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Noise can induce explosions for dissipative solitons
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We study the influence of noise on the spatially localized, temporally regular states (stationary, one frequency,
two frequencies) in the regime of anomalous dispersion for the cubic-quintic complex Ginzburg-Landau equation
as a function of the bifurcation parameter. We find that noise of a fairly small strength η is sufficient to reach a
chaotic state with exploding dissipative solitons. That means that noise can induce explosions over a fairly large
range of values of the bifurcation parameter μ. Three different routes to chaos with exploding dissipative solitons
are found as a function of μ. As diagnostic tools we use the separation to characterize chaotic behavior and the
energy to detect spatially localized explosive behavior as a function of time.
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One of the most fascinating types of spatially localized
solutions are exploding dissipative solitons found by Akhme-
diev et al. for anomalous linear dispersion in the cubic-quintic
complex Ginzburg-Landau equation [1]. While exploding dis-
sipative solitons are characterized by spatiotemporally irregu-
lar large-amplitude variations, they show deterministically an
average repeat time with a fairly narrow temporal distribution
of their disappearance and reappearance as a function of time.
These remarkable objects have been further characterized with
respect to their deterministic behavior experimentally [2] and
theoretically [3–5]. In addition, it has been shown [6,7] that
a number of temporally regular localized solutions emerge as
the bifurcation parameter μ, the distance from linear onset, is
increased toward the regime for which explosive dissipative
solitons are found with the system following an analog of
the Ruelle-Takens route for spatially localized solutions [7].
Notice that our system is not excitable. The stable localized
solutions under study exist in a narrow range where the
zero solution coexists with an homogeneous solution (bistable
system). Therefore there exists a saddle function separating
the stable zero solution from the stable localized solution. An
explosion happens when perturbations in the wings overcome
this saddle function.

There appear to be very few systematic studies of the
influence of noise on systems showing stable pulse-type
localized solutions in nonlinear dissipative spatially extended
nonequilibrium systems, although in 2010 it was found that a
reaction-diffusion system driven by noise can lead to localized
objects of finite lifetime [8]. Stimulated by the observation
of the partial annihilation of pulses with fixed shape near the
onset of binary fluid convection in an annulus [9,10] and for
the catalytic oxidation of CO on Pt(110) [11] we investigated
the influence of additive noise on colliding pulses of fixed
shape. We found a partial annihilation of pulses for small
noise strength [12] and clarified the mechanism of partial
annihilation.

Motivated by our recent studies of the nature of the
transition to exploding dissipative solitons as the bifurcation
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parameter is varied [7], we investigate here the influence
of noise on the three states preceding exploding dissipative
solitons as a function of μ. The expectation is that at least the
state with two frequencies deterministically should be rather
sensitive to noisy perturbations, since it directly precedes the
transition to exploding dissipative solitons.

In this Rapid Communication three different routes to
chaos with exploding dissipative solitons are found as a
function of μ. For μ values for which localized solutions are
stationary we obtain the following sequence: noisy without
explosions, noisy with explosions, chaos with explosions.
In the range of μ where we have localized solutions with
one frequency we obtain either the previous sequence or
noisy states followed by nonexplosive chaotic solutions before
the transition to explosive chaos. For μ values for which
localized solutions have two frequencies we obtain only the
last mentioned sequence. As diagnostic tools we use the
separation [13,14], the asymptotic limit of the time evolution
of the distance between two initially infinitesimally close
trajectories, a quantity closely related to the largest Liapunov
exponent, for the detection of chaotic behavior and the energy
to characterize spatially localized explosive behavior. This
technique has been used for the analysis of convectively
unstable states [13] as well for chaotically breathing localized
states [14].

To study noise-induced exploding dissipative solitons we
use the stochastic cubic-quintic complex Ginzburg-Landau
equation

∂tA = μA + (βr + iβi)|A|2A + (γr + iγi)|A|4A
+ (Dr + iDi)∂xxA + η ξ, (1)

where A(x,t) is a complex field, βr is positive, and γr is nega-
tive in order to guarantee that the bifurcation is subcritical, but
saturates to quintic order. The stochastic force ξ (x,t) denotes
white noise with the properties 〈ξ 〉 = 0, 〈ξ (x,t) ξ (x ′,t ′)〉 = 0
and 〈ξ (x,t) ξ ∗(x ′,t ′)〉 = 2δ(x − x ′)δ(t − t ′), where ξ ∗ denotes
the complex conjugate of ξ .

In our numerical simulations we keep all parameters
fixed except for μ, the distance from linear onset, and
η, the noise strength. The parameter values are βr = 1,
βi = 0.8, γr = −0.1, γi = −0.6, Dr = 0.125, and Di = 0.5
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(positive) corresponding to an anomalous dispersion regime.
The parameter μ is varied from −0.265 until −0.215. This
range includes three different behaviors for η = 0, namely,
stationary localized solutions (−1.23 < μ < −0.254), oscil-
latory localized solutions with one frequency (−0.254 <

μ < −0.232), and oscillatory localized solutions with two
frequencies (−0.232 < μ < −0.213).

