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In this paper we develop an analytical framework to study the effect of nonlinearity on irreversible energy
transfer in a system of two weakly coupled oscillators with time-dependent parameters, with special attention to
an analogy between classical energy transfer and nonadiabatic quantum tunneling. For preciseness, we suppose
that a linear oscillator with constant parameters is excited by an initial impulse but a coupled quasilinear oscillator
with slowly varying parameters is initially at rest. It is shown that the equations of the slow passage through
resonance in this system are identical to quasilinear equations of nonadiabatic Landau-Zener tunneling. Due
to revealed equivalence, a recently found analogy between irreversible energy transfer in a classical linear
system and conventional linear Landau-Zener tunneling can be extended to quasilinear systems. An explicit
analytical solution of the quasilinear problem is found with the help of an iteration procedure, wherein the linear
solution is chosen as an initial approximation. Correctness of the constructed approximations is confirmed by
numerical simulations. The results presented in this paper, in addition to providing an analytical framework for
understanding the transient dynamics of coupled oscillators, suggest an approximate procedure for solving the
quasilinear Landau-Zener equations with arbitrary initial conditions over a finite time interval.
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I. INTRODUCTION

Targeted energy transfers (TET), where energy is directed
from a source to a receiver in a one-way irreversible fashion,
govern a broad range of physical phenomena, from multibody
systems and waves in fluids and plasmas to photosynthesis and
quantum computers. The theoretical basis of the TET analysis
has been suggested in [1,2]; examples from diverse fields
of applied mathematics, natural sciences, and engineering,
and recent advances in the theory and applications of this
phenomenon are discussed, e.g., in [3–11] and references
therein.

Although a passage between two energy levels is an
intrinsic feature of both quantum and classical transitions,
a mathematical analogy between nonadiabatic classical and
quantum energy transfer has been recently exposed only
for linear system with time-dependent parameters [12–15].
As shown in [4–6], the equations for the slowly varying
envelopes of near-resonance motion in a system of two weakly
coupled linear oscillators with slowly varying parameters
are asymptotically identical to the equations of the Landau-
Zener tunneling problem [16,17], i.e., there exists a direct
mathematical analogy between irreversible energy transfer in a
linear oscillatory system and nonadiabatic quantum tunneling.
The purpose of the current paper is to demonstrate similar
asymptotic equivalence between the equations of the slow
passage through resonance in a quasilinear oscillatory system
and the equations of quasilinear Landau-Zener tunneling,
thereby extending the previously found mathematical analogy
to quasilinear systems. Note that a connection between
classical and quantum energy transfer in nonlinear systems
with constant parameters has been discussed earlier [18].

Equivalence of the mathematical descriptions implies that
a classical system of weakly coupled oscillators may serve
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as a simple but adequate model of complicated physical
processes. A comparison of corresponding equations shows
that the contribution of time-dependent stiffness in irreversible
energy transfer in a classical system is identical to the effect of
external fields on quantum tunneling. Moreover, the math-
ematical equivalence, in principle, enables the substitution
of mechanical modeling [4,5] for complicated and costly
quantum experiments.

Nonadiabatic quantum transitions under slow driving have
been investigated using various methods, e.g., in [19–23].
However, even in the linear case an exact solution to the
Landau-Zener equation is too complicated for a straight-
forward analysis. It is not surprising, then, that since the
appearance of the seminal Landau paper [16] the attention
has been focused on quasi-stationary solutions at infinitely
large times. In this paper we propose a rigorous asymptotic
approach for studying transient processes and evaluating
the effect of nonlinearity in both classical and quantum
systems with arbitrary initial conditions on a finite time
interval.

The paper is organized as follows. In Sec. II, a basic
model of two weakly coupled oscillators with time-dependent
frequency detuning is introduced. The earlier developed proce-
dures [6] are used to derive the evolutionary equations describ-
ing the slowly-varying envelopes of near-resonance motion for
both oscillators. It is shown that these equations are identical
to the equations of nonlinear Landau-Zener tunneling. Since
the analysis is focused on quasilinear systems, the notion of
a quasilinear system is formalized. In Sec. III we suggest an
iteration procedure, which provides an explicit approximate
solution of the quasilinear Landau-Zener equations. The initial
iteration in the form of the Fresnel integrals corresponds to
the linear solution, while the successive iterations improve
the accuracy of approximations and take into account the
effect of nonlinearity. In particular, the approximate solution
demonstrates a decrease of energy transfer with an increase of
nonlinearity. In Sec. IV, the theoretical results are compared
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to the numerical solutions. A good agreement between the
theoretical and numerical results for both fast and slow
dynamics is observed.

