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Random walks have been successfully used to measure user or object similarities in collaborative filtering
(CF) recommender systems, which is of high accuracy but low diversity. A key challenge of a CF system is that
the reliably accurate results are obtained with the help of peers’ recommendation, but the most useful individual
recommendations are hard to be found among diverse niche objects. In this paper we investigate the direction
effect of the random walk on user similarity measurements and find that the user similarity, calculated by directed
random walks, is reverse to the initial node’s degree. Since the ratio of small-degree users to large-degree users
is very large in real data sets, the large-degree users’ selections are recommended extensively by traditional
CF algorithms. By tuning the user similarity direction from neighbors to the target user, we introduce a new
algorithm specifically to address the challenge of diversity of CF and show how it can be used to solve the
accuracy-diversity dilemma. Without relying on any context-specific information, we are able to obtain accurate
and diverse recommendations, which outperforms the state-of-the-art CF methods. This work suggests that the
random-walk direction is an important factor to improve the personalized recommendation performance.
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I. INTRODUCTION

Due to the rapidly expanding internet and social network,
we are overloaded by the unlimited information on the World
Wide Web [1]. For instance, one has to choose among
thousands of candidate commodities to shop online and
finds the relevant information from billions of Web pages.
Comprehensive exploration for each user is infeasible [2].
Consequently, how to efficiently help people obtain informa-
tion that they truly need is a challenging task nowadays [3].
A landmark for information filtering is the use of a search
engine, by which users could find the relevant Web pages
with the help of properly chosen keywords [4,5]. However,
sometimes users’ tastes or preferences evolve with time and
cannot be accurately expressed by keywords, and search
engines do not take into account the personalization and tend
to return the same results for people with far different needs.
Being an effective tool to address this problem, recommender
systems have become a promising way to filter out the
irrelevant information and recommend potentially interesting
items to the target user by analyzing their interests and
habits through their historical behaviors [3,6–12]. Motivated
by its significance in economy and society, the design of
an efficient recommendation algorithm has become a joint
focus of theoretical physics [13,14], computer science [3], and
management science [8].

Zhang et al. [13] proposed a new information framework
based on the heat conduction process, namely, the heat-
conduction-based (HC) recommendation model. The HC
model supposes that the objects one user has collected have the
recommendation power to help the target user find potentially
relevant objects. If the target user is replaced by a specific
object, the HC model is similar to the collaborative filtering
(CF) method, in which the users-rated target objects have the
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recommendation powers to identify the potentially interesting
users. So far, the CF method has been successfully applied to
many online applications and has become one of the most suc-
cessful technologies for recommender systems [9–12,15,16].
For example, Herlocker et al. [17] proposed an algorithmic
framework referring to the user similarity. Luo et al. [18]
introduced the concepts of local and global user similarity
based on surprisal-based vector similarity and the concept of
maximum distance in graph theory. Sarwar et al. [19] proposed
the item-based CF algorithm by comparing different items.
Deshpande and Karypis [20] proposed the item-based top-N
CF algorithm, in which items are ranked according to the
frequency of appearing in the set of similar items and the top-N
ranked items are returned. Gao et al. [21] incorporated the user
ranking information into the computation of item similarity
to improve the performance of the item-based CF algorithm.
Recently some physical dynamics, including random walks
[10,22,23] and the heat conduction process [13], has found ap-
plications in node similarity measurement. Liu et al. [10] used
the random walks to calculate the user similarity and found that
the modified CF algorithm has remarkably higher accuracy.
As a benchmark for comparison, we call it the standard CF
algorithm (hereinafter CF stands only for the collaborative
filtering using random-walk-based user similarity [10]). By
considering the high-order correlation of the users and objects,
Zhou et al. [9] and Liu et al. [11] proposed the ultra-accurate
algorithms, in which the second-order correlations are used to
delete the redundant information. Besides reliably accurate
recommendations, it is also important for recommender
systems to help most individuals find diverse niche objects.
CF algorithms generate recommendations according to similar
users’ suggestions, which prefers ranking the popular objects
at the top positions of recommendation lists, leading to high
accuracy but low diversity.

Random walks have been used to quantify trajectories
in a symmetric ways, namely, in- and out-diversity and
accessibility [24–26]. In this paper we argue that the opinions
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of small-degree users should be enhanced to generate diverse
recommendations and present a new directed random-walk-
based CF algorithm, namely the NCF algorithm, to investigate
the effect of user similarity direction on recommendations. The
numerical results on the data sets, Netflix and MovieLens, show
that the accuracy of NCF outperforms the state-of-the-art CF
methods with greatly improved diversity, which suggests that
the similarity direction is an important factor for user-based
information filtering.

