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In a recent study [S. Das and S. Hardt, Phys. Rev. E 84, 022502 (2011).], we provided analytical results for
the electric-double-layer (EDL) electrostatic potential distribution in a system of immiscible electrolyte layers
confined between plates with gap dimensions comparable to the EDL thickness. We demonstrated that the
intrinsic jumps in the ion-solvent interactions across the interface of the immiscible electrolytes lead to nontrivial
electrostatic potential distributions that may completely defy or substantially augment the effect of the boundary
wall potential. In this Brief Report, I extend this calculation to obtain analytical and numerical results for the case
with finite ion sizes (or a finite ionic steric effect). It is found that the finite steric effect substantially enhances
the contributions of jump in the ion-solvent interactions in the overall electrostatic potential distribution. More
importantly, I demonstrate that such jumps in the ion-solvent interactions, owing to the immiscibility of the
electrolytes, ensure that even for very weak wall zeta potentials, the steric effect can significantly affect the
electrostatic potential distribution.
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The ionic and the electrostatic distribution adjacent to a
charged wall, when an ionic aqueous solution comes in contact
with that wall, is described by classical electric-double-layer
(EDL) theory [1,2]. This theory is based on the solution of
the Poisson-Boltzmann equation with the Poisson equation
invoked to describe the EDL potential and the Boltzmann
distribution for interrelating the ionic concentration to the
EDL potential. However, the Boltzmann distribution is based
on the mean field assumption, which considers the ions to
be of point size. Over the years, there have been several
attempts to modify this classical EDL theory by considering
the finite sizes of the ions. (For a detailed review of the
historical development of the EDL theories with finite ion
size effects, refer to Refs. [3,4]). The finite ion size effect
severely influences the different electrodynamic behaviors that
have a remarkable impact on nanofluidic electrochemistry
and transport [5–12]. One such potential problem, in which
the effect of finite ion sizes has not yet been studied, is the
estimation of the ionic distribution at the interface between two
immiscible electrolytes. The classical solution for this problem
is described by the formation of back-to-back electric double
layers at the interface, first analyzed by Verwey-Niessen [13]
invoking Gouy-Chapman theory [1,2,14]. Over the years, this
simple description has been substantially elaborated to include
factors like ion adsorption [15,16], molecular interactions [17],
confinement effects [18], etc.

In this present Brief Report, I consider the effect of finite
ion sizes on the EDL electrostatic potential distribution in a
system of immiscible electrolytes with specified electrostatic
potential at the domain boundaries. I consider the case in which
the EDL thicknesses are comparable to the thicknesses of the
electrolyte layers. Therefore, I am primarily extending the
calculations provided in our previous paper [18] to highlight
the consequence of considering finite ion sizes. I shall invoke
a model proposed by Cervera et al. [19,20] to address the
consequence of the finite ion size effect in EDL potential

distributions and appropriately modify it to include the
contribution of finite ion-solvent interaction potential jumps
that occur across the interface of the immiscible electrolyte
layers. I first obtain closed-form analytical expressions for the
case when there are two such electrolyte layers and extend
it for the more general case of N layers. There are two
principal results of this Brief Report. First is that the finite ion
size considerations substantially enhance the consequences of
jumps in the ion-solvent interaction potential; the alteration in
the EDL distribution on account of such jumps is much more
pronounced as compared to the case without the finite ion size
effect [18]. Second, the finite ion-solvent interaction potentials
ensure that even when the wall ζ potential is significantly weak
(i.e., one can employ a linearized Debye-Hückel treatment
[14]), the steric effect can still influence the overall electrostatic
potential. Classically, one needs to account for the finite ion
size effect in case the wall potential has become large enough
to excessively increase the counterion concentration [21]. The
steric effect ensures a weakened crowding of the ions so that the
wall potential shows a weaker decay, ensuring that at any point
away from the wall, the magnitude of the potential is enhanced
[21]. Therefore, it is universally believed (and demonstrated by
Kilic et al. [21]) that a large wall potential is necessary for the
non-negligible contribution of the steric effect in the overall
potential. However, my present calculation demonstrates that
in the presence of a suitable ion-solvent interaction potential
jump, the potential can be substantially enhanced, thereby
ensuring a non-negligible impact of the steric effect in the
electrostatic potential even for a significantly small wall
potential.