II. MODEL AND MAIN EQUATIONS

The system considered consists of two oscillators connected
with linear coupling. A linear oscillator with constant parame-
ters is excited by an initial impulse, while a coupled nonlinear
oscillator with time-dependent stiffness is initially at rest.
We will demonstrate that the nonlinear oscillator acts as an
energy sink and ensures a visible reduction of the amplitude
of oscillations of the excited mass.

We denote by m1 and m2 the masses of the first and
second oscillators, respectively; by c1 and C2(t), the linear
stiffness of the corresponding oscillator, by k3, the coefficient
of nonlinearity, by c12, the stiffness of linear coupling, by
P , the initial impulse acting on the nonlinear oscillator. The
nonlinear equations of motion are given by

m1
d2u1

dt2
+ c1u1 + c12(u1 − u2) = 0,

(2.1)

m2
d2u2

dt2
+ C2(t)u2 + k3u

3
2 + c12(u2 − u1) = 0,

with initial conditions at t = 0: u1 = u2 = 0; du1/dt = P ,
du2/dt = 0. The variables ui (i = 1, 2) refer to the absolute
displacements of the oscillators; the time-variable stiffness
C2(t) = c2 − (k1 − k2t), k1 > 0, k2 > 0; nonlinearity k3 > 0.
It is assumed that (c1/m1)1/2 = (c2/m2)1/2 = ω but all other
parameters are small compared to c2, thus causing internal
resonance in the system. It will be shown that the passage
through resonance due to the change of the frequency will
result in intense energy transfer from the excited to coupled
oscillator.

If coupling c12 � c2, then the equality c12/c2 = 2ε � 1
defines the small parameter of the system. Introducing the
dimensionless parameters

c12/cr = 2ελr, r = 1, 2; k1/c2 = 2εσ,

k3/c2 = 8εα, k2/c2ω = 4ε2β2

and using the dimensionless time-scales τ0 = ωt , τ1 = ετ0, we
rewrite the rescaled system as

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

(2.2)
d2u2

dτ 2
0

+ u2 + 8εαu3
2 + 2ελ2(u2 − u1) − 2εζ (τ1)u2 = 0,

with initial conditions τ0 = 0: u1 = u2 = 0; v1 = P/ω = V0,
v2 = 0, vi = dui/dτ0. By definition, λ2≡1 but for clarity
both coupling parameters λ1 and λ2 are retained in Eqs. (2.2).
The frequency modulation is denoted by ζ (τ1) = σ − 2β2τ1.
System (2.2) can be treated as resonant if the values of ε |ζ (τ1)|
are small for small ε, that is |ζ (τ1)| is of O(1) in the interval
of consideration.

We now provide a rigorous definition of a quasilinear
system. Consider a linear counterpart of system (2.2):

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

(2.3)
d2u2

dτ 2
0

+ u2 + 2ελ2(u2 − u1) − 2εζ (τ1)u2 = 0,

with the same initial conditions. It has been shown [12] that the
phase portrait of the symmetric conservative system (ζ = 0,
λ1 = λ2 = λ) is similar to the phase portrait of its linear
counterpart if the parameter k = 3α/4λ < 0.5. Hence, if this
condition holds, the solution of the nonlinear system can be
considered as close to that of a corresponding linear system
with k = 0. It is easy to prove that in the non-symmetric system
with λ1 �= λ2 the above condition is replaced by the inequality
k = 3α/4λ2 < 0.5. Throughout this paper, we assume that the
system is quasilinear in this sense.

As in the linear case [6], it is convenient to reduce Eqs. (2.2)
to a single nonlinear integrodifferential equation. It follows
from the first linear equation that

u1 = ω−1
ε V0 sin ωετ0 + 2εω−1

ε λ1Iε(τ0),
(2.4)

Iε(τ0) =
∫ τ0

0
u2(s) sin ωε(τ0 − s)ds,

where ωε = (1 + 2ελ1)1/2 = 1 + ελ1 + ε2 · · ·. Since the fre-
quency detuning is of O(ε), then, as shown in [13], Iε(τ0)
is of O(ε−1) in the time interval of O(ε−1) and thus εIε(τ0)
is of O(1). This means that this term should be taken into
account in the main approximation. Substituting Eqs. (2.4)
into Eqs. (2.2) and taking into account all significant terms,
we obtain the following system:

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

d2u2

dτ 2
0

+ (1 + 2ελ2)u2 + 8εαu3
2 − 2εζ (τ1)u2 (2.5)

= 2εω−1
ε λ2V0 sin ωετ0 + 4ε2ω−1

ε λ1λ2 Iε(τ0).

