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Monte Carlo simulation-based approach to model the size distribution of metastatic tumors
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The size distribution of metastatic tumors and its time evolution are traditionally described by integrodifferential
equations and stochastic models. Here we develop a simple Monte Carlo approach in which each event of
metastasis is treated as a chance event through random-number generation. We demonstrate the accuracy of
this approach on a specific growth and metastasis model by showing that it quantitatively reproduces the size
distribution and the total number of tumors as a function of time. The approach also yields statistical distribution
of patient-to-patient variations, and has the flexibility to incorporate many real-life complexities.
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I. INTRODUCTION

Metastasis is the spreading of tumors from a primary tumor
source that leads to the formation of secondary tumor colonies
in different locations within the patient’s body. Multiple
metastases are a major problem that presents a severe challenge
to the treatment of cancer [1,2]. Modeling the evolution of
the size and numbers of metastatic tumors as a function of
time can be useful toward detecting and treating early forms
of cancer. The rate of metastasis depends on both the tumor
size as well as the distribution of blood vessels (vasculature)
around and within the metastasizing tumor [3,4]. Although
advances in clinical imaging technology makes it possible to
accurately measure the size of tumors or to get quantitative
information on the vasculature [5], it is still difficult to observe
very small tumors with current clinical techniques [6]. Thus,
a mathematical model of tumor growth and metastasis can be
invaluable.

Of the multitude of models published in the literature over
the last decade [7–12], one of the earlier ones developed by
Iwata, Kawasake, and Shigesada (IKS) [12] is simple and
elegant. Their model makes two simple assumptions: (1) Any
tumor (primary, secondary, tertiary, etc.) starts from a single
cell and grows according to the Gompertz curve [13,14]:

x(t) = b1−e−at

, (1)

where x(t) is the size of the tumor (expressed as the number
of cells comprising the tumor) at time t , b is the maximum
possible size of the tumor, and a is a rate constant; and
(2) for any given tumor size x, the rate of metastasis, β(x),
is proportional to the degree of angiogenesis:

β(x) = mxα, (2)

where m is a rate constant (colonization coefficient), and
α is the fractal dimension of blood vessels connected to
and infiltrating the tumor [15–17]. IKS then defined a size
distribution of the metastatic colony ρ(x,t) [where ρ(x,t)dx =
number of metastatic tumors of sizes between x and x + dx at
time t] and used the von Foerster equation [18] to describe its
time evolution under the conditions imposed by Eqs. (1) and
(2). An in-depth mathematical analysis of the IKS model has
recently been performed by Barbolosi et al. [19].
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Although the IKS approach is mathematically elegant and
could even be solved analytically, it cannot be easily extended
to more realistic situations, e.g., the growth law for the
metastasized tumors could be organ-environment dependent
and significantly different from the law governing the primary
tumor growth. Even a single large tumor could have intrinsic
heterogeneities, e.g., niches or compartments [20–23] that
require different metastasis rates from different parts of the
tumor. Additional complications could involve a time lag
between the formation and shedding of a metastatic tumor from
its primary source, a finite probability of its survival through
the body’s immune system, and so on [24]. To incorporate
such complexities one would need significant modifications to
the IKS model, which could be nontrivial. In this paper, we
adopt a much simpler approach in which we treat metastasis
as a probabilistic event and perform Monte Carlo simulations
to determine the size and number evolution of all tumors as
a function of time. Such approach possesses the flexibility
to incorporate some of the real-life complexities mentioned
above. For instance, if an extensive database of medical
records of cancer patients could be analyzed to determine the
probabilities of metastasis as a function of the organ of origin
and the organ of spread, such knowledge could be incorporated
in the Monte Carlo procedure described below. It would also be
relatively straightforward to incorporate organ-specific growth
rates, possible time lags of shedding, or finite probabilities of
immune destruction of tumors. However, prior to including
any of such complexities in the programming logic one first
needs to validate the accuracy of the Monte Carlo approach by
reproducing some of the results of the IKS model. Carrying
out such validation is the main purpose of this paper. In the
following section we describe the simulation procedure in
more detail.