II. BIPARTITE NETWORK AND
HEAT-CONDUCTION-BASED MODEL

A recommendation system consists of a set of nodes, object
nodes, and connections between two nodes corresponding to
an object voted on or collected by a user, which could be
represented by a bipartite network G(U,O,E). We denote
the object set as O = {o1,o2, . . . ,om}, the user set as U =
{u1,u2, . . . ,un}, and the connection set as E = {e1,e2, . . . ,eq}.
The bipartite network can then be represented by an adjacent
matrix A = {aαj } ∈ Rm,n, where aαj = 1 if oα is collected by
uj , and aαj = 0 otherwise.

The final aim of recommender systems is to identify a given
user’s interesting objects and generate a ranking list of the
target user’s uncollected objects according to the predicted
scores. The HC model supposes the neighbor nodes of one
target node as the heat sources with temperature 1, while the
remaining nodes are of temperature 0. According to the thermal
equilibrium [13], the temperature of the remaining nodes is
set as the predicted scores, which could be calculated by
solving the equation WhH = f, where f is the flux vector [13].
The standard HC model first constructs the propagator matrix
Wh, where the element wαβ denotes the conduction rate from
object oβ to oα , and sets the temperatures of the target node’s
neighbors as 1; then the heat will diffuse between heat sources
and other nodes. Finally, the temperatures of uncollected
objects are considered as recommendation scores.

The general framework of the item-based HC model is
as follows: (1) construct the weighted object network (i.e.,
determine the matrix W) from the known user-object relations;
(2) determine the initial resource vector f for each user; (3) get
the final resource distribution via

f′ = Wf; (1)

and (4) recommend those uncollected objects with highest
final scores. Note that the initial configuration f is determined
by the user’s personal information; thus for different users,
the initial configuration is different. For a given object oα , the
ith element of fα should be zero if aαi = 0. That is to say,
one should not put any recommendation power (i.e., resource)
onto an unrated user. The simplest case is to set a uniformly
initial configuration as

f α
i = aαi . (2)

Under this configuration, all the users that rated object oα have
the same recommendation power.

The traditional HC model is implemented based on the
object similarity. If the number of users is much smaller than
the one of objects, we could apply a similar idea based on
the user similarity, namely, the user-based HC model. From

the definition, one can find that the user-based HC model is
equivalent to the CF algorithm; therefore, the user similarity
analysis of the CF algorithm could also bring deep insight into
the HC model. Zhou et al. [23] used the random-walk process
to calculate the node similarity of bipartite networks and
proposed the network-based inference (NBI) recommendation
algorithm [27]. In Ref. [14], the NBI algorithm was also
referred to as the Probs algorithm. Liu et al. [10] embedded
the random-walk process into the CF algorithm to calculate
the user similarity and found that the algorithmic accuracy is
greatly increased. In Ref. [10] a certain amount of resource
is associated with each user, and the weight sij represents
the proportion of the resource uj would like to distribute to ui .
This process works by using the random-walk process on user-
object bipartite networks, where each user distributes his or her
initial resource equally to all the objects he or she has collected,
and then each object sends back what it has received to all the
users who collect it. The weight sij representing the amount
of initial resource uj evenly transferred to ui can be defined as

sij = 1

kuj

m∑
l=1

alialj

kol

, (3)

where kui
and kol

indicate the degrees of user ui and object ol .
In the random-walk process, the user similarity from user

uj to ui , sij , is determined by the degrees of commonly rated
objects and user uj ’s degree kuj

. It is unlikely these quantities
are exactly the same for each pair of users, and therefore,
sij �= sji in most cases.

III. EFFECT OF USER SIMILARITY DIRECTION
ON CF ALGORITHM

According to the random-walk-based user similarity calcu-
lation (see Fig. 1), the user similarity is calculated by random
walks in a symmetric way. In the CF algorithm, the system

FIG. 1. (Color online) Illustration of random-walk-based user
similarity calculation, which has been used to measure user or object
similarity in personalized recommendations. (a) The possibility
walking from user uA to user uB is used to measure the directed
user similarity sBA = 1/8. (b) Similarity between user uB to user
uA is sAB = 1/4. The degrees of user uA and uB are kuA

= 4 and

kuB
= 2, and one has

kuA

kuB

= 0.25
0.125 .