The second equation in system (2.5) depends only on
u2 and can be solved separately. As in the linear case [4],
the asymptotic analysis is performed with the help of the
complexification-averaging technique [24]. The starting point
of this method is the complex-valued change of variables

ψ=v2 + iu2, ψ∗ = v2 − iu2. (2.6)

The substitution of Eqs. (2.6) into Eqs. (2.5) gives the
equation for ψ(τ0, ε):

dψ

dτ0
− iψ − iε[λ2 − ζ (τ1)](ψ − ψ∗) + iεα(ψ − ψ∗)3

= 2ελ2V0ω
−1
ε sin ωετ0 − 2iε2ω−1

ε λ1λ2

∫ τ0

0
[ψ(s,ε)

−ψ∗(s,ε)] sin ωε(τ0 − s)ds,ψ(0) = 0. (2.7)

The solution of Eq. (2.7) is sought as

ψ(τ0,ε) = ϕ(τ0,ε)eiωετ0, (2.8)
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where the envelope ϕ(τ0, ε) satisfies the equation
dϕ

dτ0
− iε{[λ2 − λ1 − ζ (τ1)] (ϕ − ϕ∗e−2iωετ0 ) − λ2ϕ

∗e−2iωετ0 − α e2iωετ0 (ϕ − ϕ∗e−2iωετ0 )3}

= −iελ2V0ω
−1
ε (1 − e−2iωετ0 ) − ε2ω−1

ε λ1λ2

∫ τ0

0
[ϕ(s.ε)(1 − e−2iωε(τ0−s)) + ϕ∗(s,ε)(1 − e2iωε(τ0−s))e−2iωετ0 ]ds. (2.9)

Substituting into Eq. (2.9) the multiple-scale expansions

ϕ(τ0,ε) = ϕ0(τ1) + εϕ1(τ0,τ1) + · · · ;
dϕ

dτ0
= ∂ϕ

∂τ0
+ ε

∂ϕ

∂τ1
+ · · · , τ1 = ετ0, (2.10)

and then proceeding to the first-order approximation, we obtain the following equation:

∂ϕ0

∂τ1
+ ∂ϕ1

∂τ0
− i(τ1)(ϕ0 − ϕ∗

0e−2iωετ0 ) + iλ2ϕ
∗
0e−2iωετ0 + iαe2iωετ0 (ϕ0 − ϕ∗

0e−2iωετ0 )3

= −iω−1
0 λ2V0(1 − e−2iωετ0 ) − εω−1

0 λ1λ2

∫ τ0

0
[ϕ0(εs)(1 − e−2iωε(τ0−s)) + ϕ∗

0 (εs)(1 − e2iωε(τ0−s)e−2iωετ0 )]ds, (2.11)

where (τ1) = ρ + 2β2τ1, ρ = λ2 − λ1 − σ , ω0 = ωε |ε=0 =
1. For brevity, we further omit the parameter ω0 = 1. In order
to avoid the secular growth of ϕ1 with respect to the fast time
τ0, i.e., avoid a response not uniformly valid with increasing
time, we exclude non-oscillating terms from Eq. (2.11); as a
result, we obtain the following integro-differential equation
for the slowly varying envelope ϕ0(τ1):

dϕ0

dτ1
− i(τ1)ϕ0 − 3iαϕ0|ϕ0|2

= −iλ2V0 − λ1λ2

∫ τ1

0
ϕ0(r)dr, ϕ0(0) = 0. (2.12)

We recall that the multiple-scale expansion provides an
accurate approximation with an error of O(ε) if τ1 =O(1) [25].
This condition agrees with the requirement |ζ (τ1)|∼1.

In a similar way, we derive an asymptotic approximation for
the response u1. The complex-valued change of variables y =
v1 + iu1, y∗ = v1 − iu1 reduces the first equation in system
(2.5) to an equation for the complex envelope y:

dy

dτ0
−iωεy + iελ1y

∗ = −iελ1[ϕeiωετ0−ϕ∗e−iωετ0 ],

y(0) = V0, (2.13)

where y(τ0, ε) = η(τ0, ε)eiωετ0 , with η(τ0, ε) satisfying the
equation

dη

dτ0
+ iελ1η

∗e−2iωετ0 = −iελ1[ϕ − ϕ∗
0e−2iωετ0 ],

η(0) = V0. (2.14)

An approximate solution of Eq. (2.14) is sought in the
form of the multiple-scales expansion η(τ0,ε) = η0(τ1) +
εη1(τ0,τ1) + · · ·. After a series of transformations similar
to Eqs. (2.10)–(2.12), the resulting equation for the slowly
varying envelopes η0(τ1) becomes

dη0

dτ1
= −iλ1ϕ0(τ1), η0(τ1) = V0 − iλ1

∫ τ1

0
ϕ0(r)dr.

