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We study solution-space structure and solution-finding algorithms of a representative hard random constraint
satisfaction problem with growing domains known as Model RB. Using rigorous methods, we show that solutions
are grouped into disconnected clusters before the theoretical satisfiability phase transition point. Using the
cavity method, it is shown that the entropy density obtained by belief propagation (BP) on random Model RB
instances, which corresponds well to the analytical results, vanishes as the control parameter (constraint tightness)
approaches the satisfiability threshold. From an algorithmic point of view, we find that reinforced BP, which
performs much better than all existing algorithms, allows us to find solutions efficiently for instances in the
regime that is very close to the satisfiability transition. These results also can shed light on the effectiveness of
BP reinforcement on problems with a large number of states.
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I. INTRODUCTION

Constraint satisfaction problems (CSPs) have played an
extremely significant role in the interdiscipline of theoretical
computer science, information theory, and statistical physics
[1]. They can find applications in many practical problems,
including pattern recognition, resource allocation, verification,
and more. Roughly speaking, an instance of a random CSP
consists of N variables and M constraints. Each variable takes
values from its domain D. Each constraint contains a subset of
k distinct variables chosen uniformly at random and prohibits
these variables from taking some disallowed assignments out
of |D|k possible ones. The instance is satisfiable if there
exists a solution, that is, an assignment of the variables
that satisfies all the constraints simultaneously. Most of the
interesting CSPs belong to the class of nondeterministic
polynomial-complete (NP-complete) problems, and finding
a solution of such problems appears to require exponen-
tial time in the worst case [2]. In ensembles of random
CSPs, empirical evidence indicates that there exists a sharp
satisfiability threshold separating a phase where instances
are almost always satisfiable (SAT) from a phase where
instances are almost always unsatisfiable (UNSAT) [3]. More-
over, the hardest instances are found near the SAT-UNSAT
transition.

Many of the previously studied problems (such as
the random k-SAT, random vertex covers, random graph
q-coloring, and so on) are random CSPs with fixed domains
[4–7] in which the domain size (number of states) of each
variable is independent of the system size. In recent years,
studies of random CSPs with growing domains have attracted
much interest in computer science and statistical physics
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[8–15]. Model RB, as a prototypical random CSP with growing
domain size, was first proposed in Ref. [8] for overcoming
the trivial asymptotic insolubility of the standard CSP Model
B [16]. For Model RB, not only has the existence of the
satisfiability phase transition been established rigorously, but
also the threshold point has been located precisely. For some
random CSPs with fixed domains, there is no rigorous proof
yet of the existence of this transition [17,18], while methods
of statistical physics provide powerful tools to investigate
various transitions in the geometrical organization of solutions
[19–23]. On the other hand, it has been proved theoretically
and experimentally that all instances of Model RB are hard
at the threshold [11–13]. Therefore, benchmarks based on
Model RB have been used widely in various kinds of algorithm
competitions, including SAT (2004,2009,2011), CSP (since
2005), pseudo-Boolean (since 2005), Max-SAT (since 2008),
and so on, and the results confirmed the intrinsic hardness of
these benchmarks. Finding solutions of a single Model RB
instance is very challenging, and attempts have been limited
to cases of N ∼ 102 [24]. In Ref. [14], it is shown that
message-passing algorithms guided by belief propagation (BP)
[25,26] based on the cavity method from statistical physics can
construct solutions efficiently for random instances of Model
RB in the SAT phase. Recently, reinforced BP has been used as
a solver in several NP-complete problems [27–30]. The main
idea of reinforced BP, originally proposed in Ref. [31], is to
introduce an external set of reinforcement messages enforcing
BP equations toward a solution.

