
PHYSICAL REVIEW E 85, 016108 (2012)

Theory of correlation in a network with synaptic depression
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Synaptic depression affects not only the mean responses of neurons but also the correlation of response
variability in neural populations. Although previous studies have constructed a theory of correlation in a
spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into
consideration. We expanded the previous theoretical framework in this study to spiking neuron models with
short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring
attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex.
The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory
coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the
linear response function in large stochastic networks.
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I. INTRODUCTION

A marked feature of synaptic transmission between neo-
cortical neurons is the pronounced frequency dependence
of synaptic responses on presynaptic spike trains [1]. High-
frequency input reduces the efficacy of signal transmission
due to the depletion of neurotransmitters. Short-term synaptic
depression, which has been described in detail by using a
phenomenological model [2,3], occurs over milliseconds to
minutes in various regions such as the primary visual cortex
and the hippocampus [4–6]. Because of its rapid effects,
short-term synaptic depression enables synapses to perform
critical computational functions in neural circuits such as belief
adaptation to external stimuli and short-term memory [7–9].

To evaluate how synaptic depression affects the amount
of information on stimuli that can be extracted from noisy
neural activities, we need to investigate the effects of synaptic
depression not only on the firing rates but also on neural
correlations. Even small correlations between neurons can
greatly change the amount of information conveyed by the
activities of the neural population and consequently affect
the accuracy of sensory discriminations [10–17]. Similar to
the derivation of the linear-response function for an Ising
system with transition rates [18,19], some researchers have
gone beyond mean-field theory and developed such a theory
of correlation in a spiking neuron model including a time
course for postsynaptic potential and refractory properties
[20–23]. However, short-term synaptic depression, which
rapidly changes the interaction between neurons, has not been
taken into account and the effect of the interaction change on
neural correlation remains unknown. Here we expanded the
previous theoretical framework to spiking neuron models with
short-term synaptic depression.

We investigated the effects of synaptic depression on
the macroscopic behavior of stochastic neural networks in
previous studies, viz., the firing rates [24,25]. Dynamical
mean-field equations were derived for these networks by taking
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the average of two stochastic variables: a firing-state variable
and a synaptic variable. Because synaptic depression is activity
dependent and leads to the independence of the two stochastic
variables, the average product of these variables is decoupled
as the product of their averages and we can then calculate
the firing rates. We used the independence in this study to
calculate the neural correlations and constructed a theoretical
framework for analytically calculating correlations of neural
activities in a neural network with synaptic depression.

We studied how short-term synaptic depression affects
neural correlations for a ring attractor network with Mexican-
hat-type connectivity using this theory as an example, which
is known as a neural network model of the primary visual
cortex [13,17,26,27]. We analytically calculated the neural
correlations and investigated not only the effects of synaptic
depression at the single cell level [28] but also what influence
changes in single neurons have on network activity as a whole.
We found that synaptic depression substantially reduces neural
correlations. We also demonstrated that this reduction in
neural correlations due to synaptic depression can improve
the accuracy of population coding, even though the signal
strength, viz., the mean firing rates, is reduced by synaptic
depression.

II. MODEL

We used a discrete time version of a spike response model
with threshold noise [23,29]. The network consists of N

neurons, which take either a resting state S = 0 or a firing
state S = 1. The state of every neuron Si is stochastically
updated in parallel. The probability that Si takes the 0 or 1
state depends on the membrane potential ui :

P [Si(t) = 1] ≡ g[ui(t)],

P [Si(t) = 0] = 1 − P [Si(t) = 1], (1)

where g is the “escape function” [30], which monotonically
increases and is a differentiable function that takes values
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between 0 and 1. The membrane potential ui is determined
by the past spike histories of N neurons as

ui(t) =
∞∑

τ=1

∑
j �=i

Jij εij (τ )[2xj (t−τ )Sj (t − τ ) − 1] + hi + ur,

(2)

where εij (τ ) describes the time course of a postsynaptic
potential evoked by the firing of presynaptic neurons, hi is an
input potential, and ur is a resting potential. We have not taken
into account the effect of refractoriness to simplify the network
model and investigate the effect of synaptic plasticity on the
correlation between neural activities. The synaptic connection
Jij (t) [=Jij xj (t)] in this model dynamically changes with
the efficacy of signal transmission at the j th neuron xj (t).
xj (t) dynamically changes with synaptic depression and is
determined by both itself and the corresponding neuron state
at the preceding time t − 1:

xi(t + 1) = xi(t) + 1 − xi(t)

τD

− Uxi(t)Si(t). (3)

The phenomenological model of synaptic depression de-
scribed by Eq. (3) has previously been proposed by several
researchers [2,3]. The j th neuron, which is called a presynaptic
neuron, exhausts neurotransmitters when it transmits signals.
The efficacy of signal transmission at presynaptic neuron j at
time t decreases by a certain fraction Uxj (t − 1) (0 < U � 1)
after the presynaptic neuron Sj (t − 1) = 1 is fired and it
recovers with time constant τD (τD � 1), as shown in Eq. (3).

III. THEORY OF CORRELATIONS

A. Instantaneous firing rate and synaptic efficacy

First we consider the noise average of neuronal states and
synaptic variables, which are denoted by 〈Si(t)〉 for the former
and 〈xi(t)〉 for the latter. We call these values the instantaneous
firing rate and synaptic efficacy at time t . We derive dynamical
mean-field equations in this section for a network with synaptic
depression by taking the average of two stochastic variables:
a firing-state variable S(t) and a synaptic variable x(t). The
average product of the variables in these equations is decoupled
as the product of their averages because the stochastic variables
are independent in the limit of N → ∞ [25]. We derived the
instantaneous firing rate and synaptic efficacy at a steady state
by using these equations.

The noise average of a function 〈f 〉 is defined as

〈f (St ,St−1, . . . ,S0)〉 ≡
∑

St

∑
St−1

· · ·
∑

S0

f (St ,St−1, . . . ,S0)

×P (St ,St−1, . . . ,S0), (4)

where St represents the spike pattern of N neurons at time t and∑
St represents the summation over all possible configurations

St . P (St ,St−1, . . . ,S0) is the probability of finding a system
in a state {St ,St−1, . . . ,S0}. P (St ,St−1, . . . ,S0) is described by
the following master equation:

P (St ,St−1, . . . ,S0) = W (St |St−1,St−2, . . . ,S0)

×P (St−1,St−2, . . . ,S0), (5)

where W (St |St−1,St−2, . . . ,S0) is the transition probability,
which is determined by the update rule Eq. (1)

W (St |St−1,St−2, . . . ,S0)

=
N∏

i=1

1 + [2Si(t) − 1]{2g[ui(t)] − 1}
2

. (6)

To simplify the equation, {St−1,St−2, . . . ,S0} are denoted by
Y t−1.