(2.15)

Combining Eqs. (2.15) and (2.16), we obtain the system
equivalent to the nonlinear Landau-Zener equations:

dη0

dτ1
= −iλ1ϕ0(τ1), η0(0) = V0,

(2.16)
dϕ0

dτ1
= i(τ1)ϕ0 − iλ2η0 + 3iαϕ0|ϕ0|2, ϕ0(0) = 0.

These equations are central to our investigation. Following
the definition of quasilinearity, Eqs. (2.16) with 3α < 2λ2 may
be referred to as quasilinear Landau-Zener equations.

Once the solution ϕ0(τ1), η0(0) is found, the leading-order
approximations ur 0 and vr 0 (r = 1, 2) are calculated by
Eqs. (2.6) and (2.8). As a result, we obtain

u10(τ0, τ1) = |η0(τ1)| sin[ωετ0 + δ(τ1)],

v10 = |η0(τ1)| cos[ωετ0 + δ(τ1)], (2.17)

δ(τ1) = arg[η0(τ1)],

and

u20(τ0, τ1) = |ϕ0(τ1)| sin[ωετ0 + α(τ1)],

v20(τ0,τ1) = |ϕ0(τ1)| cos[ωετ0 + α(τ1)], (2.18)

α(τ1) = arg ϕ0(τ1).

Partial energy of the second oscillator is expressed as

e20(τ1) = 1
2

(〈
u2

20

〉 + 〈
v2

20

〉) = 1
2 |ϕ0(τ1)|2, (2.19)

where < > denotes the averaging over the “fast” period T =
2π/ωε. Although a closed-form solution ϕ0(τ1) is unavailable,
a straightforward analysis shows that in a sufficiently small
initial time interval Eq. (2.12) can be approximated by the
reduced equation

dϕ0

dτ1
= −iλ2V0, ϕ0(0) = 0,

with the solution

ϕ0(τ1) = −iλ2V0τ1, e20(τ1) = 1
2 (λ2V0τ1)2. (2.20)
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Partial energy of the excited oscillator is calculated as

e10(τ1) = (〈
u2

10

〉 + 〈
v2

10

〉) = 1
2 |η0(τ1)|2 . (2.21)

For small τ1 we obtain

η0(τ1) = V0
(
1 − 1

2λ1λ2τ
2
1

)
, e10(τ1) = 1

2V 2
0

(
1 − λ1λ2τ

2
1

)
.

(2.22)

It follows from Eqs. (2.20) and (2.22) that at the initial stage
of motion the energy of the excited oscillator decreases while
the energy of the coupled oscillator increases. Irreversibility
of energy transfer is demonstrated in Sec. IV.

III. APPROXIMATE ANALYSIS OF ENERGY TRANSFER

The solution of the coupled problem can be significantly
simplified if the integral terms in Eqs. (2.5) and (2.12) are neg-
ligible in the main approximation. As shown in [6], in the linear
system this assumption corresponds to the weak coupling limit,
for which λ1λ2 � 2β2. Using this condition, we develop a
relevant asymptotic procedure for a quasilinear system. It will
be shown below that this formally derived inequality allows a
simple physical interpretation: The transition time is less than
the period of beating in the system with the zero detuning, or, in
other words, this condition renders substantially nonadiabatic
transition.

