamiltonian in Eq. (7) yields

x(t) ≈ x0 + (px,0 + ωy0)t, (8a)

y(t) ≈ y0 + (py,0 − ωx0)t, (8b)

px(t) ≈ px,0 + (ωpy,0 − E0 cos θ )t, (8c)

py(t) ≈ py,0 − (ωpx,0 + E0 sin θ )t, (8d)

where we have neglected O(t2). At this stage, we select
the rotation angle θ such that the perpendicular direction
to the wall at the rebound is aligned with the x direction
for the unperturbed trajectory. We keep this fixed frame for
the perturbed trajectory. An alternative way (which provides
the same solution) is to consider a perturbed rotated frame
(obtained by a rotation by an angle θ + dθ ) to impose the same
constraint (the direction perpendicular to the wall is the x axis
at the rebound) on the perturbed trajectory. As a consequence
of the chosen angle θ , the rebound condition solely depends
on the x direction such that x(tR) = ri or, equivalently, using
Eq. (8a),

tR ≈ ri − x0

px,0 + ωy0
. (9)

In addition, because of the circular shape of the billiard and
the angle θ , at the rebound the y component vanishes [y(tR) =
0]. However, for the perturbed trajectory, this condition
does not apply. Since we consider the perturbed trajectory
comparatively to the original one in the same rotated frame, it
is easier for the purpose of the calculation to keep formally the
y components, knowing that they are actually equal to zero.

The next step for the trajectory dynamics is the rebound
condition at time t = tR . Because of the orientation of the
frame where the x direction is aligned with the radial one, the
rebound condition in Eq. (6) becomes ẋ(t+R ) = −ẋ(t−R ) and
ẏ(t+R ) = ẏ(t−R ), which implies, to the momenta,

px(t+R ) = −px(t−R ) − 2ωy(tR) (10)

and py(t+R ) = py(t−R ), while the positions are left unchanged.
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Finally, after the rebound, the trajectory experiences a
new phase of laser-driven dynamics. Combining the rebound
condition in Eq. (10) with a linearized propagation similar
to Eq. (8), one can write the dynamics after the rebound as a
function of the initial conditions (before the rebound) such that

x(t) ≈ x(tR) + [px(t+R ) + ωy(tR)](t − tR)

≈ x0 − (px,0 + ωy0)(t − 2tR), (11a)

y(t) ≈ y0 + (py,0 − ωx0)t, (11b)

px(t) ≈ −(px,0 + 2ωy0) − 2ω(py,0 − ωx0)tR

+(ωpy,0 − E0 cos θ )(t − 2tR), (11c)

py(t) ≈ py,0 + 2ω(px,0 + ωy0)(t − tR)

−(ωpx,0 + E0 sin θ )t, (11d)

where the equations are linearized at the first order in time.
With the explicit formula for the dynamics after the rebound,
as given by Eq. (11), it is straightforward to compute the
impact of the perturbation on the initial conditions by replacing
x0,y0,px,0,py,0 with x0 + dx0,y0 + dy0,px,0 + dpx,0,py,0 +
dpy,0, respectively. Because of the change of initial conditions,
the rebound time is modified to tR + dtR as well. Using
Eq. (9) for the perturbed trajectory, we end up with

dtR = − dx0

px,0 + ωy0
− ri − x0

(px,0 + ωy0)2
(dpx,0 + ωdy0). (12)

Finally, combining Eq. (11) with Eq. (12), it is possible to
compute the perturbed dynamics after the rebound. We define
the deviations dx,dy,dpx,dpy of the perturbed trajectory after
the rebound. For instance, considering the x coordinate, we
obtain

dx = −dx0 − 2(ri − x0)

px,0 + ωy0
(dpx,0 + ωdy0)

−(dpx,0 + ωdy0)(t − 2tR). (13)

Since we are interested in the dynamics in the vicinity of the
rebound, we consider the limits x0 → ri and t → t+R (such
that t → 0). As a consequence, we end up with dx = −dx0

from Eq. (13). A similar procedure can be applied to the other
components and summarized in the linear equation