By using Eq. (5), the instantaneous firing rate at time t

[〈Si(t)〉] can be computed as

〈Si(t)〉=
∑
Y t−1

P (Y t−1)
∑

St

Si(t)W (St |Y t−1) = 〈g[ui(t)]〉, (7)

where
∑

Y t−1 represents the summation over all possible
configurations of the past spike histories Y t−1.

We derived microscopic dynamical mean-field equations
by first taking the noise average of the firing-state variable at
time t [Eq. (7)]. Taylor expansion provides us with

〈Si(t)〉 = 〈
g[〈ui(t)〉] + g′[〈ui(t)〉]δui(t)

+ 1
2g′′[〈ui(t)〉][δui(t)]2 + · · · 〉

= g[〈ui(t)〉] + 〈
1
2g′′[〈ui(t)〉][δui(t)]2

〉+ · · · , (8)

where we define δui(t) = ui(t) − 〈ui(t)〉, g′(u) = dg(u)/dt ,
and g′′(u) = d2g(u)/dt2. When each neuron is connected to
a number of neurons of order N and connections Jij are all
of order 1/N , 〈[δui(t)]2〉 are of order 1/N (see Appendix A).
The second order and the higher-order terms of Eq. (8) in such
a situation are no more than order 1/N . Hence, considering
the limit of N → ∞, one obtains leading order

〈Si(t)〉 = g

⎧⎨
⎩

∞∑
τ=1

∑
j �=i

Jij εij (τ )[2〈xj (t − τ )Sj (t − τ )〉 − 1]

+hi + ur

}
. (9)

We take advantage of the independence of xj (t) and Sj (t) in
the limit of large networks N → ∞ [25], and thereby obtain
the dynamical mean-field equations for 〈Si(t)〉:

〈Si(t)〉 = g

⎧⎨
⎩

∞∑
τ=1

∑
j �=i

Jij εij (τ )[2〈xj (t − τ )〉〈Sj (t − τ )〉 − 1]

+hi + ur

}
. (10)

Similarly, we consider the noise average of Eq. (3) for the
synaptic variable:

〈xi(t + 1)〉 = 〈xi(t)〉 + 1 − 〈xi(t)〉
τD

− U 〈xi(t)〉〈Si(t)〉. (11)

Equations (10) and (11) for the stochastic neural network
model coincide with equations for an analog neural network
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with synaptic depression [3,31,32]. We then obtain the micro-
scopic steady-state equation for 〈Si〉 and 〈xi〉:

〈Si〉 = g

⎧⎨
⎩

∞∑
τ=1

∑
j �=i

Jij εij (τ )(2〈xj 〉〈Sj 〉−1)+hi + ur

⎫⎬
⎭ , (12)

〈xi〉 = 〈xi〉 + 1 − 〈xi〉
τD

− U 〈xi〉〈Si〉, (13)

where 〈Si〉 = limt→∞〈Si(t)〉 and 〈xi〉 = limt→∞〈xi(t)〉. The
steady-state equation for noise average 〈xi〉 is

〈xi〉 = 1

1 + γ 〈Si〉 , γ = τDU. (14)

Finally, we obtain the microscopic steady-state equation for
〈Si〉 in a network with synaptic depression

〈Si〉 = g

⎡
⎣ ∞∑

τ=1

∑
j �=i

Jij εij (τ )

(
2

〈Sj 〉
1+γ 〈Sj 〉−1

)
+hi + ur

⎤
⎦ .

(15)

According to Eq. (15), the steady state depends on γ (=τDU ),
which ranges from 0 to U because of 0 < U � 1 and τD � 1
[3,25]. Therefore, we can easily figure out the effect of synaptic
depression by varying γ . If we solve the self-consistent
equation (15), we can obtain instantaneous firing rates 〈Si〉
and synaptic efficacies at equilibrium 〈xi〉.

B. Equal-time correlation functions

We derive autocorrelation functions and cross-correlation
functions in this section and the one that follows it to calculate
correlations between neural activities at equilibrium. As a
synaptic variable x dynamically changes in this network
model, we need to discuss not only correlations between the
activities of cortical neurons but also those between neural
activities and synaptic variables. We then have to derive and
solve 15 types of equations to calculate neural correlations
at equilibrium. We define neural correlation in this section
and the next and briefly explain how the equations are
derived. We present the technical details on the calculations in
Appendix B.

Autocorrelation functions are defined as

As
i (t,t + τ ) ≡ 〈δSi(t)δSi(t + τ )〉,

Asx
i (t,t + τ ) ≡ 〈δSi(t)δxi(t + τ )〉,

(16)
Axs

i (t,t + τ ) ≡ 〈δxi(t)δSi(t + τ )〉,
Ax

i (t,t + τ ) ≡ 〈δxi(t)δxi(t + τ )〉.

We also define cross-correlation functions as

Cs
ij (t,t + τ ) ≡ 〈δSi(t)δSj (t + τ )〉,

Csx
ij (t,t + τ ) ≡ 〈δSi(t)δxj (t + τ )〉,

(17)
Cxs

ij (t,t + τ ) ≡ 〈δxi(t)δSj (t + τ )〉,
Cx

ij (t,t + τ ) ≡ 〈δxi(t)δxj (t + τ )〉,

where i �= j . We denote the autocorrelation functions and
cross-correlation functions at equilibrium as

As
i (τ ) ≡ lim

t→∞〈δSi(t)δSi(t + τ )〉,
Asx

i (τ ) ≡ lim
t→∞〈δSi(t)δxi(t + τ )〉,

(18)
Axs

i (τ ) ≡ lim
t→∞〈δxi(t)δSi(t + τ )〉,

Ax
i (τ ) ≡ lim

t→∞〈δxi(t)δxi(t + τ )〉,

Cs
ij (τ ) ≡ lim

t→∞〈δSi(t)δSj (t + τ )〉,
Csx

ij (τ ) ≡ lim
t→∞〈δSi(t)δxj (t + τ )〉,

(19)
Cxs

ij (τ ) ≡ lim
t→∞〈δxi(t)δSj (t + τ )〉,

Cx
ij (τ ) ≡ lim

t→∞〈δxi(t)δxj (t + τ )〉.

We use instantaneous firing rate 〈Si〉 and synaptic efficacy
〈xi〉 in a steady state to calculate the equilibrium values of
autocorrelation functions and cross-correlation functions in
this and the following section.