A. Symmetric system with weak coupling

In the symmetric system with m1 = m2 = m, c1 = c2 = c

weak coupling is defined by the equality c12/c = 2ελ0; in
addition, we introduce an additional parameter μ �1 and
denote λ0 = μλ, α = μα1. If coupling is weak, then energy
transfer may exist if the initial impact is large enough, that is
V0 = μ−1V but λV = λ0V0. Under the given assumptions,
Eq. (2.12) is rewritten as

dϕ0

dτ1
− i(τ1)ϕ0 − 3iμα1ϕ0 |ϕ0|2

= −iλV − μλ2
∫ τ1

0
ϕ0(r)dr, ϕ0(0) = 0, (3.1)

where (τ1) = −σ + 2β2τ1. Equation (3.1) is iterated in
the standard way. Using the hypothesis of quasilinearity, we
construct the initial iteration ϕ

(0)
0 (τ1) as a solution of the linear

equation obtained from Eq. (3.1) at μ = 0:

dϕ
(0)
0

dτ1
− i(τ1)ϕ(0)

0 = −iλV, ϕ
(0)
0 (0) = 0, (3.2)

The initial iteration determines the shape of the solution,
while the successive iterations improve the accuracy of approx-
imations. We construct the first iteration ϕ

(0)
0 (τ1) as a solution

of the truncated linearized equation, which approximately
considers the effect of weak nonlinearity but ignores the
integral term:

dϕ
(1)
0

dτ1
+ i(τ1)ϕ(1)

0 − 3iμα1

∣∣ϕ(0)
0 (τ1)

∣∣2
ϕ

(1)
0 = −iλV,

ϕ
(1)
0 (0) = 0. (3.3)

The improved iteration ϕ
(2)
0 (τ1) takes into account both

nonlinearity and the integral term

dϕ
(2)
0

dτ1
+ i(τ1)ϕ(2)

0 − 3iμα1

∣∣ϕ(0)
0 (τ1)

∣∣2
ϕ

(2)
0

= −iλV − μ2λ2
∫ τ1

0
ϕ

(0)
0 (r)dr, ϕ

(2)
0 (0) = 0. (3.4)

It is important to note that the equalities μλ = λ0, λV =
λ0V0 allow us to exclude the unknown parameter μ from
calculations. Approximations η

(k)
0 (τ1) of the complex envelope

η0(τ1) are then found from Eq. (2.15) in which ϕ0 is replaced
by ϕ

(k)
0 (k = 0, 1, 2).

Approximations (3.2)–(3.4) are valid for both classical and
quantum problems. A deeper insight into the behavior of the
classical system can be obtained if we relate Eqs. (3.2)–(3.4) to
the dynamical equations of the oscillators. It is easy to deduce
that, correct to first order, the initial iterations ϕ

(0)
0 , η(0)

0 describe
the slow complex envelopes of the truncated linear system
with the removed nonlinearity and integral term, namely,

d2u
(0)
1

dτ 2
0

+ u
(0)
1 + 2ελ0

(
u

(0)
1 − u

(0)
2

) = 0,

(3.5)
d2u

(0)
2

dτ 2
0

+ u
(0)
2 + 2ελ0u

(0)
2 − 2εζ (τ1)u(0)

2 = 2ελ0V0 sin τ0,

The first iteration ϕ
(1)
0 , η

(1)
0 describes the slow complex

envelopes of the following truncated linearized system with
the removed integral term but with an approximate nonlinear
term:

d2u
(1)
1

dτ 2
0

+ u
(1)
1 + 2ελ0

(
u

(1)
1 − u

(1)
2

) = 0,

d2u
(1)
2

dτ 2
0

+ u
(1)
2 + 2ελ0u

(1)
2 − 2εζ (τ1)u(1)

2 + 8εα
∣∣u(0)

1 (τ1)
∣∣2u

(1)
2

= 2ελ0V0 sin ωετ0. (3.6)

The improved iteration ϕ0
(2), η0

(2) depicts the slow complex
envelopes of the following system:

d2u
(2)
1

dτ 2
0

+ u
(2)
1 + 2ελ0

(
u

(2)
1 − u

(2)
2

) = 0,

d2u
(2)
2

dτ 2
0

+ u
(2)
2 + 2ελ0u

(2)
2 − 2εζ (τ1)u(2)

2 + 8εa
∣∣u(0)

1 (τ1)
∣∣2u

(2)
2

= 2ελ0u
(0)
1 . (3.7)

System (3.7) takes into account both nonlinear and integral
terms (in the main approximation).

Calculations of ϕ
(0)
0 (τ1). As shown in [6], the solution of

Eq. (3.2) is given by

ϕ
(0)
0 (τ1) = −iλ0V0 eiB(τ1)

∫ τ1

0
e−iB(s)ds,

(3.8)
B(s) = −σs + (βs)2,
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where the equality λ0V0 = λV is taken into account. Since
B(s) = (βs − σ/2β)2 − σ 2/4β2 = h2(s) − θ2, with h(s) =
βs − σ/2β, θ = σ/2β, then eiB(τ1) = e−iθ2+i(βτ1−θ)2

and,
therefore,

ϕ
(0)
0 (τ1) = −i

λ0V0

β
�0(τ1) ei(βτ1−θ)2

,

(3.9)
�0(τ1) = [C(βτ1 − θ ) + C(θ )] − i[S(βτ1 − θ ) + S(θ )],

where C(x) and S(x) are the cos- and sin-Fresnel integrals

C(x) =
∫ x

0
cos t2dt, S(x) =

∫ x

0
sin t2dt.