I consider a system of N layers of different immiscible
electrolytes. (For a schematic of the problem corresponding
to N = 2, refer to Fig. (1) of Ref. [18]). I start with the
formulation of Cervera et al. [4,19,20], which considers the
finite ion size effect in the electrostatic potential distribution
and modify it to include the additional contribution for the
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interaction of the ions with the solvent. Accordingly, for an
ion of type i, I had

kBT ln (ai) + eziψ + βi = const, (1)

where

ai = ni/n∞
1 − ν

∑
k nk/n∞

, (2)

with ν being the steric factor. Also in Eq. (1), ni is the ion
number density, n∞ is the bulk value of the ion number density,
kBT is the thermal energy, e is the electronic charge, zi is
the ion valence (henceforth I shall use |zi | = 1), ψ is the
electrostatic potential, and βi is the ion-solvent interaction
potential.

Equation (1) is applicable between any two points in
the system. For example, consider two points: one in the
bulk reservoir (where ni = n∞, ψ = 0, and βi = 0 so that
ai = 1

1−2ν
) and another in the nanochannel. Applying Eq. (1)

between these two points, I can write

ai = 1

1 − 2ν
exp

[
− sgn(zi)eψ + βi

kBT

]
. (3)

Equation (3) can be rearranged to obtain

n+
n∞

+ n−
n∞

= g(ψ)

1 − 2ν + νg(ψ)
, (4)

where

g(ψ) = exp

(−β+ − eψ

kBT

)
+ exp

(−β− + eψ

kBT

)
. (5)

Hence, employing Eq. (2), we get

n±
n∞

= 1

1 − 2ν + νg(ψ)
exp

(∓eψ − β±
kBT

)
. (6)

From the ionic concentration distributions, the electrostatic
potential distribution is

d

dy

[
ε(y)

dψ

dy

]
= e(n− − n+), (7)

where ε is the permittivity. Equation (7) can be solved nu-
merically to obtain the EDL electrostatic potential distribution
[in the presence of the conditions expressed in Eqs. (9)–(11)
as well as the boundary conditions expressed in Eq. (15)]. I
can, however, further simplify the above equations applying
Debye-Hückel linearization to ψ (valid for small ψ) to obtain
closed-form analytical expressions. The resulting modified
Poisson-Boltzmann equation in a dimensionless form reads

d

dȳ

[
ε̄(ȳ)

dψ̄

dȳ

]
= h2

1

2λ2

K1 + K2ψ̄

K3 + K4ψ̄
, (8)

where ψ̄ = eψ/kBT , ȳ = y/h1 (here I consider two
layers of immiscible electrolytes with the heights of
the layers h1 and h2, see Fig. (1) in Ref. [18] for
the schematic), ε̄ = ε/εw (where εw is the permittivity
of water), and λ =

√
εwkBT /2n∞e2. Also, K1 =

exp (−β̄−) − exp (−β̄+); K2 = exp (−β̄−) + exp (−β̄+);
K3 = [1 − 2ν + ν exp (−β̄−) + ν exp (−β̄+)]; and K4 =
ν[exp (−β̄−) − exp (−β̄+)], where β̄i = βi/kBT .

As the system consists of two immiscible liquid layers, I
can express the permittivity, the ionic interaction potential, and
the steric factor as

ε̄ = ε̄1θ (1 − ȳ) + ε̄2θ (ȳ − 1), (9)

β̄± = β̄1,±θ (1 − ȳ) + β̄2,±θ (ȳ − 1), (10)

ν = ν1θ (1 − ȳ) + ν2θ (ȳ − 1), (11)

where θ (x) is the heaviside function.
Hence, denoting ψ̄ for 0 � ȳ � 1 as ψ̄1 and ψ̄ for 1 � ȳ �

(1 + h2/h1) as ψ̄2, I can re-express Eq. (8) as

ε̄1
d2ψ̄1

dȳ2
= h2

1

λ2

K1,1 + K2,1ψ̄

K3,1 + K4,1ψ̄
(for 0 � ȳ � 1) (12)

and

ε̄2
d2ψ̄2

dȳ2
= h2

1

λ2

K1,2 + K2,2ψ̄

K3,2 + K4,2ψ̄

(
for 1 � ȳ � 1 + h1

h2

)
, (13)

where K1,1/2 = exp (−β̄1/2,−) − exp (−β̄1/2,+),K2,1/2 =
exp (−β̄1/2,−) + exp (−β̄1/2,+),K3,1/2 = 1 − 2ν1/2 + ν1/2 exp
(−β̄1/2,−)+ν1/2 exp (−β̄1/2,+), and K4,1/2=ν1/2[exp(−β̄1/2,−)
− exp (−β̄1/2,+)].

To solve Eqs. (12) and (13), we simplify the expression in
the right-hand side of the equations as follows:

h2
1

λ2

K1,1/2 + K2,1/2ψ̄

K3,1/2 + K4,1/2ψ̄

≈ h2
1K1,1/2

λ2K3,1/2

(
1 + K2,1/2

K1,1/2
ψ̄

) (
1 − K4,1/2

K3,1/2
ψ̄

)

≈ h2
1K1,1/2

λ2K3,1/2

[
1 +

(
K2,1/2

K1,1/2
− K4,1/2

K3,1/2

)
ψ̄

]
(14)

with K4,1/2

K3,1/2
∼ 1 and ψ̄ � 1 and dropping the term with ψ̄2.

Employing Eq. (14) to simplify Eqs. (12) and (13), I can solve
for the potential distribution analytically with the following
boundary conditions:

(ψ̄1)ȳ=0 = ζ̄1, (ψ̄1)ȳ=1 = ψ̄c,

(ψ̄2)ȳ=1 = ψ̄c, (ψ̄2)
ȳ=1+ h2

h1

= ζ̄2, (15)(
ε̄1

dψ̄1

dȳ

)
ȳ=1

=
(

ε̄2
dψ̄2

dȳ

)
ȳ=1

.

Here, ψ̄c will be determined a posteriori.
The final analytical results are, accordingly,

ψ̄1 = (A1 + ψ̄c)
sinh

(
h1
λe

1
ȳ
)

sinh
(

h1
λe

1

)
+ (A1 + ζ̄1)

sinh
[

h1
λe

1
(1 − ȳ)

]
sinh

(
h1
λe

1

) − A1, (16)

ψ̄2 = (A2 + ψ̄c)
sinh

[
h2
λe

2
+ h1

λe
2
(1 − ȳ)

]
sinh

(
h2
λe

2

)
+ (A2 + ζ̄2)

sinh
[

h1
λe

2
(ȳ − 1)

]
sinh

(
h2
λe

2

) − A2, (17)
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ψ̄c =
ε̄1

[
A1+ζ̄1

sinh (h1/λ
e
1) − A1 coth

(
h1/λ

e
1

)]
ε̄1 coth

(
h1/λ

e
1

) + ε̄2
λe

1
λe

2
coth

(
h2/λ

e
2

)

+
ε̄2

[
A2+ζ̄2

sinh (h2/λ
e
2) − A2 coth

(
h2/λ

e
2

)]
ε̄1

λe
2

λe
1

coth
(
h1/λ

e
1

) + ε̄2 coth
(
h2/λ

e
2

) , (18)

where

A1/2 = 1
K2,1/2

K1,1/2
− K4,1/2

K3,1/2

, λe
1/2 = λ

√
2ε̄1/2K3,1/2

K1,1/2

√
A1/2.