016118-2



SOLVING THE ACCURACY-DIVERSITY DILEMMA VIA . . . PHYSICAL REVIEW E 85, 016118 (2012)

should identify the target user’s interesting objects with the
help of his neighbors’ historical selections or collections.
Therefore, after we obtain the user similarity matrix, the
similarities between neighbors to the target user are used to
evaluate the predicted scores. According to Eq. (3), for one
pair of users ui and uj , their similarities could be written as

sij = 1

kuj

m∑
l=1

alialj

kol

, from uj to ui,

(4)

sji = 1

kui

m∑
l=1

alialj

kol

, from ui to uj .

Therefore, one has

sij

sji

= kui

kuj

. (5)

If kui
> kuj

, then sij > sji and vice versa. For MovieLens
and Netflix data sets, the exponential forms of user degree
distributions indicate that most users’ degree are very small
(see Fig. 2), which means that large-degree users would
frequently be identified as small-degree users’ friends. As
a consequence, most users’ recommendation lists would be
similar.

In order to investigate the effect of user similarity direction
on CF algorithms, we introduce a new user similarity direction
generated by random walks from neighbor set Un to the target
user to measure user similarities and calculate the predicted
score viα . The NCF algorithm could be described as follows:
First, calculate directed user similarities according to Eq. (3);
then calculate the predicted scores for target user ui’s uncol-
lected objects by

viα =
∑n

j=1 s
β

ij aαj∑n
ij s

β

ij

, (6)

where β is a tunable parameter to investigate the effect
of similarity strength on the algorithmic performance, and
sij is the similarity from user uj to ui . When β = 1,
all the user similarities are given the same weight; when
β > 1, the preferences of users with larger similarities are
strengthened; when β < 1, the ones with smaller similarities
are strengthened. The numerical results indicate that changing

FIG. 2. (Color online) User degree distributions for MovieLens
and Netflix data sets, which approximately have exponential forms
P (k) ∼ exp(−0.0054k ± 0.003).

the user similarity direction could not only accurately identify
user’s interests, but also increase the algorithmic capability of
finding niche objects.

IV. MAXIMAL-SIMILARITY-BASED CF ALGORITHM

The algorithmic performance may be affected by the
user similarity direction and may also be determined by
the properties of the data set. In other words, although
the algorithmic performance of the NCF algorithm is much
better than the one of the CF algorithm, it may happen only
on specific data sets whose similarities between neighbors
and the target user are more effective than the ones in the
opposite direction. In order to make it clear, we present a
maximal-similarity-based CF (MCF) algorithm to investigate
the influence of similarity magnitude, in which the predicted
score from user ui to the uncollected object oα , viα , is given
by

viα =
∑n

j=1 s
β
maxaαj∑n

j=1 s
β
max

, (7)

where smax is defined as the larger similarity between user ui

and uj :

smax = max{sij ,sji}. (8)

For example, the similarity from ui to uj is sji = 0.01, while
the one from uj to ui is sij = 0.9. When recommending objects
to ui , the larger similarity 0.9 is used regardless of the similarity
direction.

V. SIMULATION RESULTS

A. Data description

In this paper we base our simulation results on two data sets.
The MovieLens1 data set consists of 100 000 ratings from 943
users on 1574 movies (objects) and rating scale from one (i.e.,
worst) to five (i.e., best). The Netflix data set [28] is a random
sample of the whole records of user activities on Netflix.com,
which consists of 6000 movies, 10 000 users, and 824 802
ratings. The users of Netflix also vote on movies with discrete
ratings from one to five. Here we apply a coarse graining
method: A movie is considered to be collected by a user only
if the rating is larger than two. In this way, the MovieLens
data have 82 580 edges, and the Netflix data have 701 947
edges (see Table I for basic statistics). As an online movie
recommendation Web site, MovieLens invites users to rate
movies and, in return, makes personalized recommendations
and predictions for movies the user has not already rated;
undercontribution is common. Unlike the Netflix web site,
MovieLens does not have any DVD rental service. The data
set E is randomly divided into two parts, E = ET ∪ EP , where
the training set ET is treated as known information, containing
p percent of the data, and the remaining 1 − p part is set as
the probe set EP , whose information is not allowed to be used
for prediction.

1http://www.MovieLens.org.