It follows from Eqs. (3.8) and (3.9) that
(i) If βτ1 � θ , that is, τ1 � σ /2β2, then B(τ1) ≈ 0 and

∣∣ϕ(0)
0 (τ1)

∣∣ ≈ λ0V0τ1. (3.10)

(ii) If βτ1 � θ , that is, τ1 � σ /2β2, then the following
asymptotic representations hold [26]:

C(βτ1 − θ ) ≈
(√

π

2
+ sin(βτ1)2

βτ1

)
+ O

(
1

(βτ1)2

)
,

(3.11)

S(βτ1 − θ ) ≈ 1

2

(√
π

2

cos(βτ1)2

βτ1

)
+ O

(
1

(βτ1)2

)
.

Therefore,

∣∣ϕ(0)
0 (τ1)

∣∣ → |�̄0| =
√

πλ0V0

2β
as τ1 → ∞. (3.12)

Although an analysis as τ1→∞ is formal, expression (3.12)
indicates the main feature of energy transfer: A transition of the
coupled oscillator from the initial rest state to quasi-stationary
oscillations. The energy of quasistationary oscillations is
defined as ē20 = 1

2 |�̄0|2; the residual energy of the first
oscillator ē10 is calculated using the solution (2.15).

We now highlight a correlation between the parameters λ

and β. First, we consider the symmetric linear system (2.3)
with the zero detuning (ζ = 0) and symmetric coupling λ1 =
λ2 = λ0. It is well known that in the system of two weakly
coupled harmonic oscillators any finite amount of energy
injected in one of the oscillators while the other is initially
at rest oscillates between two oscillators; the period of beating
(with respect to the slow time τ1) is Tb = π/λ0. Secondly, we
analyze expressions (3.9). It can be easily shown that in the
system with σ = 0 the transition time T1 defined by the first
maximum of |ϕ(0)

0 (τ1)| lies in the interval π/2 < (βT1)2 < π .
Therefore, the condition λ1λ2 � 2β2 can be rewritten as
T 2

1 � 2T 2
b /π < T 2

b . In other words, the transition time is
supposed to be far less than the period of beating in the
relevant system of harmonic oscillators, and the system under
consideration demonstrates fast energy transfer. Additional
weak nonlinearity and weak asymmetry does not spoil this
conclusion.

Calculations of ϕ
(1)
0 (τ1). The iteration ϕ

(1)
0 (τ1) is given by

dϕ
(1)
0

dτ1
− if (τ1)ϕ(1)

0 = −iλ0V0, ϕ
(1)
0 (0) = 0, (3.13)

where f (τ1) = − σ + 2β2τ1 + 3α|ϕ(0)
0 (τ1)|2 = − σ+2β2τ1 +

6αe20(τ1), with e20(τ1) = |ϕ(0)
0 (τ1)|2/2. The solution of

Eq. (3.13) is obviously similar to Eq. (3.8), that is,

ϕ
(1)
0 (τ1) = −iλ0V0�1(τ1)eiF (τ1),

∣∣ϕ(1)
0 (τ1)

∣∣ = λV |�1(τ1)|,
(3.14)

with

�1(τ1) =
∫ τ1

0
e−F (s)ds,F (s) =

∫ s

0
f (t)dt

= −σs + (βs)2 + 6α

∫ s

0
e20(t)dt.

It is easy to prove that |ϕ(1)
0 (τ1)| ≈ λ0V0τ1 if 0 � τ1 �

σ/2β2. Although a closed form of �1(τ1) is unavailable, the
stationary phase method [27] can be used to obtain the Fresnel-
type approximation for large τ1. First, using the definitions of
the functions F and f , we find the stationary phases φ from
the equation

F ′(φ) = −σ + 2β2φ + 6αe20(φ) = 0. (3.15)

Assuming that Eq. (3.15) has a single solution φ = φ1 and
then expanding F (s) in the Taylor series with two first nonzero
terms, we obtain

F (s) ≈ F (φ1) + κ2(s − φ1)2,

κ2 = 1

2
F ′′(φ1) = β2 + 3α

[
de20

ds

∣∣∣∣
s=φ1

]
. (3.16)