⎛
⎜⎝

dx

dy

dpx

dpy

⎞
⎟⎠ = JR

⎛
⎜⎝

dx0

dy0

dpx,0

dpy,0

⎞
⎟⎠ ,

where JR is the tangent rebound matrix given by

JR =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

(4ωpy − 2E0 cos θ − 2ω2ri)p−1
x −2ω −1 0

2ω 0 0 1

⎞
⎟⎟⎟⎠ ,

(14)

using the conditions x = ri and y = 0 and where px is taken
right before the rebound on the wall. We note that the tangent
rebound matrix is a symplectic matrix, which proves that
the rebound condition in Eq. (6) preserves the symplectic

two-form, i.e.,

dx0 ∧ dpx,0 + dy0 ∧ dpy,0 = dx ∧ dpx + dy ∧ dpy.

The tangent flow is used to characterize the linear stability
of invariant structures such as periodic orbits. As for trajecto-
ries, their integration is carried out piecewise: The integration
is composed of intervals of laser-driven propagation and
rebound conditions. Between the rebounds, we integrate the
tangent flow given by [32]

dtJ = ∇FJ,

where ∇F is the matrix of variations of the flow associated
with the Hamiltonian in Eq. (7). Then, right after a rebound
on one wall, the Jacobian matrix is equal to the product of the
previous Jacobian matrix right before the rebound, denoted
J−, with the rebound matrix in Eq. (14): The Jacobian matrix
after the rebound reads

J+ = JRJ−.

III. ANALYSIS OF THE DYNAMICS

A sampling of typical trajectories of the annular billiard for
I = 1012 W cm−2 is shown in Fig. 5. These examples illustrate
qualitatively the different types of observed trajectories already
discussed in Sec. I. In the top row we see that the trajectories hit
only the outer wall and never the inner wall and are therefore
WGOs. In the middle row we show daisy orbits. They are
qualitatively the same, hitting both walls successively and
accessing the entire angular distribution of the billiard. Both
WGOs and daisy orbits keep a constant rotational direction,
either clockwise or counterclockwise, which we denote
negative or positive, respectively. In the bottom row, left panel,
we see a pringle orbit, hitting both walls in turn, however,
limited only to the downfield region of the billiard. The simple
two-rebound trajectories located at both extremes of the upfield
and downfield region of the billiard are periodic orbits. The
leftmost curve is an elliptic periodic orbit (stable) while
the rightmost curve is a hyperbolic periodic orbit (unstable). In
the bottom right panel is a trajectory that hits neither wall (see
Sec. III A). In the following sections we connect these
trajectories to phase-space structures and their stability.

A. Poincaré sections

Since the dynamical system has two degrees of freedom,
a convenient way to visualize the dynamical organization
of phase space is by Poincaré sections. Here we consider a
Poincaré section with the equation pr = 0 in the direction ṗr >

0. The rebound condition in Eq. (6) imposes a discontinuity
in the radial momentum pr at the rebound such that the
condition pr = 0 is never formally reached during a rebound.
However, we see the billiard as the limit of an infinitely
stiff potential and a smoother dynamics corresponding to
the Hamiltonian in Eq. (1) would reach pr = 0 before
changing sign. As a consequence, we consider the rebounds on
the walls as potential candidates for the Poincaré section. The
electron either rebounds on the outer wall, meaning that the
radial momentum changes from positive to negative values,
or the electron rebounds on the inner wall, so that the radial
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FIG. 5. (Color online) Trajectories of the annular billiard for I =
1012 W cm−2 and ω = 0.0584 a.u. The trajectory type is shown in
the top left corner of the panel and K = 0.35 (see Fig. 2). The arrow
shows the direction of travel of the trajectory. In the bottom left panel
the simple two-rebound orbits are periodic orbits. The downfield
orbit (orange) is elliptic and the upfield orbit (red) is hyperbolic. The
bottom right panel is a trajectory that hits neither wall forK = 2Up ≈
0.002 (see Sec. III A 1).