We derive the equal-time autocorrelation functions As
i (0),

Asx
i (0), Axs

i (0), Ax
i (0), and the equal-time cross-correlation

functions Cs
ij (0), Csx

ij (0), Cxs
ij (0), Cx

ij (0) in this section.
First, we calculate As

i (0) at equilibrium. Since the neural
network consists of binary neurons, Si = 0, 1, we can derive
S2

i = Si . Using this equation yields

As
i (0) = 〈Si〉(1 − 〈Si〉). (20)

The equal-time cross-correlation functions between Si(t)
and Sj (t) (j �= i), that is, Cs

ij (0), can be written as

Cs
ij (t,t) = 〈Si(t)Sj (t)〉 − 〈Si(t)〉〈Sj (t)〉

=
∑
Y t−1

[
P(Y t−1)

∑
St

Si(t)Sj (t)W(St |Y t−1)

−〈Si(t)〉〈Sj (t)〉
]

= 〈g[ui(t)]g[uj (t)]〉 − 〈g[ui(t)]〉〈g[uj (t)]〉. (21)

By expanding g[ui(t)] around the noise average of ûi and
taking limit t → ∞, we obtain (see Appendix B for details)

Cs
ij (0) =

∞∑
τ,τ ′

∑
k �=i

∑
l �=j,k

J̃ik(τ )J̃j l(τ
′)Zkl(τ − τ ′)

+
∞∑
τ,τ ′

∑
k �=i

J̃ik(τ )J̃jk(τ ′)Zk(τ − τ ′), (22)

where we denote J̃ik(τ ) = 2g′(〈ui〉)Jikεik(τ ) and

Zkl(t,t + τ ) ≡ 〈δ[xk(t)Sk(t)]δ[xl(t + τ )Sl(t + τ )]〉,
Zkl(τ ) ≡ lim

t→∞ Zkl(t,t + τ ), (23)

Zk(t,t + τ ) ≡ 〈δ[xk(t)Sk(t)]δ[xk(t + τ )Sk(t + τ )]〉.
Zk(τ ) ≡ lim

t→∞ Zk(t,t + τ ). (24)
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We evaluate Zkl(τ ) and Zk(τ ) at equilibrium and derive (see
Appendix B for details)

Zkl(τ ) = Cs
kl(τ )〈xk〉〈xl〉 + Csx

kl (τ )〈xk〉〈Sl〉
+Cxs

kl (τ )〈Sk〉〈xl〉 + Cx
kl(τ )〈Sk〉〈Sl〉. (25)

For k = l we obtain

Zk(τ ) = As
k(τ )〈xk〉〈xk〉 + Asx

k (τ )〈xk〉〈Sk〉
+Axs

k (τ )〈Sk〉〈xk〉 + Ax
k (τ )〈Sk〉〈Sk〉. (26)

Equations such as (22), (25), and (26) for the equal-time cross-
correlations Cs

ij (0) include correlation functions between
neural activities and synaptic variables, such as Csx

ij , Cxs
ij ,

Cx
ij , Asx

i , Axs
i , and Ax

i . We thus need the equations for these
correlation functions between neural activities and synaptic
variables to solve these equations.

Next, let us consider equal-time correlation functions
Csx

ij (0), Cxs
ij (0), Cx

ij (0), Asx
i (0), Axs

i (0), and Ax
i (0). Similar to

the approach we took in calculating Cs
ij (0), we obtain (see

Appendix B for details)

Csx
ij (0) =

∞∑
τ=1

∑
k �=i,j

J̃ik(τ )

{(
1 − 1

τd

) [
Cx

kj (τ − 1)〈Sk〉

+Csx
kj (τ − 1)〈xk〉

]− UZkj (τ − 1)

}

+
∞∑

τ=1

J̃ij (τ )

{(
1 − 1

τd

) [
Ax

j (τ − 1)〈Sj 〉

+Asx
j (τ − 1)〈xj 〉

]− UZj (τ − 1)

}
, (27)

Cx
ij (0) =

(
1 − 1

τd

)2

Cx
ij (0) + U 2Zij (0)

−U

(
1 − 1

τd

) [
Cx

ij (0)(〈Si〉 + 〈Sj 〉)

+Csx
ij (0)〈xi〉 + Cxs

ij (0)〈xj 〉
]
. (28)

Since Cxs
ij (t,t) = Csx

ji (t,t), we can also obtain Csx
ji (0) from

Eq. (27). If we set j = i in Eq. (27), we derive the equations
for equal-time autocorrelations Asx

i (0),

Asx
i (0) =

∞∑
τ=1

∑
k �=i

J̃ik(τ )

{(
1 − 1

τd

) [〈xk〉Csx
ki (τ − 1)

+〈Sk〉Cx
ki(τ − 1)

]− UZki(τ − 1)

}
. (29)

Since Axs
i (0) = Asx

i (0), we simultaneously obtain Axs
i (0).

Similarly, we set i = j in Eq. (28) to obtain equal-time
autocorrelation Ax

i (0) as

Ax
i (0) =

(
1 − 1

τd

)2

Ax
i (0) + U 2Zi(0)

−U

(
1 − 1

τd

)
2
[
Ax

i (0)〈Si〉 + Asx
i (0)〈xi〉

]
. (30)

Because Ax
i (0) and Asx

i (0) are 1 and 1/N orders, respectively,
we ignore Asx

i (0) and derive

Ax
i (0) = U 2As

i (0)〈xi〉2

1 − (1 − 1/τd )2 − U 2〈Si〉2 + −2U (1 − 1/τd )〈Si〉 .
(31)

These equations for equal-time cross-correlations Cs
ij (0)

and Csx
ij (0) and equal-time autocorrelations Asx

i (0) include
time-delayed cross-correlations, such as Cs

ij (τ ), Csx
ij (τ ),

Cxs
ij (τ ), and Cx

ij (τ ), and time-delayed autocorrelations such as
As

i (τ ), Asx
i (τ ), Axs

i (τ ), and Ax
i (τ ). We thus need the equations

for these time-delayed correlation functions to solve these
equations.

C. Time-delayed correlation functions

We derive the equations for the time-delayed corre-
lation functions in this section Let us consider time-
delayed cross-correlation functions between neural activities
Cs

ij (t,t + τ ). The time-delayed cross-correlation functions can
be written as

Cs
ij (t,t + τ ) = 〈Si(t)Sj (t + τ )〉 − 〈Si(t)〉〈Sj (t + τ )〉

=
∑

Y t+τ−1

P (Y t+τ−1)Si(t)
∑
St+τ

[Sj (t + τ )

×W (St+τ |Y t+τ−1) − 〈Si(t)〉〈Sj (t + τ )〉]
= 〈Si(t)g[uj (t + τ )]〉 − 〈Si(t)〉〈Sj (t + τ )〉
= 〈δSi(t)g[uj (t + τ )]〉. (32)

By expanding g[uj (t + τ )] around the noise average of uj

and taking in limit t → ∞, we derive the time-delayed cross-
correlation functions as

Cs
ij (τ ) =

∞∑
τ ′=1

∑
k �=j,i

J̃jk(τ ′)
[
Csx

ik (τ−τ ′)〈Sk〉+Cs
ik(τ − τ ′)〈xk〉

]

+
∞∑

τ ′=1

J̃j i(τ
′)
[
Asx

i (τ − τ ′)〈Si〉 + As
i (τ − τ ′)〈xi〉

]
.