(19)

The above results can be generalized for a system of N

immiscible electrolyte layers as

ψ̄i = (Ai + ψ̄c,i−1/i) sinh

(
1

λe
i

i∑
k=1

hk − ȳ

)

+ (Ai + ψ̄c,i/i+1) sinh

(
ȳ − 1

λe
i

i−1∑
k=1,i>1

hk

)

−Ai (for 1 � i � N ), (20)

where ψ̄c,i/j is the potential at the interface between the
adjacent layers i and j . Note that the known potentials at
the bottom and the top boundaries are denoted as ψ̄c,0/1 and
ψ̄c,N/N+1, respectively, while the unknown interface potential
is

ψ̄c,i/i+1 =
ε̄i

[Ai+ψ̄c,i−1/i

sinh (hi/λ
e
i ) − Ai coth

(
hi/λ

e
i

)]
ε̄i coth

(
hi/λ

e
i

) + ε̄i+1
λe

i

λe
i+1

coth
(
hi+1/λ

e
i+1

)

+
ε̄i+1

[Ai+1+ψ̄c,i+1/i+2

sinh (hi+1/λ
e
i+1) − Ai+1 coth

(
hi+1/λ

e
i+1

)]
ε̄i

λe
i+1

λe
i

coth
(
hi/λ

e
i

) + ε̄i+1 coth
(
hi+1/λ

e
i+1

)
(for 1 � i � N − 1), (21)

In Eqs. (20) and (21),

Ai = 1
K2,i

K1,i
− K4,i

K3,i

, λe
i = λ

√
2ε̄iK3,i

K1,i

√
Ai. (22)

It can be easily verified that by putting ν = 0 in Eqs. (16)–(22),
I exactly recover the results of the previous paper [18] in which
the finite ion size effect is not considered. Below, I discuss
the results corresponding to N = 2; however, the essential
qualitative findings remain identical for any N .

Before explicitly highlighting the consequence of the
finite steric effect on the EDL potential variation, I dis-
cuss what the analytical results predict at different limits.
First consider β± = 0. For such a case, in the presence
of Debye-Hückel linearization on ψ , I can write [from
Eq. (5)] g(ψ) = exp (−eψ/kBT ) + exp (eψ/kBT ) ≈ 2 such
that n±/n∞ = exp (∓eψ/kBT ) ≈ 1 ∓ eψ/kBT . Therefore,
the EDL potential will be independent of the steric effect
in absence of the ion-solvent interaction; this can be easily
verified if one applies the Debye-Hückel linearization (valid
for small wall potentials) to the equations governing the EDL
potential distribution provided in Ref. [21]. Next consider the
case ν = 0. Analytical expressions for ψ̄1,2 are identical to
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FIG. 1. (Color online) Variation of the EDL electrostatic potential
for different values of the steric factor ν (we always consider ν1 =
ν2 = ν) and the ion-solvent interaction potential β̄1,+. All other ion-
solvent interaction potentials are zero. Other parameters are ε1/ε2 =
1, h1/h2 = 1, h1/λ = 4, and ζ̄1 = ζ̄2 = 0.1. In the legend, “A” and
“N” refer to the results corresponding to analytical and numerical
solutions, respectively. Numerical results are obtained by solving
the full nonlinear equation [Eq. (7)]. In the figure we do not show
the numerical results corresponding to β̄1,+ = 0.4 as they virtually
coincide with those corresponding to the analytical results.

those obtained previously [18]. Also using the linearization for
the expressions corresponding to the ion-solvent interactions
(for reasons, see Ref. [18]), I can clearly see from Eq. (6) that
if β+ = β−, n±/n∞ ≈ 1 ∓ ezψ/kBT , i.e., the EDL potential
will be independent of ion-solvent interaction energies. The
other important issue is the appropriate choice of the ion-
solvent interaction parameter β. We have proved in our
previous paper [18] that only when β/(kBT ) < 1 is it feasible
to employ a Debye-Hückel linearized treatment as has been
done for the present case. Hence, for all the analytical results
that follow, I restrict myself to βi/(kBT ) < 1.