momentum changes from negative to positive values. In order
to comply with the transverse condition ṗr > 0 we include
only the collisions with the inner wall. Furthermore, because
of the rebound condition in Eq. (6) we note that pθ , x = r cos θ ,
and y = r sin θ are continuous under a rebound so that it
is equivalent to record their values either directly before or
after the rebound. The Poincaré section can be represented in
several ways. A three-dimensional plot can be used where we
plot (x,y,pθ ) or we can make a projection onto the plane
(θ,pθ ) using the constant Jacobi constraint. Regardless of
which method is chosen, there are two types of points on the
section. The first kind consists of points on the inner wall for
which r = rin and pr chosen so as to satisfy the condition on
the Jacobi constant K. The second kind consists of points for
which pr = 0 and r is chosen so as to satisfy K. In this paper,
for the sake of simplicity of our figures, we make use of the
projection onto the two-dimensional plane (θ,pθ ); however,
we show the three-dimensional counterpart in Fig. 6, where
we have colored pringle trajectories in blue to illustrate their
namesake shape.

FIG. 6. (Color online) Poincaré section for I = 1014 W cm−2,
ω = 0.0584 a.u., and K = 0.35. The innermost (blue) trajectories are
the pringle orbits. The corresponding two-dimensional projection is
displayed in Fig. 7, bottom right panel.

1. Trajectories that intersect neither wall

It is natural to ask whether the choice of Poincaré section is
a good one, i.e., whether all trajectories intersect the Poincaré
section. A small subset of trajectories that are noteworthy for
both their peculiarity and the dynamics they showcase do not
intersect the Poincaré section pr = 0. In that spirit we analyze
the trajectories that do not collide with either wall. For such
trajectories, x2 + y2 needs to remain between r2

in and r2
out at all

times. The dynamics of these trajectories is governed by the
Hamiltonian in Eq. (3). Using the translation x̃ = x − E0/ω

2,
p̃x = px , ỹ = y, and p̃y = py − E0/ω, the Hamiltonian is
mapped to

K̃ = p2
x + p2

y

2
− ω(xpy − ypx) + E2

0

2ω2
,

where we have dropped the tildes for simplicity. The dynamical
features no longer depend on the value of E0. The dynamics
is better seen in polar coordinates, where the Hamiltonian
becomes

K = p2
r

2
+ p2

θ

2r2
− ωpθ + E2

0

2ω2
.

Since pθ is a conserved quantity, the dynamics is that of a
particle evolving in a potential equal to p2

θ /2r2 and the particle
will collide with a wall unless pθ = 0. In the case where pθ =
0, pr is constant and it has to vanish so that no collision with the
walls takes place. Therefore, the only trajectories that do not
hit a wall are circular orbits (since ṙ = pr = 0). In the original
coordinates, these circular periodic orbits are centered around
(x0,y0) = (E0/ω

2,0) and they have a specific Jacobi constant
of 2Up, where Up = E2

0/4ω2 is the ponderomotive energy. For
this Jacobi constant, there exist a priori an infinite number of
such orbits since the radius is not fixed. The only constraint on
the radius is that the circular orbit has to fit inside the annulus.

Based on the laser parameters E0 and ω, the existence
and characterization of such orbits can be divided into several
categories. For realistic fullerene parameters (rout − rin)/2 <

rin, which is considered here, the analysis can be grouped into
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four categories. Different parameters may lead to a different
decomposition that can nevertheless be identified in a similar
fashion [for instance, point (iii) below may disappear].

(i) If E0/ω
2 is larger than rout, then such trajectories do not

exist because the center is outside the billiard.
(ii) If E0/ω

2 is in between rin and rout, then the circular
orbits are on the right-hand side of the inner wall of the annular
billiard.

(iii) If E0/ω
2 is in between (rout − rin)/2 and rin, then such

trajectories do not exist because none of the orbits can be fit
inside the allowed region.

(iv) If E0/ω
2 is smaller than (rout − rin)/2, then the circular

orbits surround the inner wall with a slight shift in the right
direction.