(33)

If we set j = i in Eq. (33), we obtain time-delayed autocor-
relation functions between neural states As

i (τ ) at equilibrium:

As
i (τ ) =

∞∑
τ ′=1

∑
k �=i

J̃ik(τ ′)
[
Csx

ik (τ−τ ′)〈Sk〉+Cs
ik(τ − τ ′)〈xk〉

]
.

(34)

Next we consider time-delayed cross-correlation functions
between Si and xj , that is, Csx

ij (τ ). Substituting Eq. (3) into
Eq. (17) and taking limit t → ∞ gives

Csx
ij (τ ) = lim

t→∞

〈
δSi(t)

{(
1 − 1

τd

)
δxj (t + τ − 1)

−Uδ[xj (t + τ − 1)Sj (t + τ − 1)]

}〉

=
(

1− 1

τd

−U 〈Sj 〉
)

Csx
ij (τ−1) − U 〈xj 〉Cs

ij (τ − 1).

(35)
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If we set j = i in Eq. (35), we derive the time-delayed
autocorrelation functions between Si and xi [Asx

i (τ )] as

Asx
i (τ ) =

(
1 − 1

τd

− U 〈Si〉
)

Asx
i (τ − 1) − U 〈xi〉As

i (τ − 1).

(36)

Taking into account the order of Asx
i (τ ) and As

i (τ ), we can
simplify Eq. (36). Asx

i (0) and Asx
i (τ ) (1 � τ ) are each on the

order of 1/N and 1, while As
i (0) and As

i (τ ) (1 � τ ) are on
the order of 1 and 1/N , respectively. Ignoring Asx

i (0) and
As

i (τ ) (1 � τ ), we obtain
1, τ = 1

Asx
i (1) = −U 〈xi〉As

i (0), (37)

2, τ > 1

Asx
i (τ ) =

(
1 − 1

τd

− U 〈Si〉
)

Asx
i (τ − 1). (38)

Similar to the approach we took in the previous sec-
tion, time-delayed cross-correlation functions between xi

and Sj [Cxs
ij (t,t + τ )] can be written as Cxs

ij (t,t + τ ) =
〈δxi(t)g[uj (t + τ )]〉. By expanding g[uj (t + τ )] around the
noise average of uj and taking in limit t → ∞, we obtain

Cxs
ij (τ ) =

∞∑
τ ′=1

∑
k �=j,i

J̃jk(τ ′)
[
Cx

ik(τ−τ ′)〈Sk〉 + Cxs
ik (τ−τ ′)〈xk〉

]

+
∞∑

τ ′=1

J̃j i(τ
′)
[
Ax

i (τ − τ ′)〈Si〉 + Axs
i (τ − τ ′)〈xi〉

]
.

(39)

If we set j = i in Eq. (39), we obtain time-delayed autocorre-
lation functions between xi and Si [Axs

i (τ )] as

Axs
i (τ ) =

∞∑
τ ′=1

∑
k �=i

J̃ik(τ ′)
[
Cx

ik(τ − τ ′)〈Sk〉+Cxs
ik (τ−τ ′)〈xk〉

]
.

(40)

Finally, we derive time-delayed cross-correlation functions
between xi and xj , that is, Cx

ij (τ ). Substituting Eq. (3) into
Eq. (17) and taking limit t → ∞ gives

Cx
ij (τ ) = lim

t→∞

〈
δxi(t)

{(
1 − 1

τd

)
δxj (t + τ − 1)

−Uδ[xj (t + τ − 1)Sj (t + τ − 1)]

}〉

=
(

1 − 1

τd

− U 〈Sj 〉
)

Cx
ij (τ−1) − U 〈xj 〉Cxs

ij (τ−1).

(41)

If we set j = i in Eq. (41), we obtain time-delayed autocor-
relation functions between synaptic variables at equilibrium:

Ax
i (τ ) =

(
1 − 1

τd

− U 〈Si〉
)

Ax
i (τ − 1), (42)

where we ignore Axs
i (τ − 1), because Ax

i (τ ) and Axs
i (τ − 1)

are on the order of 1 and 1/N , respectively. By solving
Eqs. (20), (22), (27)–(29), (31), (33)–(35), and (37)–(42)

we eventually obtain the equilibrium value for correlations
between the activities of cortical neurons and those between
neural activities and synaptic variables.

D. Correlations of mean firing rate

We calculated the correlations of spikes 〈δSiδSj 〉 in the
previous section. Here we compute the correlation functions
of the mean firing rate within time window T , Qij = 〈δriδrj 〉,
where δri ≡ ri − 〈ri〉, and we call the value ri , the mean firing
rate. We calculate the rate correlations to evaluate the effect
of synaptic depression on the correlations between neural
activities within the long term T . Firing rate ri and synaptic
efficacy qi within T is defined as

ri = 1

T

T∑
τ=1

Si(τ ), qi = 1

T

T∑
τ=1

xi(τ ). (43)

Mean firing rate fi and mean synaptic efficacy Xi at equi-
librium are the same as instantaneous firing rate 〈Si〉 and
instantaneous synaptic efficacy 〈xi〉, respectively:

fi ≡ 〈ri〉 = 1

T

T∑
τ=1

〈Si(τ )〉 = 〈Si〉,
(44)

Xi ≡ 〈qi〉 = 1

T

T∑
τ=1

〈xi(τ )〉 = 〈xi〉.

The correlation for the mean firing rate can be calculated as in
Refs. [23,33]

Qij = 〈δriδrj 〉
= 〈(ri − fi)(rj − fj )

=
〈[

1

T

T∑
τ=1

Si(τ ) − fi

][
1

T

T∑
τ ′=1

Sj (τ ′) − fj

]〉

= 1

T 2

T∑
τ=1

T∑
τ ′=1

〈Si(τ )Sj (τ ′)〉 − fifj

= 1

T 2

T∑
τ=1

T∑
τ ′=1

[〈δSi(τ )δSj (τ ′)〉 + 〈Si(τ )〉〈Sj (τ ′)〉] − fifj

= 1

T 2

T∑
τ=1

T∑
τ ′=1

Cs
ij (τ ′ − τ ). (45)

Using mean firing rate correlations Qij , which can be com-
puted though Eq. (45), we can evaluate the effect of synaptic
depression on neural correlations over the long term.