II. SIMULATION PROCEDURE AND VALIDATION

For a specific patient, we assume that a primary tumor
appears as a single cell on day 0 and grows according to the
Gompertz function, i.e., Eq. (1). Then we interpret Eq. (2)
as a probability rate of metastasis of this tumor. Equation (2)
describes a rate process that is continuous in time. For the
purpose of numerical simulation we divide this continuous
time into time intervals �t such that the probability of
metastasis within any given time interval is smaller than a
small number ε. In the beginning, when the primary tumor is
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very small, the probability of its metastasis per day is low. In
this regime we choose �t = 1 day. However, when the size of
the primary tumor becomes larger (e.g., 109 or so), we choose
�t such that mxα�t � ε. Thus, a general time step is defined
through the function

�t = min
(

1,
ε

mxα

)
. (3)

From several test runs (see procedural details below) with
different values of ε we determined that ε = 0.05 is a good
choice for simulations of total time 5 years or less—smaller
values of ε take longer to run (for the same total simulation
time) and yet yield essentially identical results.

The simulation proceeds by increasing time through a
time step �t [given by Eq. (3)], computing the probability
of metastasis mxα�t , and drawing a random number. If the
random number is between 0 and mxα�t , a metastatic tumor
of size one cell is created. This metastatic tumor then starts
to grow according to the Gompertz function along with the
primary tumor, which continues to produce more metastatic
tumors according to the probability rate discussed above.
Following a given period of observation (a few years), we
count the number and sizes of all tumors: primary, secondary,
tertiary, and so on. We repeat the above procedure for many
other patients and average over all the patients to obtain a
statistically averaged result.

In order to check that such numerical experiment is able
to produce the same results as IKS, we first examined the
cumulative size distribution and the total number of tumors
as a function of time using the same parameters as IKS. The
parameters used in our simulations were a = 0.00286 day−1;
b = 7.3×1010 cells; m = 5.3×10−8 day−1; and α = 0.665.
Most of the simulations reported below were averaged over
200 patients (we checked that a larger number of patients
essentially produces the same results).

Figure 1 displays the cumulative size distribution of tumors
of size greater than 107 cells for four different times of
observation, i.e., 1100, 1227, 1300, 1400 days. Given an

FIG. 1. Cumulative size distribution of tumors from our simula-
tions (symbols) averaged over 200 patients for four different times
of observation. The solid lines are results from Fig. 4 (upper) of
IKS (Ref. [12]) corresponding to 432 days, 559 days, 632 days, and
732 days, respectively. (See text.)

FIG. 2. Total numbers of tumors from our simulation averaged
over 200 patients as a function of time, compared with the results
from Iwata et al. (Ref. [12]).

estimated origination time of −668 days for the primary tumor
in the IKS paper, these times correspond to 432, 559, 632,
and 732 days in their work. Excellent agreement between our
simulated distributions and the IKS results proves the accuracy
and validity of our numerical method.

Figure 2 displays the total numbers of metastasized tumors
(secondary and tertiary) as a function of time for the first
5 yr, along with IKS values for four different times during this
period. As can be seen, the IKS values fall right on our curve,
again showing the accuracy of our simulations.

III. ADDITIONAL RESULTS AND DISCUSSION

Figure 3 displays separately the secondary and tertiary
tumor growth as a function of time. It also shows the
corresponding numbers of larger (>109 cells, which are 1 cm3

or larger) tumors in the body. From the results, we find
that on an average the secondary tumors begin to develop
at around ∼500 days, while the first tertiary tumors begin
to develop at around ∼900 days. The bigger secondary and
tertiary tumors begin to appear at around 1100 days and
1500 days, respectively. We notice from the graph that
although the tertiary tumors appear later than the secondary
tumors, they multiply faster and outnumber the secondary
tumors within ∼3.6 yr [see Fig. 3(b)].

Noticing linear behavior of the number of secondary and
tertiary tumors over certain time segments in the log-log plot
[the two leftmost curves in Fig. 3(b)] we attempted to extract
a power law behavior [25] of the total number of metastatic
tumors as a function of time. From Fig. 3(b) it is evident that
one cannot fit a single power law over the entire range of
0–5 yr. Instead, the early and later stages follow two different
power laws: For the first 2 yr the metastatic tumors are entirely
secondary in nature and follow the behavior 0.14t6.69 (t =
time in years), while in the time frame of 3–5 yr it follows
the behavior 0.01t8.36, the steeper exponent being due to the
rapid proliferation of the tertiary tumors in this period [see
Fig. 3(b)].

