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We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has
been found to be a crucial control parameter. By proper choice of this parameter one can switch between different
synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive
algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an
otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and
a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate
coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay, or various cluster

states, can be selected.
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I. INTRODUCTION

The ability to control nonlinear dynamical systems has
brought up a wide interdisciplinary area of research that
has evolved rapidly in the past decades [1]. In particular,
noninvasive control schemes based on time-delayed feedback
[2—4] have been studied and applied to various systems ranging
from biological and chemical applications to physics and
engineering in both theoretical and experimental works [5—12].
Here we propose to use adaptive control schemes based on
optimizations of cost or goal functions [13-15] to find appro-
priate control parameters. Besides isolated systems, control
of dynamics in spatiotemporal systems and on networks has
recently gained much interest [16-20]. The existence and
control of cluster states was studied by Choe et al. [21,22]
in networks of Stuart-Landau oscillators. This Stuart-Landau
system arises naturally as a generic expansion near a Hopf
bifurcation and is therefore often used as a paradigm for
oscillators. The complex coupling constant that arises from
the complex state variables in networks of Stuart-Landau
oscillators consists of an amplitude and a phase. Similar
coupling phases arise naturally in systems with all-optical
coupling [6,23]. Such phase-dependent couplings have also
been shown to be important in overcoming the odd-number
limitation of time-delay feedback control [24,25] and in
anticipating chaos synchronization [26]. Furthermore, it was
shown in Refs. [21,22] that the value of the coupling phase
is a crucial control parameter in these systems; by adjusting
this phase one can deliberately switch between different
synchronous oscillatory states of the network. In order to
find an appropriate value of the coupling phase one could
solve a nonlinear equation that involves the system parameters.
However, in practice the exact values of the system parameters
are unknown, and analytical conditions can be derived only for
special values of the complex phase. An efficient way to avoid
these limitations and find optimal values of the coupling phase
is the use of adaptive control.

In this paper, we present an adaptive synchronization algo-
rithm for delay-coupled networks of Stuart-Landau oscillators.
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To find an adequate coupling phase we apply the speed-
gradient method [15], which was used previously in various
nonlinear control problems, yet not for the control of dynamics
in delay-coupled networks. By taking an appropriate goal
function we derive an equation for the automatic adjustment of
the coupling phase such that the goal function is minimized. At
the same time the coupling phase converges to the theoretically
predicted value. Our goal function is based on the Kuramoto
order parameter and is able to distinguish the different states
of synchrony in the Stuart-Landau networks irrespectively of
the numbering of the nodes.

This paper is organized as follows. After this introduction,
we describe the model system in Sec. II. Section III introduces
the speed-gradient method and its application using the
coupling phase in networks of Stuart-Landau oscillators.
We present the main results for the control of in-phase
synchronization in Sec. IV, and for cluster and splay states
in Sec. V. Finally, Sec. VI contains some conclusions.

II. MODEL EQUATION

Consider a network of N delay-coupled oscillators,

N
(1) = flz;O1+ Ke? Y " ajulzalt — 1) — 2;(0]. (1)

n=1

withz; =r;e’% € C,j =1,...,N.The coupling matrix A =
{a; j}fY j=1 determines the topology of the network. The local
dynamics of each element is given by the normal form of a
supercritical Hopf bifurcation, also known as Stuart-Landau
oscillator,

f@Z) = +io—A+iy)z*z;, 2)

with real constants A, # 0, and y. In Eq. (1), 7 is the delay
time. K and 8 denote the amplitude and phase of the complex
coupling constant, respectively. Such kinds of networks are
used in different areas of nonlinear dynamics, e.g., to describe
neural activities [27].

Synchronous in-phase, cluster, and splay states are possible
solutions of Egs. (1) and (2). They exhibit a common amplitude
rj =ro,» and phases given by ¢; = Q,,t + jAg, with a
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phase shift Ag,, = 2rm/N and collective frequency €2,,. The
integer m determines the specific state: in-phase oscillations
correspond to m = 0, while splay and cluster states correspond
tom =1, ...,N — 1. The cluster number d, which determines
how many clusters of oscillators exist, is given by the least
common multiple of m and N divided by m, andd = N (e.g.,
m = 1), corresponds to a splay state.