E. Fisher information

Let us consider the problem of how accurately stimulus
θ , which is a single variable, can be estimated from the
mean firing rates of neuronal population r = {r1,r2, . . . ,rN }.
Through the Cramer-Rao bound, the average squared decoding
error for an unbiased estimation of stimulus θ̂ is greater than
or equal to 1/I (θ ),

〈(θ − θ̂)2〉 � 1

I (θ )
, (46)
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when I (θ ) is Fisher information. Fisher information is given
by

I (θ ) =
∫

drP [r|θ ]

(
−∂2 ln P [r|θ ]

∂θ2

)
, (47)

where P [r|θ ] is the conditional probability distribution, which
is the probability that neural response r will be evoked by the
presentation of a multivariate Gaussian probability distribution
with covariance matrix Q(θ ),

P [r|θ ] = 1√
(2π )N det Q(θ )

× exp

{
−1

2
[r − f(θ )]T Q−1(θ )[r − f(θ )]

}
, (48)

where f is the mean value of r. Note that the (i,j )th element of
covariance matrix Qij represents mean firing rate correlation
〈δriδrj 〉. Under this assumption, Fisher information can be
written as in Ref. [34]:

I (θ ) = Imean(θ ) + Icov(θ ), (49)

Imean(θ ) = f′(θ )T Q−1(θ )f′(θ ), (50)

Icov(θ ) = Tr[Q′(θ )Q−1(θ )Q−1(θ )]/2, (51)

where Tr stands for the trace operation, f ′(θ ) = df (θ )/dθ ,
and Q′(θ ) = dQ/dθ . Because mean firing rates r and mean
firing rate correlations Qij can be analytically calculated in the
spike response model as discussed earlier in Sec. III D, Fisher
information can also be analytically calculated from Eq. (49).

IV. RING ATTRACTOR NETWORK WITH
MEXICAN-HAT-TYPE CONNECTIVITY

A. Model

Let us now consider a ring attractor neural network with
Mexican-hat-type connectivity [26,27]. We do not do this to
imply the presence of such ring structures in neuroanatomy, but
merely to illustrate that neurons tuned to a periodic variable are
functionally fully connected. This ring network model is thus
not a one-dimensional lattice model but has often been used as
an appropriately approximated network model of the primary
visual cortex [26]. Following these previous studies, we used
the conventional ring neural network model and investigated
what effect synaptic depression had on neural correlations.

In this network, N = 1000 neurons are divided into a K =
10 subpopulation. The choice of the number of subpopulations
does not qualitatively affect the results. The number of neurons
in each population is G = 100. All neurons in each population
have the same preferred orientation and neuron i in the kth
population is labeled using angle θk . We assume that the
preferred orientations of K = 10 subpopulations are evenly
distributed from −π/2 to π/2, and divide 2π in K = 10,
that is, θk = −π/2 + kπ/K . The strength of connections Jkl

between a neuron in the kth population and a neuron in the lth
population is calculated as

Jkl = J0/N + J1 cos 2(θk − θl)/N, (52)

where J0 is a uniform interaction and J1 is a lateral-inhibitory
interaction. The model with J1 = 0 is reduced to a network

with uniform connections. We set uniform interaction J0 = 0.5
and lateral-inhibitory interaction J1 = 3 to stabilize the steady
states [25,31]. Neurons in simulations are evolved at maximum
103 time steps with initial state Si(0) = 0 and xi(0) = 1 ∀i,
until they reach a stable equilibrium point. Instantaneous firing
rates and correlation functions are estimated from simulations
over 5 × 106 time steps in equilibrium.

B. Correlation functions

To investigate the effect of synaptic depression on neural
correlations, we adjust the external inputs to neurons hi and
maintain the firing rate 〈Si(t)〉 regardless of the strength of
synaptic depression γ (see Appendix C). We set hi as follows:

hi = h0
i +

∞∑
τ

N∑
j �=i

Jij εij (τ )
2γ
〈
S0

i

〉2
1 + γ

〈
S0

i

〉 , (53)

where we define h0
i and 〈S0

i 〉 as the respective input and
instantaneous firing rate in the absence of synaptic depression,
that is, γ = 0. We set h0

i = f0 cos[2(θi − φ)], f0 = 0.05, and
the orientation of stimuli φ = 0. Using self-consistent Eq. (15),
we can derive 〈S0

i 〉. We then adjust external inputs hi and
obtained constant firing rates regardless of synaptic depres-
sion, as can be seen in Figs. 1(a) and 1(b). In addition, each
neuron follows a probabilistic dynamic depending on the firing
probability g[ui(t)] = 1

2 {1 + tanh[βui(t)]}, where 1/β (=T )
is the level of noise due to stochastic synaptic activity and we
set β = 1 [23,27]. The response kernels of the discrete spike
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FIG. 1. (a) Inputs, (b) instantaneous firing rates 〈S〉, and (c)
synaptic efficacy 〈x〉 obtained from simulations (open circles,
triangles, and asterisks) compared with theory (solid lines) in absence
and presence of synaptic depression, γ = 0, 0.1, and 1, respectively,
with τD = 5. Parameters of connections are J0 = 0.5 and J1 = 3.
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FIG. 2. Equal-time autocorrelation functions As
i (0) obtained from

simulations (open circles, triangles, and asterisks) compared with the-
ory (solid, chain, and dotted lines) in absence and presence of synaptic
depression, γ = 0, 0.1, and 1, respectively, with τD = 5. Because of
firing rates in presence of synaptic depression as well as those in its
absence [Fig. 1(b)], As

i (0) agree completely with each other.

model are given by εij (τ ) = [1 − exp(−1/τs)] exp(−τ/τs),
where τs = 2.

We found that the firing correlations obtained under these
conditions by using our theory coincided with the results from
simulations, as seen in Figs. 2 and 3. Figure 2 shows equal-time
autocorrelation functions As

i (τ ) of a neuron with preferred
orientations from −π/2 to 2π/5. Equal-time autocorrelation
functions As

i (0) in absence of synaptic depression coincide
with those in presence of synaptic depression (as indicated
in Fig. 2) because the autocorrelation functions of neural
activity depend on instantaneous firing rates Eq. (20) and the
instantaneous firing rates for in the case of γ = 0 are the same
as those for γ = 0.1 and 1 [Fig. 1(b)]. Let us then consider the
results for time-delayed autocorrelations As

i (τ ) where τ > 1.
Figure 3(a) plots the autocorrelation functions of a neuron
with preferred orientation 0 rad. We found that the strength
of synaptic depression γ increases and sequences of spikes
are less correlated. The simulation results are in agreement
with both those from the theoretical solution and a previous
study [28].

Next, let us consider what effects synaptic depression has
on neural cross-correlations between neurons. Figure 3(b)

plots the cross-correlation functions between a neuron with
preferred orientation 0 rad and a neuron with preferred
orientation π/10 rad where Jik > 0. For Jik > 0, Cs

ij (τ ) >

0 because the synaptic strength between the neurons is
positive regardless of synaptic depression. We found that
synaptic depression reduces Cs

ij (τ ). Next, we will discuss how
depressing synapses affect Cs

ij (τ ) where Jik < 0. Figure 3(c)
plots the cross-correlation functions between a neuron with
preferred orientation 0 rad and a neuron with preferred
orientation π/2 rad where synaptic connection Jik < 0. Since
the synaptic strength between the neurons is negative, Cs

ij (τ ) <

0 regardless of synaptic depression. We found that synaptic
depression increases cross-correlation Cs

ij (τ ).
Using correlation theory to solve self-consistent equations

in a network with synaptic depression enables us to under-
stand how synaptic depression quantitatively affects neural
correlation. As shown in Fig. 3, neural activities gradually
decorrelate depending on the strength of synaptic depression
γ and the reductions in neural correlations are quite large
for weak depression γ = 0.1. We thus found that synaptic
depression nonlinearly decorrelates neural activities in the
entire network with synaptic depression.