016118-3



JIAN-GUO LIU, KERUI SHI, AND QIANG GUO PHYSICAL REVIEW E 85, 016118 (2012)

TABLE I. Basic statistics of the tested data sets.

Data sets Users Objects Links Sparsity

MovieLens 1574 943 82 580 5.56 × 10−2

Netflix 10 000 6000 701 947 1.17 × 10−2

B. Metrics

1. Average ranking score

Accuracy is one of the most important metrics to evaluate
the recommendation algorithmic performance. An accurate
method will put preferable objects in higher places. Here we
use the average ranking score [23] to measure the accuracy of
the algorithm. For an arbitrary user ui , if the object oα is not
collected by user ui , while the entry ui-oα is in the probe set,
we use the rank of oα in the recommendation list to evaluate
accuracy. For example, if there are eight uncollected objects
for user ui , and object oα is ordered at the third place, we say
the position of oα is 3/8, denoted by riα = 0.375. Since the
probe entries are actually collected by users, a good algorithm
is expected to give high recommendations to them, leading to a
small riα . Therefore, the mean value of the positions, averaged
over all the entries in the probe set, can be used to evaluate the
algorithmic accuracy:

〈r〉 = 1

n

n∑
i=1

(∑
(ui ,oα )∈Ep riα

θ − kui

)
, (9)

where Ep is the edge set existing in the probe set and θ is the
number of objects in the probe set. The smaller the average
ranking score, the higher the algorithmic accuracy, and vice
versa.

2. Precision and recall

Since users usually consider only the top part of the
recommendation list, a more practical metric is to consider the
number of users’ hidden links ranked in the top-L places. We
adopt another accuracy measure called precision. For a target
user, the precision is defined as the ratio between relevant
objects (namely, the objects collected by ui in the probe set)
and the length L. Averaging the individual precisions over all
users, we obtain the mean value P (L) of the algorithm on one
data set,

P (L) = 1

n

∑
i

di(L)

L
, (10)

where di(L) indicates the number of relevant objects existing in
the top-L places of the recommendation list. A larger precision
corresponds to a better performance. Recall is defined as the
ratio between the number of objects existing in the top-L places
of the recommendation list and the total number of collected
objects Ci in the probe set. Averaging over the individual
recalls, we obtain the mean recall R(L), which could be defined
as

R(L) = 1

n

∑
i

di(L)

Ci

. (11)

The larger recall corresponds to the better performance.

3. Diversity

The analysis results on the Facebook data set showed that,
besides the common interests, users of online social networks
also have their specific tastes and interests [29], leading to
diverse selection behaviors. Liu et al. [30] found that users’
tastes reflected in MovieLens and Netflix data could also be
divided into two categories: common interests and specific
interests. Therefore, besides accuracy, the diversity of all
recommendation lists is taken into account to evaluate the
algorithmic performance. In general, most of the users would
not show a negative altitude to popular objects; therefore,
ranking popular objects at the top part of recommendation
lists would generate higher accuracy. However, personalized
recommendation algorithms should not only present accurate
prediction but also generate different recommendations to
different users according to their specific tastes or habits. The
diversity can be quantified by the average Hamming distance:

S = 1 − 〈Qij (L)〉/L, (12)

where L is the length of the recommendation list and Qij is the
number of overlapped objects in ui’s and uj ’s recommendation
lists. The largest S = 1 indicates recommendations to all users
are completely different; in other words, the system has the
highest diversity, while the smallest S = 0 means all of the
recommendations are exactly the same.

4. Popularity

An accurate and diverse recommender system is expected
to help users find the niche or unpopular objects that are hard
for them to identify. The metric popularity is introduced to
quantify the capacity of an algorithm to generate unexpected
recommendation lists, which are defined as the average
collected times over all recommended objects:

〈k〉 = 1

n

∑
i

(
1

L

∑
oα∈OL

i

koα

)
, (13)

where OL
i is ui’s recommendation list with length L. A smaller

average degree 〈k〉, corresponding to less popular objects, is
preferred since those lower-degree objects are hard to be found
by users themselves.