In Fig. (1), I show the analytical and numerical results for
the variation of the EDL potential as a function of the steric
factor ν and the ion-solvent interactions β1,+. This figure con-
veys the two central findings of this Brief Report. It has been
established [18] that the jump in the ion-solvent interaction
potential for the coions (cations) leads to substantial lowering
of the overall cation concentration ensuring a fast screening
of the wall potential and large negative potential values (i.e.,
opposite in sign to the wall potential). Figure (1) clearly shows
that the consideration of finite ν augments this effect. The
intrinsic lowering of the screening effect that can be associated
with the consideration of finite ion sizes [21] ensures an
even more pronounced screening of the wall potential and
a larger negative electrostatic potential. Figure (1), therefore,
clearly manifests that even for a substantially small wall ζ

potential, one can ensure a finite effect of the steric factor.
This can be straightway attributed to the enhancement in the
EDL potential due to the jump in the ion-solvent interaction
potential. As an additional testament to this fact, one can
witness [see Fig. (1)] a greater impact of the steric effect for
larger β values. In summary, Fig. (1) in addition to clearly
manifesting the enhancement in the overall potential induced
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FIG. 2. (Color online) Variation of the EDL electrostatic potential
for different values of the steric factor ν (we always consider ν1 =
ν2 = ν) and the ion-solvent interaction potential β1/2,± for (a) ε1/ε2 =
1 and h1/h2 = 1, (b) ε1/ε2 = 10 and h1/h2 = 1, and (c) ε1/ε2 = 1
and h1/h2 = 0.1. Other parameters are h1/λ = 4 and ζ̄1 = ζ̄2 = 0.1.
In all these plots, only βi has a finite nonzero value. Also, “A” and
“N” refer to the results corresponding to analytical and numerical
solutions, respectively. Numerical results are obtained by solving the
full nonlinear equation [Eq. (7)].

by the finite steric effect also establishes that the ion-solvent
interaction can be identified as an important factor which will
ensure a non-negligible contribution of the steric effect even
when the wall potential is very small; this clearly broadens
the scope of the steric-effect-related problems wherein, so
far, it has been universally accepted that non-negligible
influences of the steric effect could be witnessed only for very
large wall potentials [21]. We have previously demonstrated
[18] that only when |βi | < 1 does the Debye-Hückel-based
treatment produce acceptable results. For higher values of |βi |,
therefore, numerical solutions become unavoidable; for such
values of |βi |, one witnesses large differences in analytical
and numerical results, clearly manifesting the invalidity of
the analytical results for such |βi | values. For example, in
Fig. (1) for ν = 0.45, the maximum deviation between the
analytical and numerical results is 10% for β1,+ = 0.9 and
22% for β1,+ = 2.0. Interestingly, for ν = 0, numerical results
predict a greater magnitude of the EDL potential whereas for
ν = 0.45 this is reversed. Such an effect can be attributed
to the lowering of the ionic number density gradient for
finite ν and larger ψ [manifested through the variation of the
denominator on the righ-hand side of Eq. (6)]. In the following
results, I provide analytical results for ψ for |βi | < 1 (for
such a case, the corresponding numerical results will provide
some deviation) and numerical results for ψ for |βi | > 1
(for such a case, the analytical results will be completely
invalid).

In Fig. (2), I demonstrate that for all kinds of βi values, the
steric effect magnifies the effect of the ion-solvent interaction.
For all the cases, finite βi leads to the depletion (or weaker
screening) of the corresponding ions (i.e., cations for βi,+
and anions for βi,−). The finite steric effect enhances this
weakening in screening, thereby leading to a more enhanced
manifestation of the ion-solvent interaction potential jump in
the overall electrostatic potential.

To summarize, I have demonstrated that the consideration
of the finite steric effect can significantly enhance the impact
of the ion-solvent interaction potential jump, witnessed at the
interface between two immiscible electrolytes [18], in altering
the EDL electrostatic potential distribution. Conversely, such
a system of immiscible electrolytes, causing a jump in
the ion-solvent interaction potential, can be viewed as a
factor that ensures a non-negligible contribution of the steric
effect even for a substantially small wall potential, thereby
broadening the range of steric-effect-related studies that are
primarily limited to cases with substantially large wall ζ

potentials [21].
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