The stability of synchronized oscillations in networks can
be determined numerically, for instance, by the master stability
function [28]. This formalism allows a separation of the local
dynamics of the individual nodes from the network topology.
In the case of the Stuart-Landau oscillators it was possible
to obtain the Floquet exponents of different cluster states
analytically with this technique [21]. By these means it has
been demonstrated that the unidirectional ring configuration
of Stuart-Landau oscillators exhibits in-phase synchrony,
splay states, and clustering depending on the choice of the
control parameter 8. For 8 = 0, there exists multistability of
the possible synchronous states in a large parameter range.
However, when tuning the coupling phase to an appropriate
value 8 = Q,,T — 2mrm /N according to a particular state m,
this synchronous state is monostable for any values of the
coupling strength K and the time delay t. The main goal
of this paper is to find adequate values of B8 by automatic
adaptive adjustment. For this purpose, we make use of the
speed gradient method [15], which is outlined in the next
section.

III. SPEED-GRADIENT METHOD

In this section, we briefly review an adaptive control scheme
called the speed-gradient (SG) method. Consider a general
nonlinear dynamical system

X = F(x,u,t) 3)

with state vector x € C”, input (control) variables u € C™,
and nonlinear function F'. Define a control goal

llim Qx(t),t) =0, 4)

where Q(x,t) > 0 is a smooth scalar goal function.

In order to design a control algorithm, the scalar function
Q = w(x,u,t) is calculated, that is, the speed (rate) at which
Q(x(2),?) is changing along trajectories of Eq. (3):

00(x,1)
ot

Then we evaluate the gradient of w(x,u,t) with respect to input
variables:

w(x,u,t) = + [V Q(x, D" F(x,u,t). 5)

Vuo(x,u,t) =V, [V Q(x, O F(x,u,1).
Finally, we set up a differential equation for the input
variables u,
W Gt 6)
- = u(X,U,10),
dt

k=2 n=1
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where I’ = I'" > (s a positive definite gain matrix. Algorithm
(6) is called speed-gradient method, since it suggests to change
u proportionally to the gradient of the speed of changing
Q. There exist different versions of analytic conditions
guaranteeing that the control goal (4) can be achieved in the
system ((3), (6)); see [13,29]. The main condition is as follows:
the existence of a constant value of the parameter u*, ensuring
attainability of the goal in the system dx/dt = F(x,u*,t).
Details can be found in the control-related literature [13,29].

The idea of this algorithm is the following: The term
—V,o(x,u,t) points to the direction in which the value of
O decreases with the highest speed. Therefore, if one forces
the control signal to “follow” this direction, the value of Q
will decrease and finally be negative. When Q < 0, then Q
will decrease and, eventually, tend to zero.

We shall now apply the speed-gradient method to networks
of Stuart-Landau oscillators. Since the coupling phase B is
the crucial parameter that determines the stability of the
possible in-phase, cluster, and splay states, we use this control
parameter as the input variable u. Setting u = 8 and x =
(z1, ---,2n), Eq. (1) takes the form of Eq. (3) with state vector
x € CV and input variable B € R, and nonlinear function
F(x,B.0) = [f(z1), .., fen)] + KeP[Ax(t — T) — x(1)].

The SG control equation (6) for the input variable 8 then
becomes

dp r 0 t r OFy’ \% t 7

T aﬂa)(x,ﬂ,)— <8ﬂ) Q,1), (D
where I' > 0 is now a scalar. It follows from Eq. (7) that
the control algorithm does not use the complete dynamical
equations F', but only the partial derivative of F with respect
to B. Because § is part of the coupling only, this involves
solely the coupling term in Eq. (1) and not the local dynamics.
In particular, in an experimental setup, there is no need to know
the parameters of the local dynamics, i.e., A, w, and y. Thus,
our scheme is easy to implement also in experiments.