In this paper, we study the solution space of Model
RB analytically and algorithmically. Furthermore, we com-
pare experimental results coming from the statistical-physics
methods to the rigorous asymptotic predictions. It seems
that the BP entropy density normalized by ln N is in
good agreement with the rigorous results. We also find that
reinforced BP can serve as an efficient algorithm to solve
random Model RB instances in the hard-SAT region where the
solution pairs at the Hamming distance around N/2 begin to
disappear.
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II. QUENCHED AND ANNEALED RESULTS
OF MODEL RB

Let us first briefly review Model RB. An instance of
Model RB contains N variables �σ = (σ1,σ2, . . . ,σN ) and M =
rN ln N (r > 0 is a constant) constraints. Each σi takes values
from its domain D = {1,2, . . . ,dN }, where dN = Nα (α > 0
is a constant) grows polynomially with N . Each constraint a

involves k (k � 2) different variables (σ 1
a ,σ 2

a , . . . ,σ k
a ) chosen

uniformly at random, and we define Qa ⊂ Dk as the set of
disallowed assignments for these variables. For each a, we
randomly pick |Qa| = pdk

N disallowed assignments without
repetition out of dk

N possible ones where p ∈ (0,1) measures
the tightness of the constraint. Constraint a is satisfiable by
the assignment of �σ if and only if (σ 1

a ,σ 2
a , . . . ,σ k

a ) /∈ Qa .
Solving the instance amounts to finding an assignment of the
variables that satisfies all the constraints or proving that no
such assignment exists.

A random instance of Model RB admits a natural factor
graph representation [32]. The mean connectivity of a variable
is r ln N , therefore, the factor graph is dense with loops.
The typical length of a loop scales as ln N/ ln ln N , so the
factor graph is locally treelike when N is sufficiently large. Let
ψa→i(t)

σi
, χ

j→a(t)
σj

denote the messages that are passed at time t

along all the edges in the factor graph. More precisely, ψa→i
σi

is the probability that constraint a being satisfied if variable i

takes value σi , and χ
j→a
σj

is the probability that j takes value
σj in the absence of a. Using the cavity method [19], BP
equations can be written as

ψa→i(t)
σi

= 1

Za→i

∑
σj ,j∈∂a\i

φa( �σj ,σi)
∏

j∈∂a\i
χj→a(t)

σj
, (1)

χj→a(t+1)
σj

= 1

Zj→a

∏
b∈∂j\a

ψb→j (t)
σj

, (2)

where ∂a\i denotes the set of variables connected to constraint
a except i, Za→i , and Zj→a are normalization constants, the
function φa( �σa) is equal to 0 if (σ 1

a ,σ 2
a , . . . ,σ k

a ) ∈ Qa , and is
equal to 1 otherwise.

To compute the BP entropy density of Model RB, we first
define �Si, �Sa , and �S(i,a), respectively, as the entropy shift
after the addition of a variable i, a constraint a, and an edge
(i,a). After Eqs. (1) and (2) converge to a fixed point, the
entropy density (the logarithm of the number of solutions
divided by N ) can be estimated by the following equation [19]:

s = 1

N

∑
i

�Si + 1

N

∑
a

�Sa − 1

N

∑
(i,a)

�S(i,a), (3)

where

�Si = ln

(∑
σi

∏
a∈∂i

ψa→i
σi

)
, (4)

�Sa = ln

[ ∑
σi ,i∈∂a

φa( �σi)
∏
i∈∂a

χi→a
σi

]
, (5)

�S(i,a) = ln

(∑
σi

ψa→i
σi

χ i→a
σi

)
. (6)

TABLE I. Given α = 0.8 and r = 3, the domain size dN and the
number of constraints M for different N are shown in this table. The
theoretical satisfiability threshold is 0.234.

N α dN r M ps

100 0.8 40 3 1382 0.234
150 0.8 55 3 2255 0.234
200 0.8 69 3 3179 0.234
300 0.8 96 3 5133 0.234
400 0.8 121 3 7190 0.234

Since Model RB is NP-complete in the cases of k � 2,
for the sake of simplicity, we use binary Model RB (k = 2)
as the tested problem. In particular, we choose α = 0.8 and
r = 3 to generate random instances of size N ∈ [100,400]
(on random instances with other groups of parameters, we
also obtain similar results). The corresponding parameters for
different N are shown in Table I.