The bottom right panel of Fig. 5 shows a sample trajectory
in category (iv). In this example, the value E0/ω

2 ≈ 1.1, which
is less than rin, and hence the trajectory surrounds the inner
wall, but is shifted slightly to the right. Except in rare cases
(where E0/ω

2 is equal to rin or rout), if such orbits exist, they
exist as a continuous family. A linear stability analysis shows
that these orbits are parabolic. In addition, given that θ̇ = −ω

(since pθ = 0), the particle turns clockwise.
Of course, these orbits remain exceptional in the sense that

they exist only at some particular value of the Jacobi constant
K = 2Up. For ω = 0.0584 a.u., all the orbits hit one wall
at least for intensities larger than I = 5.56 × 1013 W cm−2

or intensities between 2.16 × 1013 and 1.96 × 1012 W cm−2.
The circular orbits confined to the right-hand side of the
annulus exist only for intensities between 2.16 × 1013 and
5.56 × 1013 W cm−2. Finally, for intensities lower than 1.96 ×
1012 W cm−2 an infinite family of circular orbits surrounding
the inner wall exists. Apart from the examples illustrated in this
section, all trajectories intersect the Poincaré section an infinite
number of times. Therefore, we can safely keep our definition
of the Poincaré section without missing important dynamics.

2. Varying the intensity

For E0 = 0, Hamiltonian system in Eq. (3) presents a
continuous symmetry by rotation with two degrees of freedom,
so it is integrable. We show the corresponding Poincaré section
in Fig. 7 (top left panel). As expected, the phase space is
foliated by invariant tori.

When E0 > 0 the system is no longer integrable and some
invariant tori are expected to be broken. According to KAM
theory, many invariant tori persist for E0 small. In Fig. 7 we
show the evolution of phase space as the laser intensity is
varied. With increasing intensity we note the development
of a resonance near pθ ≈ 2.5. This resonance corresponds to
the aforementioned two-rebound elliptic periodic orbit shown
by the leftmost (downfield) (orange) curve in the bottom left
panel of Fig. 5. This very robust elliptic periodic orbit (situated
on the left-hand side of the annulus) is extremely important
in shaping the overall structure of phase space as intensity
increases. Trajectories originating in this region cannot access
the entire billiard in a way analogous to the librational motion
in a pendulum. It is this librational motion that yields the
pringle orbits already discussed at the beginning of this section.
The behavior in the vicinity of this main resonance can be
described roughly in the following way. The resonance is

FIG. 7. Poincaré sections for various values of the laser intensity.
Starting in the top left panel, we begin with I = 0 (the integrable case)
and moving left to right and up to down the intensity is increased. In
all panels ω = 0.0584 a.u. and K = 0.35.

approximately located at pθ = ωr2
0 , which can be seen from

the dynamical equation for θ , i.e., θ̇ = −ω + pθ/r2. For a
given trajectory, if all the values of pθ are larger than ωr2

out,
then the trajectory turns counterclockwise. If the values of pθ

are smaller than ωr2
in, then it turns clockwise. In between, it

oscillates between the two tendencies.
The Poincaré sections show that the phase space is highly

regular over several decades of laser intensity. Chaotic regions
of phase space develop near the hyperbolic periodic orbit,
which is a rebound between the two walls located in the
upfield region, or the right-hand side of the annulus, and is
shown in the rightmost curve in the bottom left panel of
Fig. 5. Overall, the structure of the phase space looks very
similar to that of a forced pendulum. In particular, the width
of the main resonance zone grows like

√
E0 or, equivalently,

like I 1/4. However, we will see that there is a number of
discrepancies of which twistless tori are the most significant.
We readily observe that the lower part of the phase space
(negative angular momentum) is more chaotic than the upper
one (positive angular momentum).