IV. IN-PHASE SYNCHRONIZATION

To apply the SG method for the selection of in-phase
synchronization we need to find an appropriate goal function
Q. It should satisfy the following conditions: The goal function
must be zero for an in-phase synchronous state and larger than
zero for other states. Hence, a simple goal function can be
introduced by taking the distance of all oscillator phases to a
reference oscillator’s phase ¢;, assuming |@; — ¢1| < 27:

N
010 = 3 3k — )" ®)
k=2
Taking the gradient of the derivative along the trajectories
of the system (1) with local dynamics (2) one can derive
an adaptive law of the following form by straightforward
calculation. Using w(x,B,t) = Q1, Eq. (7) becomes

N N N
B=-TKY (o —¢1) [Z Uk (’7 cos(B + Pn.r — Px) — COS /3) - a, (’r—l cos(B + Pnr — P1) — COSﬂﬂ 0
n=1
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where we used the abbreviations r, ; = r,(t — 7) and ¢, ; =
@, (t — 1) for notational convenience. Note that Eq. (9) has a
singularity for r; — 0, but for small numbers N of oscillators
we have never observed in the simulations that the amplitudes
ry become zero. Only for very large rings of oscillators this
may happen, and in this case the speed-gradient algorithm may
work only when appropriate measures to prevent divergence
of the control signal are applied.

Figure 1 presents the results of a numerical simulation
for an Erd6s-Rényi random network with N = 6 nodes and
row sum normalized to unity. Throughout this paper we use
I' = 1. According to the numerical simulations, decreasing
I" will yield a decrease of the speed of convergence. On the
other hand, if I is too big, undesirable oscillations appear. The
model parameters are chosen as in Ref. [21]. In Fig. 1(a) it
can be seen that the absolute values |z;| of all nodes converge
after about 60 time units. Figure 1(b) shows that the phase
differences of the different oscillators approach zero, which
corresponds to the in-phase synchronous state. Figure 1(c)
depicts the evolution of B. The blue dashed line represents
the value of the coupling phase 8 = Qyt = 0.48x, for which
stability was shown analytically in Ref. [21]. It can be seen
that the adaptively adjusted phase comes close to this value.
In other words, even without knowing the exact values of the
system parameters, the SG algorithm yields an adequate value
of B that stabilizes the target state of in-phase synchronization.
Figure 1(d) shows that the goal function (8) indeed approaches
ZEero.

Note that the above choice of the goal function Q is not the
only possibility to generate a stable in-phase solution. Let us
consider a function based on the order parameter

1 N
Ri=~ ]X_;e”ﬂf ) (10

This global parameter can conveniently be measured in real-
world systems, e.g., lasers. It is obvious that R; = 1 if and only
if the state is in-phase synchronized. For other cases we have
R < 1. Using this observation we can introduce the following
goal function:

1 X N
Qr=1—-5) &) e (11)
j=1 k=1
From 8 = —TI % 0, we derive an alternative adaptive law:
N N N
. 2K .
p=T=7 ZSIH(W—(P]')ZGM
k=1 j=1 n=1

x <rr— COS(B + e — 9;) — COSﬂ>- (12)
J
Figure 2 shows the results of a numerical simulation. As
before, the amplitude and phase approach appropriate values
that lead to in-phase synchronization. This time, however, the
obtained value of 8 does not converge to the one for which
the analytical approach [10] has established stability of the
in-phase oscillation (blue dashed line), but to another limit
value. This can be explained as follows: There exists a whole
interval of acceptable values of § around the value of the

PHYSICAL REVIEW E 85, 016201 (2012)

Fopamt SN —
T S . T - ok -
.
2 ’,"_ e
o‘é"_-“‘
oo 2 ¢
- & s i i : : :
0 10 20 30 40 50 %0 2

o i i H i i
0 10 20 30 ¢ 40 50 60 70

FIG. 1. (Color online) Adaptive control of in-phase oscillations
with goal function Eq. (8). (a) Absolute values r; = |z;| for j =
1,...,6; (b) phase differences A¢; = ¢; — ;41 for j=1,....5;
(c) temporal evolution of B, blue dashed line: reference value for
Qo = 0.92; (d) goal function. Parameters: A = 0.1, =1,y =0,
K =0.08, T =0.527, N = 6. Initial conditions for r; and ¢; are
chosen randomly from [0,4] and [0,27], respectively. The initial
condition for B is zero.

coupling phase for which an analytical treatment is possible,
such that for any value from this interval an in-phase state is

016201-3



ANTON A. SELIVANOV et al.