The substitution of Eq. (3.16) into Eqs. (3.13) and (3.14)
gives the following Fresnel-type approximation:

�1(τ1) =
∫ τ1

0
e−iF (s)ds ≈ e−iF (φ1)

∫ τ1

0
e−i[κ(s−φ1)]2

ds

= 1

κ

∫ k(τ1−φ1)

−kφ1

e−ih2
dh = 1

κ
({C[κ(τ1 − φ1)] + C(κφ1)}

− i{S[κ(τ1 − φ1)] + S(κφ1)}). (3.17)

Using the same arguments as above, we obtain from
Eqs. (3.14) and (3.17) an asymptotic limit akin to Eq. (3.11):

∣∣ϕ(1)
0 (τ1)

∣∣ → |�̄1| =
√

πλ0V0

2κ
as τ1 → ∞. (3.18)

It is important to note that Eq. (3.15) does not allow an ex-
plicit solution. However, if we assume that the approximation
e20(τ1) ≈ ẽ20(τ1) = 1

2 (λ0V0τ1)2 holds for all τ1 � φ1 and then
substitute ẽ20 for e20 in Eqs. (3.15) and (3.16), we derive the
following quadratic equation for the approximate stationary
phase φ̃1:

3α(λ0V0φ̃1)2 + 2β2φ̃1 − σ = 0,
(3.19)

φ̃1 = β2

a
+

√
β4

a2
+ σ

a
, a = 3α(λ0V0)2 ,

and, therefore,

κ2 = β2 + 3α(λ0V0)2φ̃1. (3.20)

It follows from Eqs. (3.19) and (3.20) that the coefficient
1/κ decreases as α−1/2 and, therefore, the resulting energy of
the trap also decreases with an increase of nonlinearity. This
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FIG. 1. (Color online) Exact (black squares) and approximate
(open squares) stationary phases.

conclusion is in good agreement with the results of numerical
simulation (Sec. IV). A similar effect for quantum systems (in
terms of tunneling probability at τ1→∞) was demonstrated
earlier [18] for another type of the Landau-Zener equations.

B. Asymmetric system

A similar iterative scheme can be developed for an asym-
metric system with m1 �= m2, c1 �= c2. Let m2 = μm1, where
μ �1 is a known parameter. Since c2/m2 = c1/m1 = ω2,
then c1 = m1 c2/m2 = c2/μ and c12/c1 = 2ελ1 = 2εμλ2,
or λ1 = μλ2. In addition, it is supposed that α = μα1,
λ2 = λ∼O(1), λ1 = μλ. Under these assumptions, the
integro-differential equation (2.12) coincides with Eq. (3.1).
This implies that in the asymmetric system the initial iteration
ϕ

(0)
0 (τ1) is also determined by the linear equation (3.2), in which

(τ1) = λ − σ + 2β2τ1; the subsequent iterations ϕ
(1)
0 (τ1) and

ϕ
(2)
0 (τ1) are calculated by Eqs. (3.3) and (3.4), respectively.

IV. NUMERICAL RESULTS

We discuss the results of numerical simulations for system
(2.2) with coefficients of nonlinearity from the admissible
interval k∈(0, 0.5). We use the following parameters of the
numerical simulations:

ε = 0.05, λ0 = 1, V0 = 1, σ = 2.25, 2β2/σ = 1,

(a) : α = 0.25 or (b) : α = 0.5. (4.1)

A simple calculation proves that λ2
0 < 2β2, k = 3α/4λ =

0.1875 in case (a) and k = 0.375 in case (b). Therefore, the
hypotheses of weak coupling and weak nonlinearity hold.

Formula (3.19) gives the approximate stationary phases
φ̃1 = 1.39 for k = 0.1875 and φ̃1 = 1.18 for k = 0.375. In the
numerical simulation the stationary phase is determined as a
point of intersection of the plot e20(τ1) with the straight line y =
(σ − 2β2τ1/6α), where e20(τ1) = 1

2 |ϕ(0)
0 (τ1)|2 is calculated

by Eq. (3.2). The points of intersections of the curve e20(τ1)
with the lines y1 and y2 corresponding to k = 0.1875 and k =
0.375, respectively, lie on the initial rising branch of the curve
e20 (Fig. 1). This implies the uniqueness of the intersection
for each set of the parameters. As seen in Fig. 1, the difference
between the exact and approximate phases �1 and φ̃1 does not
exceed 5%, and, therefore, the approximate solution (3.19)
provides a fairly good approximation of the stationary phase.
In accordance with the theoretical prediction, the value of the
stationary phase diminishes if nonlinearity α increases.