In Fig. 1, the BP entropy densities for different system sizes,
scale as O(ln N ), decrease monotonically with constraint
tightness p, and vanish at ps � 0.234, which is the theoretical
satisfiability threshold. In fact, in Ref. [8], it was shown that,
under the conditions of α > 1/k and ke−α/r � 1, as N → ∞,
we precisely can locate ps = 1 − e−α/r , below which the
probability of a random instance of Model RB being satisfiable
tends to 1 and above which the probability tends to 0. Let 〈Z〉
denote the expectation of the solution number, as reported
in Ref. [8], 〈Z〉 [=NαN (1 − p)rN ln N ] computed on a single
instance can roughly match the typical number of solutions
due to 〈Z〉2 = 〈Z2〉. The inset in Fig. 1 shows that BP entropy
density normalized by ln N (dashed blue line) coincides very
well with the annealed entropy ln〈Z〉 divided by N ln N

(solid red line). This suggests that the replica symmetry (RS)
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FIG. 1. (Color online) BP entropy densities averaged over 100
random binary Model RB instances with α = 0.8 and r = 3 as a
function of p for N ∈ [100,400]. Inset, BP entropy density divided
by ln N is plotted against p for N = 200 (dashed blue line). It is
independent of N and vanishes as p crosses ps . The curve of s/ ln N

meets with that of ln〈Z〉/(N ln N ) for α = 0.8 and r = 3 (solid red
line) as p is varied.
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solution should always be stable locally, thus, the condensation
transition that is observed in the random k-SAT problem [20] is
absent in Model RB. It is possible that, before the SAT-UNSAT
transition, one-step replica symmetric breaking (1RSB) with
Parisi parameter m = 1 has a nontrivial solution and a positive
complexity. We cannot study the 1RSB solution for Model
RB by population dynamics in the thermodynamic limit or
even large systems because the number of states grows rapidly
with system size, and without simplification at m = 1, to
study 1RSB equations on a single instance, one has to use
populations on each edge of the graph to represent 1RSB
messages, which are computationally heavy and imprecise. So
we leave the 1RSB part to our future paper.

III. BP REINFORCED ALGORITHM

We now show the reinforced BP algorithm, which is proved
to be a very efficient solver for random binary Model RB
instances in the hard region. The idea is to add an external
field (with probability 1 − γt ) into Eq. (2) enforcing the
equations toward a solution. We modify Eq. (2) to the following
equations:

χj→a(t+1)
σj

= 1

Zj→a
μj (t)

σj

∏
b∈∂j\a

ψb→j (t)
σj

, (7)

μj (t+1)
σj

= 1

Zj

∏
b∈∂j

ψb→j (t)
σj

. (8)

In the updating process, we use γt = (1 + t)−ν , where ν

is a parameter that needs to be optimized. Note that, if we
choose ν = 0, reinforced BP gives back the original BP. At
each iteration, we check if the configuration �σ = {maxσi

μi
σi
}

is a solution. If it is not, we proceed at maximum T (=103)
times or the iteration converges (precision ε = 10−6).
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FIG. 2. (Color online) Success probability (averaged over 50
random binary Model RB instances) of the reinforced BP algorithm
with the optimal parameter ν = 0.10 as a function of p with
α = 0.8 and r = 3 for N = 100,150,200. Inset, the performance of
message-passing algorithms guided by BP in Ref. [14] averaged over
100 random binary Model RB instances with α = 0.8 and r = 3 for
N = 100.
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FIG. 3. (Color online) Success probability (over 50 random
binary Model RB instances) of the reinforced BP algorithm as a
function of p. The curves are plotted for α = 0.8, r = 3, N = 100,
and ν = 0.08,0.10,0.12.