(a)
0.8
0.6
-—
024
0 50 100 150 200 250 300
t
x 2
: ! !
/ : o
27 :
il
i’
i
{
P i H
0 50 100 150 200 250 300
t
3 , .
i (c)
B / sl
T
ﬂot --7“\--:74-------;- ----------------------
1
0 i i
0 50 100 150 200 250 300
t
0.5 T
\ (d)
0.4
0.3
o
0.2 \
0.1 \
0 50 100 ‘F?‘U 200 250 300

FIG. 2. (Color online) Adaptive control of in-phase oscillations
with goal function Eq. (11). (a) Absolute values r; = |z i|; (b) phase
differences A¢; = ¢; — ¢;41; (c) temporal evolution of B, blue
dashed line: reference value for 2y = 0.92; (d) goal function. Other
parameters as in Fig. 1.

stable. Our SG algorithm finds one of them, depending upon
initial conditions.

V. SPLAY AND CLUSTER STATES STABILIZATION

In this section we will consider unidirectionally coupled
rings with N = 6 nodes. That is, the coupling matrix has the
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following form:

010 0
o0 1 - 0
A== AP
000 --- 1
1 00 --- 0

Let1 <m < N —1.Then d = LCM(m,N)/m, where LCM
denotes the least common multiple, is the number of different
clusters of a synchronized solution. A splay state corresponds
to d = N while cluster states yield d < N. Using similar
arguments as those leading to Eq. (8) we could choose a goal
function of the following form:

1 & 21\ ?
03 = 3 ]Zl <</’j — @iy — 7) (13)
with j = j mod N.

The goal function Eq. (13) has a crucial disadvantage: We
need to define an ordering of the system nodes. Since this
is inconvenient for practical applications, we will extend the
alternative goal function Eq. (11) such that we can stabilize
splay and cluster states. First of all, note that the following
condition holds for splay and cluster states:

N
D e =o. (14)
j=1

Indeed, if we have only three nodes and take Q =
Z?:l ¢ 3 e as a goal function, we will ensure
stability of a splay state, as we have verified by numerical
simulations. Note that this goal function does not need a fixed
ordering of the nodes. Renumbering all nodes in a random way
will yield the same goal function. One can define a generalized
order parameter

1
Ri= I 15)

N
§ edlgak
k=1

with d € N. However, if we derive a goal function from this
order parameter in an analogous way as in Eq. (11), this
function will not have a unique minimum at the d-cluster state
because R; = 1 holds also for the in-phase state and for other
p-cluster states where p are divisors of d.

For example, suppose that the system has six nodes. Then
states for which conditions (14) and (15) with R; = 1 for
d = 6 hold are schematically depicted in Figs. 3(a)-3(c). In

(a) (c)

FIG. 3. Schematic diagrams of splay (d = 6), three-cluster (d =
3), and two-cluster (d = 2) states in panels (a)—(c), respectively
(N = 6). Each cluster contains the same number of nodes.
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FIG. 4. (Color online) Adaptive control of splay state with goal
function Eq. (17). (a) Absolute values r; = |z;|; (b) phase differences
A¢; = @; — @415 (c) temporal evolution of B, blue dashed line:
reference value for 2, = 0.96; (d) goal function. Other parameters
asin Fig. 1.

order to distinguish between these three cases, let us consider
the functions

N N
1 . )
fp((p) — N2 E ePt(ﬂf E e*ptwk. (16)
j=1 k=1

A splay state [Fig. 3(a)] yields f; = f, = f3 = 0, while in the
three-cluster state displayed in Fig. 3(b) we have f; = f, =0,
f3 =1, and in the two-cluster state shown in Fig. 3(c), f1 =
f3 =0, f, = 1. Hence, we obtain Zp fp» =0if and only if
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FIG. 5. (Color online) Adaptive control of two-cluster state
(m = 3) with goal function Eq. (17). (a) Absolute values r; = |z;|;
(b) phase differences A¢; = ¢; — @;41; (c) temporal evolution of S,
blue dashed line: reference value for Q23 = 1.08; (d) goal function.
Other parameters as in Fig. 1.

there is a state with d clusters, where the sum is taken over all
divisors of d.