3. Varying the Jacobi value

With the intensity set to I = 1014 W cm−2, the Jacobi value
can also be varied, keeping in mind that this variation affects
the accessible regions of the billiard (see Sec. II B). We show
the corresponding Poincaré sections in Fig. 8. Starting with
the top left panel, the Poincaré section is contained inside the
interval θ ∈ [2.45,3.83], which agrees with the corresponding
panel in Fig. 3; note also that the dynamics is highly regular. In
addition, since the inner wall is not accessible for this Jacobi
value, points on the section result directly from the condition
that pr = 0: A typical trajectory hits the outer wall, but never
reaches the inner one. For the top right panel, part of the inner
wall is now accessible (see the top right panel of Fig. 3) and
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FIG. 8. (Color online) Poincaré sections for various values of K
with I = 1014 W cm−2 and ω = 0.0584 a.u. These Jacobi values are
the same as those used in Figs. 2 and 3. The top right panel includes
two trajectories. The left trajectory is taken from the pringle region
and the right trajectory is taken from the chaotic region.

the dynamics shows a mixed chaotic and regular behavior.
In the regular region of the Poincaré section the trajectories
are regular pringle orbits, whereby the turning points in θ̇ are
due to the dynamics (and not to the geometry of the billiard).
Recall that the regular region does not span the entire region
of accessible θ values. However, the trajectories originating in
the chaotic region experience turning points in θ̇ because they
hit the artificial walls imposed by the choice of Jacobi value.
In the bottom panel the entire inner wall is accessible and only
a small portion of the outer wall is inaccessible. The dynamics
is still mixed, composed of a regular region with pringle orbits
and a highly chaotic region where the trajectories hit the virtual
walls imposed by the geometry of the configuration space.
Whispering gallery orbits are not possible for these values of
Jacobi constant. In fact, WGOs appear only when the entire
annulus is accessible, e.g., in the bottom right panel of Fig. 7.

B. Partitioning of phase space

Because of the dimensionality of the billiard (two degrees
of freedom), invariant KAM tori constitute barriers of transport
that confine the (chaotic) dynamics to distinct regions of
phase space. However, they are not robust enough to partition
the phase space at a sufficiently high value of the intensity.
Here, our analysis reveals the existence of much more robust
invariant objects, namely, twistless tori, which are particularly
relevant for the organization of phase space [21,22] since they
partition the phase space at relatively high intensities into
regions where the different types of trajectories occur. We
next introduce a diagnostic tool for finding these tori.

1. Frequency analysis

Frequency analysis [24] is a practical tool in Hamiltonian
systems for an analysis of the dynamics. For integrable

systems written in action-angle variables (A,ϕ), the method
consists of plotting the frequency ω(A) = ∂H0/∂A as a
function of A, which is expected to be smooth for (sufficiently
smooth) integrable systems. For nearly integrable systems,
the frequency is computed by a windowed Fourier transform
of a chosen observable. It is computed for an ensemble of
trajectories and plotted, for instance, as a function of the
initial value of the action. From this analysis it is possible to
identify elliptic and hyperbolic islands, regular regions filled
by KAM tori, and chaotic regions by their respective unique
signatures. The elliptic islands are expressed as constant
frequency plateaus, the hyperbolic orbits by cusps in the
frequency, regular regions as apparently continuous curves,
and chaotic regions as nonsmooth sections. Frequency analysis
can also identify regions where the twist condition is not
satisfied, i.e., when ω is no longer a monotonic function
of the action. In this case, the standard twist condition for
the standard KAM theorem is not satisfied and it gives rise
to a different taxonomy of dynamical mechanisms, such as
separatrix reconnection and twistless tori [21,22].

In Fig. 9 we plot the frequency as a function of the
initial momentum pθ . The ensemble of trajectories is the
series of points on the Poincaré section with initial conditions
θ = π and various pθ while imposing the Jacobi constraint to

FIG. 9. (Color online) Frequency analysis in the integrable case
(I = 0, upper panel) and nonintegrable case (I = 1012 W cm−2, lower
panel). The insets display the frequency map around the extrema. In
both panels K = 0.35 and ω = 0.0584 a.u.
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FIG. 10. (Color online) Poincaré sections of the parts of phase
space near the minimum (lower panel) and maximum (upper panel)
of Fig. 9. In both panels, filled in layers correspond to each chaotic
region separated by a twistless torus. The parameters are the same as
in Fig. 9 (I = 1012 W cm−2, K = 0.35, and ω = 0.0584 a.u.).