C. Rate correlation

We explained that depressing synapses reduces spiking
correlations As(τ ) and Cs(τ ) at almost all τ in the previous
section. We calculated rate correlation ri using Eq. (45) to
evaluate what effect synaptic depression had on the neural
correlation between neural activities within a long time frame.
When we calculated the firing rate correlation between a
neuron with preferred orientation 0 rad and a neuron with
preferred orientation π/10, we found that synaptic depression
reduces rate correlations ri by 98% for γ = 1.

Next, let us consider the effect of depressing synapses on all
the pair-wise correlations of neural activities. The correlation
theory in a network with synaptic depression enables us to
investigate entire rate correlation Q, as shown in Fig. 4.

Here, to visualize the Q of neurons, let us introduce a K ×
K matrix Q, where K = 10 is the number of subpopulations
in the neurons. Because the correlations between two neurons
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FIG. 3. Autocorrelation and cross-correlation functions from simulations (open circles, triangles, and asterisks) compared with theory
(solid, chain, and dotted lines) in absence and presence of synaptic depression, γ = 0, 0.1, and 1, respectively, with τD = 5. (a) Autocorrelation
functions of neuron with preferred orientation 0 rad [As

i (τ )] where τ > 1. (b) Cross-correlation functions between neuron i with preferred
orientation 0 rad and neuron j with preferred orientation π/10 rad [Cs

ij (τ )], where Jij > 0. (c) Cross-correlation functions between neuron i

with preferred orientation 0 rad and neuron j with preferred orientation π/2 rad [Cs
ij (τ )], where Jij < 0.
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FIG. 4. (a) Grayscale plots of covariance matrix Q in absence
of synaptic depression (γ = 0), (b) in presence of weak synaptic
depression (γ = 0.1 and τD = 5), and (c) strong synaptic depression
(γ = 1 and τD = 5).

are only determined by the difference in their preferred
orientations, the correlations between a neuron in the kth
population of excitatory neurons and a neuron in the lth are the
same. Thus, matrix Q can be written as K × K block matrix
Q. The elements of Q, and Qkl , stand for the mean firing rate
correlations between a neuron in the kth population of neurons
and one in the lth:

Qkl = Qij , (54)

where ∀ i is in the kth population and ∀ j is in the lth;
Q does not contain any diagonal elements of Q. Although
matrix Q is an N × N matrix, it is difficult to numerically
calculate the entire matrix because of the substantial amount
of time that would be required to do this. Note that our
theoretical framework enables us to analytically calculate all
pair-wise neural correlations. Figure 4 shows that the absolute
values of all the pair-wise neural correlations greatly decrease
depending on the strength of synaptic depression γ . Thus,
neural activities decorrelate due to depressing synapses in an
entire network. Finally, we investigate how neural activities
decorrelate by changing the strength of synaptic depression.
Figure 5 indicates that the greater the strength of synaptic
depression γ , the fewer the rate correlations.

D. Fisher information

To understand what effect synaptic depression has on
Fisher information I , which depends on firing rates and rate
correlations, let us consider the first term of Fisher information
Imean = f′(θ )T Q−1f′(θ ), because Imean is foremost in our model
(the second term of Fisher information Icov is only about 0.7%
of the Fisher information I ). Imean depends on the derivatives
of mean firing rates f′ and the inverse of covariance matrix
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FIG. 5. Effects of synaptic depression on average of absolute
value of rate correlations.

Q−1. Because synaptic depression changes both f′ and Q−1,
we have to take both changes into account to consider how
synaptic depression affects the amount of information.

We adjusted inputs hi in Secs. IV B and IV C, and main-
tained mean firing rates f (as shown in Fig. 6) to consider what
effect synaptic depression had on neural correlations. This
section considers the effects of synaptic depression on both
firing rates and neural correlations; we set external inputs hi =
h0

i , where h0
i = e0 cos[2(θi − φ)], e0 = 0.2, and orientation

stimuli φ = 0. The response kernels of the discrete spike
model are given by εij (τ ) = [1 − exp(−1/τs)] exp(−τ/τs),
where τs = 2. Synaptic depression generally reduces mean
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FIG. 6. (a) Mean firing rates f , (b) derivatives of mean firing rates
f ′, and (c) mean synaptic efficacies X of V1 neurons with J0 = 0.5
and J1 = 3. Solid lines plot f , f ′, and X in absence of synaptic
depression (γ = 0 and τD = 1). Chain and dashed lines plot f , f ′,
and X in presence of weak synaptic depression (γ = 0.1 and τD = 5)
and strong synaptic depression (γ = 1 and τD = 5), respectively.
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FIG. 7. Covariance matrix Q and those of inverse of covariance matrix Q−1. Note that off-diagonal elements of covariance matrix Q are
written as Q. (a)–(f) Plots of covariance matrix Q [(a), (b), and (c)] and inverse of covariance matrix Q−1 [(d), (e), and (f)] of V1 neurons in
the absence (γ = 0) and presence of weak (γ = 0.1 and τD = 5) and strong (γ = 1 and τD = 5) synaptic depression, respectively. Synaptic
strengths are J0 = 0.5 and J1 = 3. Diagonal elements are set to 0 to enable visualization.

firing rates f and their slopes (f′ = df/dθ ), as shown in
Figs. 6(a) and 6(b) [2,25]. These changes to the firing rates
reduce Imean = f′(θ )T Q−1f′(θ ).

Now we shall consider how Q−1 affects Fisher infor-
mation. Figures 7(a)–7(f) show the off-diagonal elements
of covariance matrix Q and those of the inverse of co-
variance matrix Q−1. When locally positive correlations are
induced by recurrent excitations [Figs. 7(a)–7(c)], the off-
diagonal elements of Q−1 near the diagonal elements are
negative [Figs. 7(d)–7(f)]. As demonstrated by Eq. (50),
we can understand that these locally negative off-diagonal
elements decrease Fisher information if the tuning curves f
are fixed. Locally positive correlations thus decrease Fisher
information [12]. Next, let us investigate how synaptic de-
pression affects Q−1. As discussed in Sec. IV C, synaptic
depression reduces rate correlations Q [Figs. 7(a)–7(c)].
Neural decorrelation also leads to an increase in locally
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FIG. 8. Effects of synaptic depression on Fisher information.
Fisher information increases depending on strength depression γ ,
when parameters of connections are J0 = 0.5 and J1 = 3.

negative off-diagonal elements, as indicated in Figs. 7(d)–7(f),
which increases the amount of information.