Combining all previous results we adopt the following goal
function:

N2
Qi=1-fu)+— > frle) (17

pld,1<p<d
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FIG. 6. (Color online) Adaptive control of three-cluster state
(m = 2,4) with goal function Eq. (17). (a) Absolute values r; = |z;|;
(b) phase differences A¢; = ¢; — ¢;;, blue dashed line: reference
value for €2, = 1.03; (c) temporal evolution of §; (d) goal function.
Other parameters as in Fig. 1.

where p|d means that p is a factor of d. This goal function
contains f,; as the primary contribution for the d-cluster state,
but also a sum of penalty terms that counteract reaching
other cluster states in which f,; is also unity. Whenever one
of those unwanted cluster states is approached, the penalty
term will lead to a gradient away from it. The prefactor
N?/2 is chosen for convenience to secure faster convergence
of the algorithm. From g = —F%Q4 one can derive the
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adaptation law

p--re Y]

j=1 k=1

Z psin[p(ee — ¢))]

pld, 1<p<d

2d l
— 2 sinld (i - <p,»)]} > ajn

n=1

X [r:—r cos(B + ¢@nr —9j) — 005(13)] . (18)
J

In Fig. 4 we show the results of a numerical simulation
for splay state stabilization (d = N = 6, m = 1). The phase
differences are A¢; = ¢; — @41 = 2w — 2n /N, which cor-
responds to the splay state. In Fig. 4(c) one can see that the
adaptively obtained value of S converges to that for which
stability was shown analytically in Ref. [21] (dashed blue line).

Figures 5 and 6 depict the results of numerical simulations
for two clusters (d = 2, m = 3) and three clusters (d = 3,
m = 2,4), respectively. Again we note that the obtained value
of B comes close to the one for which stability was shown
analytically in Ref. [21].

The above results indicate that the speed-gradient method
is able to drive the network dynamics into the desired cluster or
splay state by adaptively adjusting the coupling phase, where
the goal function is chosen according to the corresponding
target state. We have, however, used only exemplary values of
the coupling parameters K and t so far.

For the example of a splay state (four-cluster) in a network
of four Stuart-Landau oscillators coupled in a unidirectional
ring we have conducted a more exhaustive analysis of the
(K,7) plane. Figure 7 shows results in dependence on the
coupling strength K and the coupling delay t. According
to Ref. [21] there exists an optimal value of the coupling
phase that enables stability of this state for arbitrary values
of K and 7. We ran simulations with 20 different ini-
tial conditions chosen randomly from the complex interval
[—1,1] x [—i,i] for each oscillator z;. Figure 7 shows the
fraction f, of those realizations that asymptotically approach
a splay state after applying the speed-gradient method. We
observe that the speed-gradient method is able to control the
splay state in a wide parameter range. The range of possible
coupling strengths K does, however, shrink considerably with
increasing time delay t. We conjecture several reasons for this
shrinking. First, multistability of different splay and cluster

4n 1
o 0.8
06
P2 s
T 0.4
n 02
0 Il I} 1 Il O
0 1 2 3 4 5

K

FIG. 7. (Color online) Success of the speed-gradient method in
dependence on the coupling parameters K and t for the splay state in
a unidirectionally coupled ring of N = 4 Stuart-Landau oscillators.
Other parameters as in Fig. 1. The color code shows the fraction of
successful realizations.
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FIG. 8. (Color online) Adaptive control of 3-cluster state (m =
2,4) in a network with nonidentical oscillators with goal function
Eq. (17). (a) Absolute values r; = |z;|; (b) phase differences A¢; =
©; — @j+1, blue dashed line: reference value for ©, = 1.03; (c)
temporal evolution of B; (d) goal function. Parameters A; and w;
are chosen from a Gaussian distribution with 1% standard deviation
and mean values A = 0.1 and w = 1, respectively. Other parameters
as in Fig. 1.

states is more likely for larger values of K and t, which
narrows down the basin of attraction for a given state. Second,
Eq. (18), which describes the dynamics of the coupling phase
under the adaptive control, is influenced by the time delay t.
Using large delay times, we observe overshoots of the control
leading to a failure.

All the results presented so far were for identical oscillators
in the network. It has been shown that control of cluster

PHYSICAL REVIEW E 85, 016201 (2012)
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FIG. 9. (Color online) Same as in Fig. 8 for 5% standard deviation.

and splay states using an appropriate value of the phase
works even for slightly nonidentical frequencies w of the
oscillators [21]. Figures 8 and 9 show the adaptive control
of a three-cluster state similar to Fig. 6, but with nonidentical
parameters A ; and w; of the individual oscillators. We choose
them from a Gaussian distribution with mean value A = 0.1
and w = 1, respectively, and standard deviation 1% (Fig. 8)
and 5% (Fig. 9) for both. It is observed that the control
goal is achieved after approximately the same time for the
small standard deviation, but after a longer time for the larger
standard deviation, and that the goal function Q4 does not
tend exactly to zero as in the case of identical parameters.
The oscillators do not synchronize completely due to their
amplitude and frequency mismatch, which can be seen in
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Figs. 8 and 9 [parts (a) and (b)]. This explains why the goal
function does not vanish completely.