The numerical solutions of the original nonlinear system
(2.2) are shown in Fig. 2. Almost irreversible transfer from the
excited oscillator to the sink is observed for both k = 0.1875
[Fig. 2(a)] and k = 0.375 [Fig. 2(b)] but a distinct decrease
of the amplitude of the excited oscillator for k = 0.1875 is
obvious [Fig. 2(a)].

Figures 3 and 4 allows us to compare the solutions u1 and
u2 of the original system (2.2), the approximate solutions of
the truncated systems (3.6), and the solutions of linear system
(2.3) for the parameters k = 0.1875 and k = 0.375.

As seen in Figs. 3 and 4, an increase of nonlinearity makes
a difference between the nonlinear and linear dynamics more

FIG. 2. (Color online) Numerical solutions u1 [red (dark gray) dashed lines] and u2 [solid (light gray) lines] of system (2.2): (a) k = 0.1875,
(b) k = 0.375.
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(a) (b)

FIG. 3. (Color online) Numerical solutions u1 (a), and u2 (b) for k = 0.1875: Solid lines: Solutions of the full nonlinear system (2.2);
dashed lines: Solutions of the full linear system (2.3); dotted lines: Solutions of the truncated system (3.7).

pronounced but the approximate solution of the truncated
system remains in good agreement with the precise solution.
Moreover, the linear oscillator [Figs. 3(a) and 4(a)] is more
sensitive to the influence of nonlinearity than the nonlinear
trap [Figs. 3(b) and 4(b)].

Figure 5 depicts the energy of the oscillator (1) and the trap
(2) in the systems with k = 0.1875 and k = 0.375. Energy
of the nonlinear system is calculated by the asymptotically
precise formulas e1 = 1

2 |η0|2 and e2 = 1
2 |ϕ0|2 with η0 and ϕ0

satisfying Landau-Zener equations (2.16) rescaled to the fast
time scale τ0.

A reduction of energy transfer with an increase of nonlin-
earity is obvious.

V. CONCLUSIONS

In this paper we have studied energy transfer in a system of
two weakly coupled oscillators in which the first oscillator with

constant parameters is excited by an initial impulse whereas
the coupled quasilinear oscillator with a time-dependent
frequency is initially at rest but then acts as an energy trap.
It has been shown that the equations for the slowly varying
envelopes of near-resonance motion in this system are identical
to the equations of nonlinear Landau-Zener tunneling. This
asymptotic equivalence allows a unified approach to the study
of physically different processes such as energy transfer in
a classical oscillatory system with variable parameters and
nonadiabatic quantum Landau-Zener tunneling.

Since the asymptotic analysis is restricted to the study of a
quasilinear system, the notion of quasilinearity and the formal
limitations ensuring the desired quasilinear dynamics have
been introduced. An approximate solution of the quasilinear
problem has been constructed using the iteration procedure, in
which the linear solution is chosen as an initial approximation.
Although not quantitatively exact, an explicit approximate
solution gives an understanding of the influence of nonlinearity

(a) (b)

FIG. 4. (Color online) Numerical solutions u1 (a), and u2 (b) for k = 0.375: Solid lines: Solutions of the full nonlinear system (2.2); dashed
lines: Solutions of the full linear system (2.3); dotted lines: Solutions of the truncated system (3.7).
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FIG. 5. (Color online) Energy of the excited oscillator [group 1 of
red (dark gray) lines 1] and the trap [group 2 of light blue (light gray)
lines] for the linear system (dashed lines); the nonlinear systems with
k = 0.1875 (solid lines) and k = 0.375 (starred lines).

on energy transfer. In particular, it has been shown that an
increase of nonlinearity diminishes the intensity of energy
transfer.

In view of a profound mathematical analogy between
energy transfer in a classical oscillatory system with variable
parameters and nonadiabatic quantum Landau-Zener tunnel-
ing, the results of this paper, in addition to providing an
analytical framework for understanding the transient dynamics
of coupled oscillators, suggest an adequate approximate
procedure for solving the nonlinear Landau-Zener problem
with arbitrary initial conditions over a finite time-interval. Fur-
thermore, this analogy paves the way for a simple mechanical
simulation of complicated quantum effects.

The results concerning energy transfer in strongly nonlinear
system is beyond the scope of the current paper. They will
appear in forthcoming authors’ papers.
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