As a result, the effects of the derivatives of the tuning curves
f′ on Fisher information are the opposite of the effects of
neural correlations. Whether Fisher information increases or
not as a combinational effect is determined by which effects are
stronger. We calculated the Fisher information to evaluate the
effects of synaptic depression on information processing and
found that, when we set the parameters for connections, J0 =
0.5 and J1 = 3, synaptic depression increased the amount of
information depending on the strength of synaptic depression
shown in Fig. 8. However, synaptic depression does not always
increase Fisher information, because it depends on the synaptic
strengths J0 and J1. We also found that synaptic depression
reduced Fisher information for the weak lateral-inhibitory
interaction J1 = 1 shown in Fig. 9. Thus, synaptic connections
established the effect of synaptic depression.
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FIG. 9. Effects of synaptic depression on Fisher information.
When we set uniform interaction J0 = 0.5 and weak lateral-inhibitory
interaction J1 = 1 synaptic depression (γ = 1 and τD = 5) decreases
Fisher information by 2.8%.
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V. DISCUSSION

We constructed a theory of correlation in spiking neuron
models with synaptic depression by expanding a previous
theoretical framework [20–23]. This theory enables us to
analytically calculate what effect synaptic depression, which
rapidly changes neural interactions, had on neural correlations.
Our study should open up the way for theoretical studies on the
effects of interaction changes on the linear response function
in large stochastic networks.

We investigated how synaptic depression affects neural
correlations in a ring attractor network with Mexican-hat-type
connectivity by using our theoretical framework. We found
that synaptic depression reduces neural cross correlations in
the ring network model as well as neural autocorrelations by
using our theoretical framework [28]. The decorrelations of
neural activities can improve the efficiency of a population of
neurons encoding information [11,14–16].

To evaluate how synaptic depression affects information
processing, we analytically calculated Fisher information,
which quantifies the maximum amount of information on
stimuli that can be extracted from noisy neural activities. We
found that although synaptic depression generally reduces
signal strength, viz., the mean firing rates, it can improve
the efficiency of population coding. Some researchers have
reported that short-term synaptic depression is a possible
mechanism for the effects of belief adaptation to a stimulus
with a fixed orientation in the primary visual cortex, because
this brief adaptation leads to the depression of feed forward
synapses and intracortical synapses [9,35]. In fact, recent
neurophysiological experiments have shown that, after belief
adaptation, both firing rates and neural correlations decrease
and Fisher information increases in the macaque primary
visual cortex [15]. These post-adaptation changes coincide
with the effects of synaptic depression. Further investigations
are needed to calculate Fisher information in the network of the
primary visual cortex with synaptic depression [35] to enable
the mechanism for decorrelation after brief adaptation to be
studied.

Recent findings by Montani et al. and Ohiorhenuan and
Victor have pointed out the relevance of higher order corre-
lations that are larger than two in the cerebral cortex [36,37].
Macke et al. have theoretically proved that common inputs
explain high-order correlations in a simple model of neural
population activity [38], in which there were no recurrent
connections and neural correlations were only determined by
common inputs. In contrast, we did not consider common noisy
inputs in our model for simplicity, which produced large high-
order correlations, and focused on neural correlations which
were produced only by recurrent synaptic connections. We
therefore could analytically calculate the neural correlations
and theoretically prove that the pair-wise correlations are
scaled as ∼O(1/N ) and that high-order correlations are less
than the order of 1/N in a network with synaptic depression,
where N is the number of neurons. On the other hand, we
cannot directly argue how synaptic depression affects the
large higher-order correlations produced by common inputs
in the framework of the mean-field theory. Further study

will be to include common noisy inputs in the network and
investigate by simulations what effect synaptic depression
has on higher correlations, which are produced by common
inputs.

We have only investigated the role of synaptic depression
in spike train decorrelation in this study, but other short-
term processes such as spike rate adaptation [39], synaptic
facilitation [3,40], and postsynaptic receptor dynamics could
enable more general filtering of spike trains [41]. Mongillo
et al. reported that working memory is sustained by both
synaptic depression and synaptic facilitation in the recurrent
connections of neocortical networks [42]. However, neural
correlations, which affect the efficiency of a population of
neurons to encode information, have not been taken into
consideration in the network. Expanding our theoretical
framework to spiking neural network models with both
synaptic depression and facilitation and investigating how
these synaptic plasticities affect Fisher information is an
interesting issue that we intend to pursue.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research (A) (No. 20240020), a Grant-in-Aid for
challenging Exploratory Research (No. 22650041), and a
Grant-in-Aid for Scientific Research on Innovative Areas (No.
23119708) from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

APPENDIX A: THE ORDER OF INPUT CORRELATIONS

We prove that 〈(δui)2〉 is the order of 1/N in this Appendix.
Using Eqs. (22), (25), and (26), we can write 〈(δui)2〉 as

〈(δui)
2〉 =

〈 ∞∑
τ,τ ′

∑
j �=i

∑
k �=i

2Jij εij (τ )2Jikεik(τ ′)

× δ[xj (t − τ )Sj (t − τ )]δ[xk(t − τ ′)Sk(t − τ ′)]

〉
,

=
∞∑
τ,τ ′

∑
j �=i

∑
k �=i,j

2Jij εij (τ )2Jikεik(τ ′)Zjk(t − τ,t − τ ′)

+
∞∑
τ,τ ′

∑
j �=i

4J 2
ij εij (τ )εij (τ ′)Zj (t − τ,t − τ ′). (A1)

First we consider the order of the first term in Eq. (A1). When
each neuron is connected to a number of neurons of order N
and connections Jij are all of order 1/N ,

∑∞
τ,τ ′
∑

j �=i

∑
k �=i,j

2Jij εij (τ )2Jikεik(τ ′) are of order 1 and the order of the first
term in Eq. (A1) is determined by Zjk(t − τ,t − τ ′). Using
Eq. (26), we found Zjk(t − τ,t − τ ′) (j �= k) is the same order
of 1/N as Cs

jk . Thus, the order of the first term in Eq. (A1)
is 1/N . Next, we discuss the order or the second term in
Eq. (A1). Similarly, because J 2

ij εij (τ )εij (τ ′) are of order 1/N

and the order of Zj (t − τ,t − τ ′) is no more than the order of
O(1), the second term in Eq. (A1) is also on the order of 1/N .
Hence, the order of 〈(δui)2〉 is 1/N .
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APPENDIX B: EQUAL-TIME CORRELATION FUNCTIONS

Here we describe the details on calculating equal-time
correlation functions. A important point in the calculations
is that we ignore high-order correlations, which are no more
than the order of 1/N , to derive a set of closed equations for
correlation functions.