VI. CONCLUSION

We have proposed a novel adaptive method for the control
of synchrony on oscillator networks, which combines time-
delayed coupling with the speed gradient method of control
theory. Choosing an appropriate goal function, a desired state
of generalized synchrony can be selected by the self-adaptive
automatic adjustment of a control parameter, i.e., the coupling
phase. This goal function, which is based on a generalization
of the Kuramoto order parameter, vanishes for the desired
state, e.g., in-phase, splay, or cluster states, irrespective of
the ordering of the nodes. By numerical simulations we
have shown that those different states can be stabilized, and
the coupling phase converges to an appropriate value. We
have elaborated on the robustness of the control scheme by
investigating the success rates of the algorithm in dependence
on the coupling parameters, i.e., the coupling strength and the
time delay. We have further shown that the adaptive control
is robust against mismatch of the parameters of the individual
oscillators. In this work, we focused on the adaptive adjustment
of the coupling phase while the other coupling parameters were

PHYSICAL REVIEW E 85, 016201 (2012)

fixed. The input variable « in Eq. (3) may in general contain
all of the coupling parameters. Thus, as a generalization, our
method might be applied to all coupling parameters including
the coupling amplitude and the time delay. In this way control
of cluster and splay synchronization might be possible without
any a priori knowledge of the coupling parameters. Given
the paradigmatic nature of the Stuart-Landau oscillator as a
generic model, we expect broad applicability, for instance,
to synchronization of networks in medicine, chemistry, or
mechanical engineering. The mean-field nature of our goal
function makes our approach accessible even for very large
networks independently of the particular topology.

ACKNOWLEDGMENTS

This work is supported by the German-Russian Interdis-
ciplinary Science Center (G-RISC) funded by the German
Federal Foreign Office via the German Academic Exchange
Service (DAAD). J.L., T.D., PH., and E.S. acknowledge
support by Deutsche Forschungsgemeinschaft (DFG) in the
framework of SFB 910. A.S. and A.F. acknowledge support
by RFBR (project 11-08-01218) and Federal Programme
“Cadres” (contracts 16.740.11.0042, 14.740.11.0942).

[1] Handbook of Chaos Control, edited by E. Scholl and H. G.
Schuster (Wiley-VCH, Weinheim, 2008), second completely
revised and enlarged edition.

[2] K. Pyragas, Phys. Lett. A 170, 421 (1992).

[3] J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, Phys. Rev. E
50, 3245 (1994).

[4] V. Pyragas and K. Pyragas, Phys. Rev. E 73, 036215 (2006).

[5] O. V. Popovych, C. Hauptmann, and P. A. Tass, Biol. Cybern.
95, 69 (2006).

[6] S. Schikora, P. Hovel, H. J. Wiinsche, E. Scholl, and
F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006).

[71 Y. Zhai, 1. Z. Kiss, and J. L. Hudson, Ind. Eng. Chem. Res. 47,
3502 (2008).

[8] G. Orosz, J. Moehlis, and R. M. Murray, Philos. Trans. R. Soc.
A 368, 439 (2010).

[9] T. Dahms, V. Flunkert, F. Henneberger, P. Hovel, S. Schikora,
E. Scholl, and H. J. Wiinsche, Eur. Phys. J. ST 191, 71
(2010).

[10] E. Schéll, in Nonlinear Dynamics of Nanosystems, edited by
G. Radons, B. Rumpf, and H. G. Schuster (Wiley-VCH,
Weinheim, 2010), pp. 325-367.

[11] E. Scholl, P. Hovel, V. Flunkert, and M. A. Dahlem, in Complex
time-delay systems: theory and applications, edited by F. M.
Atay (Springer, Berlin, 2010), pp. 85-150.

[12] V. Flunkert and E. Scholl, Phys. Rev. E 84, 016214 (2011).

[13] A. L. Fradkov, Autom. Remote Control 40, 1333 (1979).