compute the other variables. The motivation is that for the inte-
grable case pθ is a conserved quantity. The frequency analysis
of the integrable case (Fig. 9, upper panel) shows that the fre-
quency is a continuously varying function of pθ , as expected.
The most interesting feature is that the frequency map does
not change monotonically with pθ . This implies the existence
of twistless tori located at the extrema of the frequency map, at
pθ ≈ −3.03 and 6.11. In the nonintegrable case (Fig. 9, lower
panel), we see a plateau, which corresponds to the pringle or-
bits. In addition, we notice some chaotic features in the insets,
even if the overall behavior seems to be quite regular at this
intensity. Furthermore, the frequency map still exhibits two ex-
trema, which again correspond to twistless tori. A closer look at
the frequency map around pθ = −3.2 and 6.5 (insets) reveals
a rich dynamics with a succession of elliptic and hyperbolic
orbits, even if the overall behavior seems to be quite regular.

2. Twistless tori

The aforementioned twistless tori are visualized by high-
resolution Poincaré sections. Figure 10 shows Poincaré sec-

FIG. 11. (Color online) Schematic of the transition scenario from
WGOs to daisy orbits showing successive regions of the inner wall
that can be visited by the electron. The color of the accessible region
of the inner wall corresponds to the color of the chaotic regions in the
bottom panel of Fig. 10. The (blue) ovals represent the twistless tori
that separate the different chaotic regions.

tions with initial conditions near pθ ≈ 6.5 (upper panel) and
pθ ≈ −3.2 (lower panel), corresponding to the local maxima
in Fig. 9. Both Poincaré sections are similar in that they
show well-developed chaotic regions sandwiched between two
regular regions. The regular regions correspond to WGOs
(shown in blue) and daisy orbits (shown in red). Likewise, the
chaotic region in both panels exhibits a stratification whereby
a trajectory originating in one of these regions remains there
and cannot pass to another chaotic region. The stratification
is not due to KAM tori since KAM tori come in families.
Instead it is caused by the existence of twistless tori, which,
having dimension 2, can partition phase space. In particular,
in the lower panel of Fig. 10, we recognize one of the
signatures of twistless tori, which is the meandering behavior
(see, for instance, the interface between the orange and the
dark red chaotic regions). The black line, superimposed over
both panels, separates the two different possible ways of
intersecting the Poincaré section. Points on the section above
(below) the black line for the upper (lower) panel are standard
intersections of the flow with the Poincaré section in the sense
that pr changes sign smoothly before and after the intersection.
Points below (above) the black curve for the upper (lower)
panel are collisions with the inner wall where the sign of pr

changes due to the rebound condition (see Sec. III A). As
expected, all the WGO trajectories are below the black curve
in the lower panel (since none of their points intersect the
inner wall). The entire WGO region is regular. We also notice
that all the daisy orbits are above the black curve and this
region is also mostly regular. Between these two regions is a
strongly chaotic region with very few elliptic islands. Each of
the chaotic regions (in both panels) has a portion above and
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below the black line. The range of θ where each chaotic region
exists above (below) the black line gives the accessible region
of the inner wall to the electron. Figure 11 illustrates how the
accessible region of the inner wall changes as one moves from
WGOs to daisy orbits in the lower panel of Fig. 10. Beginning
with the WGOs (shown in blue), which have no points above
the black line (no accessible region on the inner wall), we
increase pθ to the (light blue) region where there is a small
range of θ values for which the chaotic region is above the
black line. The θ values are centered about θ = 0 and they
correspond to the area along the inner wall that is accessible to
the electron. Moving again upward in pθ , we pass by several
more chaotic regions, each having a wider range of θ above
the black line, which allows for a wider range of the inner wall
to be visited by the electron. The inner wall becomes more
accessible until finally reaching the daisy orbit region (shown
in red). At this point, all intersections of the Poincaré section
are above the black line covering θ ∈ [0,2π ] and therefore
the entire inner wall is accessible. The four twistless tori that
exist in this chaotic region are responsible for the discrete
transition from WGOs to daisy orbits. Likewise, a similar
feature can be observed for the upper panel of Fig. 10, near
pθ = 6.5; however, there are fewer chaotic regions and hence
fewer twistless tori.