C. Simulation results

We summarize the results for NCF, CF, and MCF algo-
rithms, as well as the metrics for MovieLens and Netflix data
sets, in Table II. Clearly, NCF outperforms the classical CF
and MCF algorithms over all five metrics, including average
ranking score 〈r〉, diversity S, popularity 〈k〉, precision P ,
and recall R. Table III gives the comparisons among different
algorithms for p = 0.9. The so-called optimal parameters are
subject to the lowest average ranking score 〈r〉. The metrics,
including average ranking score 〈r〉, diversity S, and popularity
〈k〉, are obtained at the optimal parameters. From which one
can see that the accuracy of NCF is close to the result of
hybrid algorithm [14] and outperforms the state-of-the-art
CF algorithms using the second-order correlation information
[11]. Among all algorithms, the Heter-CF algorithm gives
the highest diversity, while the CB-CF algorithm generates
the lowest popularity. Comparing with these two outstanding
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TABLE II. Performances of NCF, CF, and MCF algorithms for
Netflix and MovieLens data sets according to each of five metrics. The
popularity 〈k〉, diversity S, precision P, and recall R corresponding
to L = 10.

〈r〉 〈k〉 S P R

Netflix NCF 0.0450 2506 0.8236 0.0967 0.1640
CF 0.0497 2813 0.7001 0.0917 0.1365

MCF 0.0477 2758 0.7378 0.0954 0.1374
MovieLens NCF 0.0864 237 0.8929 0.1502 0.2037

CF 0.1037 275 0.8435 0.1497 0.2010
MCF 0.0970 271 0.8434 0.1459 0.1936

algorithms, NCF can reach or closely approach the best
diversity without taking into account high-order correlation
and provide more accurate recommendation results.

Figure 3 reports the algorithmic accuracy as a function of β.
In our algorithm the curve (the red circle) has a clear minimum
around βopt = 3.3 for MovieLens and βopt = 2.0 for Netflix.
Comparing with CF algorithms whose user similarities are
defined from large-degree to small-degree users, the average
ranking score 〈r〉 of NCF is reduced from 0.497 to 0.045 for
Netflix and from 0.1037 to 0.0864 for the MovieLens data
set, reduced by 9.9% and 16.68%, respectively, at the optimal
values. Comparing with the MCF algorithm, the performance
of NCF is also better. Subject to the accuracy, the reason why
NCF outperforms CF and MCF indeed lies in the direction
effect but not the data effect, and the results also indicate that
giving more recommendation power to the small-degree users
could enhance the accuracy and diversity simultaneously.

The Hamming distance S is introduced to measure the
algorithmic performance to present personalized recommen-
dation lists. The average object degree 〈k〉 is used to evaluate
the ability that an algorithm gives a novel recommendation.
Figures 2(a)–2(d) shows 〈k〉 and S as a function of β when
recommendation list length L = 10, respectively. For the
MovieLens data set, at the optimal point βopt = 3.3, the

TABLE III. Algorithmic performances for MovieLens data when
p = 0.9, including the average ranking score 〈r〉, diversity S, and
popularity 〈k〉 corresponding to length of recommendation list L =
50. GRM is a global ranking method; CF is the collaborative filtering
algorithm based on random walks [10]; Heter-CF is a modified CF
algorithm, in which the user similarity is defined based on the mass
diffusion process, and the second-order similarity is involved (βopt =
−0.82) [11]. CB-CF refers to the CF algorithm on weighted bipartite
network [15]; Hybrid is an abbreviation for the hybrid algorithm
proposed in Ref. [14]. Each number is obtained by a averaging over
ten runs of independently random division of training set and probe
set.

Algorithms Ranking score Popularity Hamming distance

GRM 0.1390 259 0.398
CF 0.1063 229 0.750
Heter-CF 0.0877 175 0.826
CB-CF 0.0914 148 0.763
Hybrid 0.0850 167 0.821
NCF 0.0864 178 0.801

FIG. 3. (Color online) The average ranking score 〈r〉 vs β for
NCF, CF, and MCF algorithms. The optimal βopt of NCF for
MovieLens data set, corresponding to the minimal 〈r〉 = 0.086, is
βopt = 3.3, the one for Netflix data set is βopt = 2.0 corresponding to
〈r〉 = 0.0450. When β = 1, the algorithm degenerates to the accuracy
of the CF algorithm based on the new user similarity direction. All
the data points are averaged over ten independent runs with different
data-set divisions.

popularity 〈k〉 = 237, which is reduced by 13.8%, and the
diversity S = 0.8929 is improved by 5.9% comparing with the
ones of CF at its optimal value. When the list length L = 10,
the popularity 〈k〉 and diversity S of NCF are reduced by 10.9%
and 17.64% for the Netflix data set, from which one can find
that the NCF algorithm using the new directed random walks
has the capability to find the niche objects, leading to diverse
recommendations.