First, we derive the equal-time cross-correlation func-
tions between Si(t) and Sj (t) (j �= i) at equilibrium Cs

ij (0)
[Eq. (22)]. By expanding g[ui(t)] around the noise average of
〈ui〉 [Eq. (21)], we obtain

Cs
ij (0) = g′(〈ui〉)g′(〈uj 〉)〈δuiδuj 〉, (B1)

where 〈δuiδuj 〉 is

〈δuiδuj 〉 =
∞∑
τ,τ ′

∑
k �=i

∑
l �=j,k

2Jikεik(τ )2Jjlεjl(τ
′)Zkl(τ − τ ′)

+
∞∑
τ,τ ′

∑
k �=i

2Jikεik(τ )2Jjkεjk(τ ′)Zk(τ − τ ′),

(B2)

because

δui(t) =
∞∑

τ=1

∑
j �=i

Jij εij (τ )2δ[(xj (t − τ )Sj (t − τ )]. (B3)

Substituting Eq. (B2) into Eq. (B1) gives Eq. (22).
We then evaluate Zkl(τ ) and Zk(τ ) as discussed above.

Zkl(t,t + τ ) can be written as

Zkl(t,t + τ ) = 〈δ[xk(t)Sk(t)]δ[xl(t + τ )Sl(t + τ )]〉,
= 〈xk(t)Sk(t)xl(t + τ )Sl(t + τ )〉

− 〈xk(t)Sk(t)〉〈xl(t + τ )Sl(t + τ )〉,
= 〈[δxk(t) + 〈xk(t)〉][δSk(t) + 〈Sk(t)〉]

× [δxl(t + τ ) + 〈xl(t + τ )〉]
× [δSl(t + τ ) + 〈Sl(t + τ )〉]〉
− 〈[δxk(t) + 〈xk(t)〉][δSk(t) + 〈Sk(t)〉]〉

= Cs
kl(t,t + τ )〈xk(t)〉〈xl(t + τ )〉

+Csx
kl (t,t + τ )〈xk(t)〉〈Sl(t + τ )〉

+Cxs
kl (t,t + τ )〈Sk(t)〉〈xl(t + τ )〉

+Cx
kl(t,t + τ )〈Sk(t)〉〈Sl(t + τ )〉. (B4)

We ignore three-point cross correlations and four-point cross
correlations. Taking limit t → ∞ yields Eq. (25). For k = l in
Eq. (25) we obtain Eq. (26).

Next, let us consider equal-time cross-correlation functions
between Si and xj [Csx

ij (0)]. Similar to the approach we took
in the previous section, we expanded g[ui(t)] around 〈ui〉 and

substituted it into Eq. (3) to obtain

Csx
ij (t,t) =

〈
g′[〈ui(t)〉]δui(t)

{(
1 − 1

τd

)
δxj (t − 1)

−Uδ[xj (t − 1)Sj (t − 1)]

}〉

=
∞∑

τ=1

∑
k �=i,j

J̃ik(τ )

{(
1 − 1

τd

)
× 〈δ[xk(t − τ )

× Sk(t − τ )]δxj (t − 1)〉 − UZkj (t − τ,t − 1)

}
,

(B5)

where we denote J̃ik(τ ) = 2g′(〈ui〉)Jikεik(τ ) and use Eq. (24).
Taking limit t → ∞ gives

Csx
ij (0) = lim

t→∞

∞∑
τ=1

∑
k �=i,j

J̃ik(τ )

{(
1 − 1

τd

)
× 〈δ[(xk(t − τ )

× Sk(t − τ )]δxj (t − 1)〉 − UZkj (τ − 1)

}
. (B6)

To derive a set of closed equations for correlation functions,
which is described by Eqs. (18) and (19), we evaluate
limt→∞〈δ[(xk(t − τ )Sk(t − τ )]δxj (t − 1)〉 as

lim
t→∞ 〈δ[xk(t − τ )Sk(t − τ )]δxi(t − 1)〉

= lim
t→∞ 〈xk(t − τ )Sk(t − τ )δxi(t − 1)〉

= lim
t→∞〈{δ[xk(t − τ )] + 〈xk(t − τ )〉}{δ[(Sk(t − τ )]

+〈Sk(t − τ )〉}δxi(t − 1)〉
= 〈xk〉Csx

ki (τ − 1) + 〈Sk〉Cx
ki(τ − 1). (B7)

Substituting Eq. (B7) into Eq. (B6) gives Eq. (27). Since
Cxs

ij (t,t) = Csx
ji (t,t), we can also obtain Csx

ji (0) from Eq. (27).
Finally, we derive equal-time cross-correlation functions

between xi and xj [Cx
ij (0)]. Substituting Eq. (3) into Eq. (17)

and taking limit t → ∞ gives

Cx
ij (0)= lim

t→∞

{(
1− 1

τd

)
δxi(t−1)− Uδ[xi(t−1)Si(t − 1)]

}

×
{(

1 − 1

τd

)
δxj (t − 1)−Uδ[xj (t− 1)Sj (t− 1)]

}

= lim
t→∞

((
1 − 1

τd

)2

Cx
ij (t − 1,t − 1)

+U 2Zij (t − 1,t − 1) − U

(
1 − 1

τd

)

×{〈δ[xi(t − 1)Si(t − 1)]δxj (t − 1)〉

+ 〈δ[xj (t − 1)Sj (t − 1)]δxi(t − 1)〉}
)

. (B8)

Substituting Eq. (B7) into Eq. (B8) we obtain Eq. (28).
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APPENDIX C: ADJUSTMENT OF EXTERNAL INPUTS

We first explain why we have to maintain the firing
rate 〈Si〉 in order to study how synaptic depression affects
neural correlations in this Appendix. While the change in
instantaneous firing rates affects neural correlations Eq. (20),
input hi only has an indirect effect on neural correlations via
the instantaneous firing rates. We thus adjust the strength of
input and maintain the firing rate to study what effects synaptic
depression has on neural correlations.

We then derive the external inputs to neurons hi . To begin
with, we simply emulate noisy orientation selective inputs to
the neurons [Fig. 1(a)]. We respectively define h0

i and 〈S0
i 〉

as the input and instantaneous firing rate in the absence of
synaptic depression, that is, γ = 0. To keep 〈Si〉 in the presence
of synaptic depression γ the same as 〈S0

i 〉 by changing hi ,
we derive the following equation from the self-consistent

equation (15):

g

⎡
⎣ ∞∑

τ=1

∑
j �=i

Jij εij (τ )

(
2

〈
S0

j

〉
1 + γ

〈
S0

j

〉 − 1

)
+ hi + ur

⎤
⎦

= g

⎡
⎣ ∞∑

τ=1

∑
j �=i

Jij εij (τ )
(
2
〈
S0

j

〉− 1
)+ h0

i + ur

⎤
⎦ . (C1)

Since the escape function g monotonically increases, Eq. (C1)
can be written as Eq. (53). Using Eq. (53), we adjust external
inputs hi and the instantaneous firing rates for γ = 0 to
the same as those for γ = 0.1 and 1 shown in Fig. 1.
Note from Eq. (44) that instantaneous firing rate 〈Si〉 and
instantaneous synaptic efficacy 〈xi〉 are the same as mean
firing rate fi and mean synaptic efficacy Xi , respectively, at
equilibrium.
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