In the discretized problem the stochastic force ξ (x,t)
is replaced by (χr + iχi)/

√
dx dt , where χr and χi are

uncorrelated random numbers obeying a standard normal
distribution.

To characterize the influence of the noise on the solutions
of the Eq. (1) for a given value of μ and noise strength η we
study the dynamical evolution of two nearby states by means
of

∂t (δA) = μδA + (βr + iβi)(2|A|2δA + A2δA∗)

+ (γr + iγi)(3|A|4δA + 2A2|A|2δA∗)

+ (Dr + iDi)∂xx(δA). (2)

We define the separation of these states as

ζ (t) =
( ∫ L

0
|δA(x,t)|2dx

)1/2

, (3)

whose slope gives us a measure of the largest Lyapunov
exponent for the whole extended system.

Time integration of equation (1) was performed in all
regions using a time-splitting pseudospectral scheme, with a
box size L = 50 and N = 1024, so we get a grid spacing of
dx ∼ 0.05. Initial conditions are solutions of the equation in
the asymptotic time regime for η = 0. In order to perform
temporal integration of δA in Eq. (2) we use the same
time-splitting scheme with a time step dt = 0.005 in regions
where stationary localized solutions and oscillatory localized
solutions with one frequency are expected for η = 0. For
the region where oscillatory localized solutions with two
frequencies are expected for η = 0 we use a second-order
pseudospectral Adams-Bashforth scheme with a time step
dt = 0.001. This scheme is used in order to avoid numerical
instabilities. Initial conditions for δA are shaped like Gaussian
functions with a height ∼0.02 and width ∼8. Equation (1)
is, in fact, integrated in parallel with Eq. (2) for each
time step. We used a different temporal scheme to integrate
Eq. (2) in the region where oscillatory localized solutions with
two frequencies are expected in the limit zero noise. The
reason is that this equation becomes unstable in that region
of parameters, even in the absence of any chaotic behavior by
Eq. (1). To overcome that instability we used a smaller dt and
a more stable, but resource consuming, temporal scheme in
the integration of Eq. (2). We also remark that the reduction
in dt does not affect, in any measurable way, the behavior
of Eq. (1).

In Fig. 1 we summarize our qualitative main results for the
effects of small noise of a strength up to 10−2 on the stable
localized solutions that are stationary or oscillatory. We have
plotted the patterns arising as a function of the bifurcation
parameter μ for varying noise strength, which is plotted on the
ordinate on a logarithmic scale. We read off immediately from
Fig. 1 that for sufficiently large noise amplitude a transition
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FIG. 1. (Color online) Phase diagram showing the observed
patterns as a function of noise strength η on the ordinate (plotted
on a logarithmic scale) vs the bifurcation parameter μ. We show
the parameter range μ from −0.265 to −0.215. It includes for
η = 0: (a) stationary localized solutions (−1.23 < μ < −0.254),
(b) oscillatory localized solutions with one frequency (−0.254 < μ <

−0.232), and (c) oscillatory localized solutions with two frequencies
(−0.232 < μ < −0.213). Right after localized solutions with two
frequencies and before the onset of explosive solutions, there exists
a narrow range (
μ ∼ 10−4) where solutions are localized, chaotic,
and nonexplosive. Open circles (◦) correspond to noisy states without
any explosion. Squares (�) represent chaotic states with explosions.
Black solid circles (•) correspond to noisy states with explosions.
Triangles (	) represent chaotic states without any explosions. All
data points shown correspond to numerical runs with a duration
T = 2 × 104.

to a chaotic state with explosions arises independent of the
deterministic starting state.

Inspection of Fig. 1 shows that there are three qualitatively
different routes from the deterministic states to a chaotic
localized state with explosions. Starting with a stationary
localized state one has a first transition to a noisy state
with explosions followed by a chaotic state with explosions.
Starting with an oscillatory localized state with one frequency
the first transition is either to a noisy state with explosions or to
a chaotic state without explosions and then a second transition
to explosions. Starting with an oscillatory localized state with
two frequencies the first transition is to a chaotic localized
state without explosions, which then shows for increasing
noise amplitude a transition to a chaotic localized state with
explosions. For large noise (η ∼ 0.15) not shown in Fig. 1 the
chaotic state with explosions is replaced by a spatiotemporal
pattern filling the entire system.

The borders in the phase diagram also have a stochastic
aspect. This means that borders are not strictly fixed: Small
variations occur when the numerical runs are repeated, as is to
be expected for a system with a certain amount of noise. Since
the amount of noise studied here is quite small, the borders are
almost fixed.