[14] A. L. Fradkov, Phys. Usp. 48, 103 (2005).

[15] A. L. Fradkov, Cybernetical Physics: From Control of Chaos to
Quantum Control (Springer, Heidelberg, 2007).

[16] M. Kehrt, P. Hovel, V. Flunkert, M. A. Dahlem, P. Rodin, and
E. Scholl, Eur. Phys. J. B 68, 557 (2009).

[17] P. Hovel, M. A. Dahlem, and E. Scholl, Int. J. Bifur. Chaos 20,
813 (2010).

[18] V. Flunkert, S. Yanchuk, T. Dahms, and E. Scholl, Phys. Rev.
Lett. 105, 254101 (2010).

[19] I. Omelchenko, Y. Maistrenko, P. Hovel, and E. Schéll, Phys.
Rev. Lett. 106, 234102 (2011).

[20] G. Brown, C. M. Postlethwaite, and M. Silber, Physica D 240,
859 (2011).

[21] C.-U. Choe, T. Dahms, P. Hovel, and E. Scholl, Phys. Rev. E 81,
025205(R) (2010).

[22] C.-U. Choe, T. Dahms, P. Hovel, and E. Scholl, in Dynam-
ical Systems and Differential Equations, DCDS Supplement
2011, Proceedings of the 8th AIMS International Conference
(Dresden, Germany), edited by Wei Feng, Zhaosheng Feng,
Maurizio Grasselli, Akif Ibragimov, Xin Lu, Stefan Siegmund,
and Jiirgen Voigt (American Institute of Mathematical Sciences,
Springfield, 2011), pp. 292-301.

[23] V. Flunkert and E. Scholl, Phys. Rev. E 76, 066202 (2007).

[24] B. Fiedler, V. Flunkert, M. Georgi, P. Hovel, and E. Scholl, Phys.
Rev. Lett. 98, 114101 (2007).

[25] S. Schikora, H. J. Wiinsche, and F. Henneberger, Phys. Rev. E
83, 026203 (2011).

[26] K. Pyragas and T. Pyragiene, Phys. Rev. E 78, 046217 (2008).

[27] C. Hauptmann, O. Omel‘chenko, O. V. Popovych, Y.
Maistrenko, and P. A. Tass, Phys. Rev. E 76, 066209 (2007).

[28] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80,2109 (1998).

[29] A. S. Shiriaev and A. L. Fradkov, Automatica 36, 1709 (2000).

016201-8


http://dx.doi.org/10.1016/0375-9601(92)90745-8
http://dx.doi.org/10.1103/PhysRevE.50.3245
http://dx.doi.org/10.1103/PhysRevE.50.3245
http://dx.doi.org/10.1103/PhysRevE.73.036215
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1103/PhysRevLett.97.213902
http://dx.doi.org/10.1021/ie0708632
http://dx.doi.org/10.1021/ie0708632
http://dx.doi.org/10.1098/rsta.2009.0242
http://dx.doi.org/10.1098/rsta.2009.0242
http://dx.doi.org/10.1140/epjst/e2010-01342-8
http://dx.doi.org/10.1140/epjst/e2010-01342-8
http://dx.doi.org/10.1103/PhysRevE.84.016214
http://dx.doi.org/10.1070/PU2005v048n02ABEH002047
http://dx.doi.org/10.1140/epjb/e2009-00132-5
http://dx.doi.org/10.1142/S0218127410026101
http://dx.doi.org/10.1142/S0218127410026101
http://dx.doi.org/10.1103/PhysRevLett.105.254101
http://dx.doi.org/10.1103/PhysRevLett.105.254101
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1016/j.physd.2010.12.011
http://dx.doi.org/10.1016/j.physd.2010.12.011
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.76.066202
http://dx.doi.org/10.1103/PhysRevLett.98.114101
http://dx.doi.org/10.1103/PhysRevLett.98.114101
http://dx.doi.org/10.1103/PhysRevE.83.026203
http://dx.doi.org/10.1103/PhysRevE.83.026203
http://dx.doi.org/10.1103/PhysRevE.78.046217
http://dx.doi.org/10.1103/PhysRevE.76.066209
http://dx.doi.org/10.1103/PhysRevLett.80.2109
http://dx.doi.org/10.1016/S0005-1098(00)00077-7