In general, NCF outperforms CF as well as MCF in
terms of the accuracy 〈r〉, diversity S, and popularity 〈k〉.
However, in reality, users care only about the top part of the
recommendation list. From Figs. 4(e)–4(h), one can find that,
comparing with the results of CF and MCF algorithms, the
precision P and recall R of NCF are also very good. When
L = 10 with the optimal parameter corresponding to the lowest
ranking score, the precision P is approximately improved
3.0% and 5.5%, and the recall R is roughly enhanced by 5.2%
and 20.15% for MovieLens and Netflix data sets, respectively.

Since the similarities generated by the random-walk process
from small-degree to large-degree users are larger than the ones
from the opposite direction, the simulation results indicate that
enhancing the small-degree users’ recommendation powers
increases the prediction accuracy and helps users find niche
objects, leading to more diverse recommendations. Figure 5
investigates the correlation between the target user degree ku

and its neighbors’ average degree 〈kn
u〉 as well as deviation

D(ku), where the target user’s neighbors Un are defined as the
users who have at least one common rated object with the target
user, which could be obtained from the adjacent matrix A.
Denoting the user correlation matrix as Cuser, we have Cuser =
AAT . The element Cuser

ij means the number of common rated
objects between user ui and uj . Given a matrix T = {tij } ∈
Rn,n, with tij = 1 if Cuser

ij > 0, and tij = 0 if Cuser
ij = 0. The

number of correlated neighbors kc
u for a target user u could be

given as kc
u = ∑n

j=1 tuj , then average degree 〈kn
u〉 of correlated
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FIG. 4. (Color online) Performances of the NCF, CF, and MCF algorithms for MovieLens and Netflix data sets when recommendation lists
are equal to L = 10. (a)–(d) Average object degrees 〈k〉 vs β and diversity S vs β. At the optimal cases, both popularity 〈k〉 and diversity S of
NCF are much better than the ones of the CF and MCF algorithms. (e)–(h) Precision P and recall R vs β for Netflix and MovieLens data sets.
One can find that both of P and R of NCF for MovieLens are larger than the ones of CF and MCF algorithms, while the precision P for Netflix
is close to the one of the CF algorithm, and the recall R is much better than the results of the CF algorithm. All the data points are averaged
over ten independent runs with different divisions of training-probe sets.

neighbors Un is defined by

〈
kn
u

〉 = 1

kc
u

n∑
j=1

tuj kj . (14)

The deviation D(ku) could be given as

D(ku) =
√√√√ 1

kc
u

n∑
j=1

(
tuj kj − 〈

kn
u

〉)2
. (15)

FIG. 5. (a)–(b) The average degree of the target user’s neighbors
〈kn

u〉 and the corresponding deviation D(ku) vs target user degree ku for
the Netflix data set. (c)–(d) Results for MovieLens. To small-degree
users, both their neighbors’ average degree 〈kn

u〉 and the deviation
D are very large. As ku increases, 〈kn

u〉 and D(ku) would decease
correspondingly.

Figure 5 shows that when ku is very small, both neighbors’
average degree 〈kn

u〉 and deviation D(ku) are very large, which
means that for MovieLens and Netflix data sets, the small-
degree users would like to commonly rate objects with small-
degree users and large-degree users. As ku increases, both
〈kn

u〉 and D(ku) would decrease correspondingly, which means
that the large-degree users only commonly rate objects with
small-degree users. According to our previous analysis, if the
user similarities from neighbors to the target user are enhanced,
the effects of the small-degree users would be emphasized to
match both large-degree and small-degree users’ common and
specific interests, which is the reason why directed random-
walk-based user similarity is effective.

VI. EFFECTS OF DATA SPARSITY

We investigate the effects of the data sparsity on the
performance. Since we focus on the similarity direction effect
on the CF algorithm, we choose the classical CF algorithm
for comparison. In the simulation work, we select pE edges
as a training set and set the rest of the (1 − p)E edges as a
probe set. Lower p means less information is used to generate
the recommendations. The numerical results for MovieLens
are shown in Fig. 6. Each point of the histogram is obtained
with the optimal parameter subject to the lower ranking score.
The improvement function f (〈r〉) of the present algorithm is
defined as

f (〈r〉) = 〈r〉CF − 〈r〉NCF

〈r〉CF
. (16)

For the popularity 〈k〉 and Hamming distance S, the improve-
ment functions are defined as

f (〈k〉) = 〈k〉CF − 〈k〉NCF

〈k〉CF
,

(17)

f (S) = SNCF − SCF

SCF
.
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FIG. 6. (Color online) Improvements of the average ranking score
〈r〉, average objects degree 〈k〉, and diversity S to different sparsity
of the training set for MovieLens data set. All the data points are
averaged over ten independent runs with different data set divisions.