In Fig. 2, we plot the fraction of successful runs over
50 random binary Model RB instances with α = 0.8 and
r = 3 for N ∈ [100,200]. We choose the optimal parameter
ν = 0.10, and the performance of the algorithm depends
on the optimization of ν (see Fig. 3). It is observed that
the reinforced BP algorithm can find solutions efficiently
when constraint tightness p < 0.206 (ps � 0.234). However,
it fails at the point p = 0.210. We would like to note that,
although the reinforced BP algorithm cannot escape from the
extreme hard-SAT regime, it works much better than message-
passing algorithms guided by BP and other state-of-the-art
algorithms (see the inset of Fig. 2) [14]. This indicates that BP
reinforcement can be extended to other classes of problems in
which variables involve a large number of states.

IV. THE SOLUTION-SPACE STRUCTURE OF MODEL RB

Now, we analyze the geometrical structure of the solution
space of Model RB in order to shed light on the performance
of the reinforced BP algorithm. Let d�σ ,�τ ≡ Nx (x ∈ [0,1]) be
the Hamming distance (number of distinct values) between
a solution pair (�σ ,�τ ) [33], and let Z(x,p) be the number of
solution pairs at fixed distance Nx, then, the expectation of
Z(x,p) can be written as (similar to the derivation of 〈Z2〉 in
Ref. [8])

〈Z(x,p)〉 = NαN

(
N

Nx

)
(Nα − 1)Nx{(1 − p)2 + p(1 − p)

× [(1 − x)k + g(x)]}rN ln N

[
1 + O

(
1

N

)]
,

(9)

with g(x) = −k(k − 1)x(1 − x)k−1/(2N ). Let f (x,p) =
limN→∞ ln〈Z(x,p)〉/(N ln N ), and we have

f (x,p) = α(1 + x) + r ln[(1 − p)2 + p(1 − p)(1 − x)k].

(10)
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FIG. 4. (Color online) The curves of f (x,p) are plotted against x

with α = 0.8, r = 3, and k = 2 for p = 0.200 [the solid blue (upper)
line], 0.206 [the dashed blue (upper) line], 0.220 [the solid orange
(lower) line], and 0.234 [the dashed orange (lower) line]. It is shown
that f (x,p) > 0 if p < 0.206, which means that the solution pairs at
distance x ∈ [0,1] always exist. It is obvious that there is no solution
if p > 0.234. There exists no solution pair at the distance around 0.5
if p > 0.206.

For binary Model RB with α = 0.8 and r = 3, Fig. 4
shows that f (x,p) > 0 for p < 0.206, which suggests that
the solution pairs at the distance x ∈ [0,1] always exist. Thus,
the solution space of Model RB is a connected cluster when p

is below 0.206. Beyond the point 0.206, solution pairs at the
distance around 0.5 tend to disappear, which indicates that the

set of solutions begins to split into many disconnected clusters.
Note that the reinforced BP algorithm efficiently can find a
satisfying solution when p < 0.206 for random instances of
the binary Model RB with α = 0.8 and r = 3 (see Fig. 2).
Therefore, it appears that the algorithm is trapped before the
clustering transition point pc (�0.206). Here, we suppose that
Model RB has the property of 〈Z2(x,p)〉 = 〈Z(x,p)〉2 induced
by 〈Z2〉 = 〈Z〉2. So, we use the expectation of Z(x,p) instead
of Z(x,p).

V. CONCLUSION

To conclude, we have studied Model RB, a random CSP
with growing domains, through BP and analytical methods,
respectively. It seems that both of the results coincide well
with each other. We plan to investigate the 1RSB solution of
Model RB in our future paper to describe the solution-space
organization in more detail and to exploit the differences
between random CSPs with growing domains and with
fixed domains. We hope that these studies can provide new
insights into the understanding of the hardness in NP-complete
problems.

ACKNOWLEDGMENTS

C. Zhao and K. Xu wish to thank Haijun Zhou, Haiping
Huang, and Zhiwen Fang for their helpful discussions, and
P. Zhang would like to thank Abolfazl Ramezanpour and
Riccardo Zecchina for their helpful comments and sugges-
tions. We also thank KITPC (Beijing) for their hospitality.
This work has been supported by the International Cooper-
ative Program (Grant No. 2010DFR00700) and the NSFC
(Grant No. 60973033).
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