So far all of the above discussion focused on quantities
averaged over a number of patients, i.e., 200. However, in
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FIG. 3. A breakdown of the number of secondary and tertiary
metastasized tumors as a function of time; (a) linear-linear plot;
(b) log-log plot. The results displayed are from our numerical
simulations averaged over 200 patients. Also shown are the number
of corresponding large tumors of sizes >109 cells (1 cm3 or larger).

order to obtain the statistical distribution of a given variable it is
necessary to store the data for all individual patients and create
a frequency distribution. As an illustration, we plot in Fig. 4
the distribution of the time at which the first metastasis for the
primary and the secondary tumors occur. These results were
obtained from 1200-day-long simulations on 5000 patients.
Compared to averaged quantities (as in Figs. 1–3) where a
much smaller number of patients (i.e., 200) was sufficient,
a smooth statistical distribution mandated simulations over a
much larger number (i.e., 5000). Both distributions are nearly
normal with small negative skews, and could be accurately fit
with the skewed normal distribution (SND) as defined by the

FIG. 4. Statistical distribution of the time at which the first
metastasis of the primary and the secondary tumors occur. The results
are from our simulations on 5000 patients. Solid curves are best
fits using the skewed normal distribution (SND). Both curves are
negatively skewed with skewness factors −0.13 and −0.21 for the
primary and secondary curves, respectively. (See text and Table I).

probability distribution function [26]:

f (x) = (1 − s)2

σ
√

2π
e−[(x−xM )−s|x−xM |]2/2σ 2

, (4)

where s is a skew factor, xM is the position of the peak (i.e.,
mode), and σ a measure of the distribution width. [Note
that s = 0 corresponds to the regular normal distribution
with mean xM and standard deviation σ .] The SND fitting
parameters for the two curves in Fig. 4 and the associated mean,
standard deviation, and skewness are listed in Table I. From the
values listed in this table it becomes clear that the secondary
distribution has a bigger width and higher (i.e., more negative)
skewness than the primary distribution. The negative skewness
of both distributions can be attributed to higher uncertainty in
metastasis rates when the tumor is small (as compared to a
matured tumor when it is more certain to metastasize). Also the
degree of uncertainty for the metastasis of a secondary tumor
is higher because its origination itself involves uncertainties of
metastasis of the primary tumor. This explains the wider peak
and higher degree of (negative) skewness of the secondary
peak as compared to the primary one.

With preventive care in mind, it is interesting to look at the
earliest onset of metastasis. For a particular patient, primary
metastasis occurred as early as 200 days within the formation
of the primary tumor. In fact, as much as 5% of the patients
had primary metastasis occur within 347 days. Similarly, in the
most aggressive cases, secondary metastasis occurred within

TABLE I. Fit parameters and derived quantities for the statistical distributions of Fig. 4. The data were obtained by simulating 5000 patients
and fitted using the skewed normal distribution (SND).

SND fit parameters Derived quantities from SND fit

Tumor type xM σ s Mean Standard deviation Skewness

Primary 494.5 75.5 −0.13 478.6 76.8 −0.20
Secondary 922.0 82.0 −0.21 893.1 86.4 −0.34
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500 days of the formation of the primary tumor, with 5% of
the patients seeing it occur within 742 days.

IV. SUMMARY

In summary, we show that simple Monte Carlo simulations
can be very useful in predicting the evolution of size distri-
bution of metastatic tumors. The accuracy of our approach is
demonstrated through simulations on the IKS model [12] in
which the same growth and metastasis rates are used for all

tumors: primary, secondary, or tertiary. From patient-to-patient
variations one can also obtain the statistical distribution of
useful quantities, e.g., that of the time at which the first
metastasis of the primary and secondary tumors occur, which
display negatively skewed normal behavior. Future work will
involve more complex (and realistic) situations in which the
vasculature and growth rate laws of the metastatic tumors
can vary depending upon their respective organ environments,
and possible heterogeneities within single large tumors are
accounted for.
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