IV. CONCLUSION

The motivation for our work stems from recent photoion-
ization experiments in a strong field of atoms and molecules

in both circular and linear polarized light where a significant
variation of the yields with polarization was observed [3].
We propose a rather simple dynamical model for the motion
of a valence electron inside the valence shell of fullerene C60,
namely, an annular billiard. We have investigated the dynamics
when this electron is subjected to a circularly polarized laser
field. We have shown that it exhibits three distinct types
of trajectories: whispering gallery, daisy, and pringle orbits.
These trajectories are found in distinct, identifiable regions
of phase space for a wide range of laser intensity and Jacobi
values. They are kept characteristically segregated from each
other by the existence of twistless tori that partition the phase
space. The twistless tori are identified through a frequency
analysis and are confirmed by the generation of high-resolution
Poincaré sections. These twistless tori, endowed with high
stability, exist in chaotic regions where KAM tori have been
broken by the strong laser field. Because of the barriers they
create, twistless tori allow for a transition scenario from
WGOs to daisy orbits in both rotational directions, positive
and negative.
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[2] L. Forró and L. Mihály, Rep. Prog. Phys. 64, 649 (2001).
[3] I. V. Hertel, I. Shchatsinin, T. Laarmann, N. Zhavoronkov, H.-H.

Ritze, and C. P. Schulz, Phys. Rev. Lett. 102, 023003 (2009).
[4] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[5] V. R. Bhardwaj, P. B. Corkum, and D. M. Rayner, Phys. Rev.

Lett. 93, 043001 (2004).
[6] G. W. Hill, Am. J. Math. 1, 5 (1878).
[7] E. Doron and S. D. Frischat, Phys. Rev. Lett. 75, 3661 (1995).
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[10] C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld,
and A. Richter, Phys. Rev. Lett. 84, 867 (2000).

[11] M. Hentschel and K. Richter, Phys. Rev. E 66, 056207 (2002).
[12] G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Grehan, Phys.

Rev. E 65, 016212 (2001).
[13] R. E. de Carvalho, F. C. Souza, and E. D. Leonel, Phys. Rev. E

73, 066229 (2006).
[14] R. E. de Carvalho, F. C. de Souza, and E. D. Leonel, J. Phys. A

39, 3561 (2006).
[15] M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
[16] O. Meplan, F. Brut, and C. Gignoux, J. Phys. A 26, 237 (1993).
[17] H. Kunz and N. Berglund, J. Stat. Phys. 83, 81 (1996).
[18] L. G. G. V. Dias da Silva and M. A. M. de Aguiar, Eur. Phys. B

16, 719 (2000).

[19] M. Aichinger, S. Janecek, and E. Räsänen, Phys. Rev. E 81,
016703 (2010).

[20] Trademark Diamond Foods.
[21] P. J. Morrison and A. Wurm, Scholarpedia 4, 3551 (2009).
[22] D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison, Physica

D 91, 1 (1996).
[23] P. J. Morrison, Phys. Plasmas 7, 2279 (2000).
[24] J. Laskar, Physica D 67, 257 (1993).
[25] M. J. Puska and R. M. Nieminen, Phys. Rev. A 47, 1181

(1993).
[26] D. Bauer, F. Ceccherini, A. Macchi, and F. Cornolti, Phys. Rev.

A 64, 063203 (2001).
[27] M. Ruggenthaler, S. V. Popruzhenko, and D. Bauer, Phys. Rev.

A 78, 033413 (2008).
[28] I. Shchatsinin, T. Laarmann, G. Stibenz, G. Steinmeyer,

A. Stalmashonak, N. Zhavoronkov, C. P. Schulz, and I. V. Hertel,
J. Chem. Phys. 125, 194320 (2006).

[29] A. S. Baltenkov, U. Becker, and A. Z. Msezane, J. Phys. B 43,
115102 (2010).

[30] Y. B. Xu, M. Q. Tan, and U. Becker, Phys. Rev. Lett. 76, 3538
(1996).

[31] E. Tosatti and N. Manini, Chem. Phys. Lett. 223, 61
(1994).
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