To characterize chaotic versus nonchaotic quantitatively for
these spatially localized states we use the tool of separation
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FIG. 2. The separation ζ is plotted on a logarithmic scale as a
function of time for two values of the noise strength η for μ = −0.26:
for η = 2 × 10−3 (dotted line) noisy, nonchaotic, as well as nonexplo-
sive behavior is obtained, while for η = 5 × 10−3 (solid line) noisy,
nonchaotic, but explosive behavior arises. For this value of μ one
finds deterministically stationary localized solutions.

discussed above. In Fig. 2 we have plotted the logarithm of the
separation for a value of the bifurcation parameter, for which
deterministically a stationary localized state appears, for two
values of the superposed noise strength η. For η = 2 × 10−3

the separation is decaying exponentially and monotonically
signaling for the localized state a nonchaotic noisy behavior
without any explosions. As the noise strength is increased
to η = 5 × 10−3, one obtains noisy behavior, but now with
intermittent explosions visible as spikes in the plot of the
logarithm of the separation.

In Fig. 3 we have plotted as a solid line the logarithm of the
separation for μ = −0.25, for which one has deterministically
an oscillatory localized state with one frequency and a noise
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FIG. 3. (Color online) The separation ζ is plotted as a solid line
on a logarithmic scale as a function of time for μ = −0.25 and for
η = 3.5 × 10−3; chaotic as well as explosive behavior is observed.
For this value of μ one finds deterministically oscillatory localized
solutions with one frequency. In addition, the separation ζ is plotted as
dashed line on a logarithmic scale as a function of time for μ = −0.22
and for η = 4 × 10−4: chaotic, nonexplosive behavior is obtained.
For this value of μ one finds deterministically oscillatory localized
solutions with two frequencies.
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FIG. 4. x-t plots are shown in the asymptotic time regime for four

different types of states (a) nonchaotic, nonexplosive μ = −0.26, η =
2 × 10−3, (b) nonchaotic with explosions μ = −0.26, η = 5 × 10−3

(c) chaotic without explosions μ = −0.22, η = 4 × 10−4, and
(d) chaotic with explosions μ = −0.25, η = 3.5 × 10−3.

strength of η = 3.5 × 10−3 has been applied. The separation
is seen to grow exponentially with intermittent spikes cor-
responding to explosions. Also in Fig. 3 the logarithm of
the separation is plotted as a dashed line for μ = −0.22,
for which deterministically an oscillatory localized state with
two frequencies is stable. A noise strength of η = 4 × 10−4

is implemented. The separation grows exponentially on the
average, and there are no spikes that would be associated with
intermittent explosions. From the solution of Eq. (2) and the
definition of the separation ζ , it is clear that there will be no
saturation for localized chaotic states in the asymptotic time
limit (see also Refs. [13,14]).

That the spikes shown in the plots for the separation as
a function of time (Figs. 2 and 3) correspond to explosions
can be concluded from the plot energy (≡ ∫ |A|2 dx) as
a function of time. In addition, it can be checked using
time series as well as snapshots of the corresponding states.
Therefore we present in Fig. 4 space-time (x-t) plots in the
asymptotic time regime for four types of states: (a) nonchaotic,
nonexplosive, (b) nonchaotic with explosions (c) chaotic
without explosions, and (d) chaotic with explosions. These
plots, corresponding to the parameter values of the plots shown
in Figs. 2 and 3, demonstrate that the objects presented stay
localized.

In previous studies qualitative changes as a function of
noise strength for space-filling patterns have been investigated
experimentally mainly for two types of systems. For multi-
plicative noise applied to electroconvection in nematic liquid
crystals it has been shown [15] that not only the onset of
electroconvection could be suppressed, but that also several
types of regular spatial patterns do not occur anymore for
sufficiently large applied noise strength. The second type of
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systems for which one has seen qualitative changes in the
spatiotemporal patterns due to external noise experimentally
[16–18] and theoretically [16,17] is the catalytic oxidation
of CO on surfaces such as Ir(111) under UHV conditions.
In this case the noise is superposed on the flow of CO, thus
leading to combination of applied additive and multiplicative
noise [16]. As a consequence one obtains, for example, a
replacement of spatially periodic patterns by spatiotemporal
intermittency.

Here we have demonstrated that a small amount of
additive noise has a profound effect on stable spatially
localized solutions of a prototype envelope equation: the cubic-
quintic complex Ginzburg-Landau equation characteristic for
a weakly inverted bifurcation to traveling waves in the regime
of anomalous linear dispersion. We have shown that with
increasing noise strength a chaotic state with explosions is
reached via three qualitatively different routes. As intermediate
states for smaller noise strength we find either a noisy state
with explosions or a chaotic state without explosions. These
results on the influence of a small amount of noise (of up
to ∼1% of the amplitude of the localized solutions) reveal
a qualitatively new perspective for the phenomena associated

with the explosive dissipative solitons found and characterized
deterministically in modeling and experiment [1–7].

To test our results we suggest the performance of two types
of experiments in the presence of additive noise. One is along
the lines of those reported for a solid-state passively mode-
locked laser [2]. The suggestion is to add noise to the complex
electric field and to check which sequence of transitions to
exploding dissipative solitons can be induced by noise starting
from stationary or temporally periodic spatially localized
solutions. The other is sheared annular electroconvection [19],
a system for which it has been shown [19] by simulating
the underlying full hydrodynamic equations that the analog
of the Ruelle-Takens-Newhouse route is expected to occur
experimentally for localized solutions.
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