Figure 6 shows that the improvement of average ranking
score 〈r〉 decreases as the size of the training set decreases,
which may come from the fact that the number of neighbors
would decrease and less information could be used to predict
the target user’s interests. We also found that NCF performs
much better than CF for denser data sets. The improvement
of diversity f (S) decreases with the increasing size of the
training set, and f (〈k〉) increases with a more denser training
set, which indicates that, generally speaking, users prefer to
select popular objects as they give more ratings.

VII. CONCLUSION AND DISCUSSIONS

In this paper by tuning the random-walk direction from
neighbors to the target user to calculate the directed user
similarity, we investigate the physics of directed random walks
and their influence on the information filtering of user-object
bipartite networks. Simulation results indicate that the new CF
algorithm using the new directed random walks outperforms
state-of-the-art CF methods in terms of the accuracy, as well as
the Heter-CF algorithm in terms of diversity simultaneously.
Meanwhile NCF has much better capability to present more
accurate and diverse recommendations than CF algorithms
whose user similarities are calculated from the target user to
neighbors. The accuracies of NCF algorithms are close to the
results of the hybrid algorithm [14], and the diversities are also
increased dramatically.

CF algorithms are one of the most successful information-
filtering algorithms and have been extensively used on many
web sites, such as Netflix and Amazon. The HC model also

has been successfully used for information filtering. If we
suppose the user-rated specific objects are the heat source,
CF algorithms are equivalent to the user-based HC model.
Although random walks have been used to improve the user or
object similarity measurement [10,14], the reason why directed
similarity could enhance the information-filtering performance
is missing. Since the idea of the CF algorithm is combing
neighbors’ opinions of the target user to predict his interests
or habits, we always suppose that the CF algorithm would like
to converge users’ interests and present popular objects. But
the analysis in this paper indicates that if small-degree users’
recommendation powers are increased, the CF algorithm also
could solve the accuracy-diversity dilemma. In most of the
online social systems, the number of small-degree users is
always much larger than large-degree ones. According to the
random-walk-based user similarity definition, we know that
similarities between small-degree users are always larger than
the reversed ones. Therefore, in the CF algorithm, the opinions
of the large-degree users would be recommended to most of
the small-degree users, leading to lower diversity. By tuning
the similarities from neighbors to the target user, we could
emphasize the recommendation powers of small-degree users
and enhance the accuracy and diversity simultaneously, which
indicates that the similarity direction is an important factor
for information filtering. Although the idea of this paper is
simple, the remarkable simulation results indicate that, to
generate accurate and diverse recommendations, we need only
to change the direction without changing the framework of the
existing CF systems.

The directed random-walk process presented in this paper
indeed has been defined as a local index of similarity in
link prediction [31,32], community detection [33], and so on.
Meanwhile, a number of similarities, based on the global struc-
tural information, have been used for information filtering,
such as the transferring similarity [12] and the PageRank index
[4], communicability [34], and so on. Although the calculation
of such measures is of high complexity, it is very important
to the effects of directed random walks on these measures.
The hybrid algorithm [14] is also a kind of item-based CF
algorithm where the item similarity is measured by combining
the random walk and heat conduction processes. Lü et al. [35]
proposed an improved hybrid algorithm by embedding the
preferential diffusion process into a hybrid algorithm. Qiu
et al. [36] proposed an improved method by introducing an
item-oriented function to solve the cold-start problem. In this
paper we find that the direction of random walks is very
important for information filtering, which may be helpful for
deeply understanding the applicability of directed similarity.
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[32] T. Zhou, L. Lü, and Y.-C. Zhang, Eur. Phys. J. B 71, 623

(2009).
[33] Y. Pan, D.-H. Li, J.-G. Liu, and J.-Z. Liang, Physica A 389, 2849

(2010).
[34] E. Estrada and N. Hatano, Phys. Rev. E 77, 036111 (2008).
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