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Compact-envelope bright solitary wave in a DNA double strand
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We study the nonlinear dynamics of a homogeneous DNA chain that is based on site-dependent finite stacking
and pairing enthalpies. We introduce an extended nonlinear Schrödinger equation describing the dynamics of
modulated wave in DNA model. We obtain envelope bright solitary waves with compact support as a solution.
Analytical criteria of existence of this solution are derived. The stability of bright compactons is confirmed by
numerical simulations of the exact equations of the lattice. The impact of the finite stacking energy is investigated,
and we show that some of these compact bright solitary waves are robust, while others decompose very quickly
depending on the finite stacking parameters.
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I. INTRODUCTION

The dynamics of DNA has been extensively studied during
the last decade. Particularly, the nonlinear field of sciences pays
special attention to the processes that take place at the base pair
scale [1]. The local opening of the DNA double helix at the
transcription start site is a crucial step for the genetic code. This
opening is driven by proteins, but the intrinsic fluctuations of
DNA itself probably play an important role. The dynamical
properties of these bubbles and their relations to biological
functions have therefore been the subject of many experimental
and theoretical studies. To understand the phenomenon of
thermal denaturation and the dynamics in DNA, Peyrard and
Bishop (PB) have proposed a model where DNA is represented
by a pair of harmonic chains coupled by a nonlinear potential
(Morse potential) [1,2]. This model describes, in a simplified
way, the hydrogen bond and has been used successfully in
numerous applications such as energy localization [3] or to
calculate solitonic speed [4]. Experiments proved that the free
energy of opening base pairs depends on the identity of the
next base pairs; this is due to the stacking interaction between
neighboring bases on the same strand [5]. As is well known,
the solitons existing in the PB model result from the balanced
competition between dispersion and nonlinear effects. In
the huge taxonomy of the models for DNA dynamics, the
possibility that nonlinear effects might focus the vibrational
energy of DNA into localized coherent structures is indeed
expressed by considering pulse waves, kinks, or breathers [6].
By means of a small amplitude expansion in the original PB
model, the classical nonlinear Schrödinger (NLS) equation
is retrieved. Recently, it has been shown that the inclusion
of anharmonicities in the study of lattice models can produce
qualitatively new effects. In particular, Rosenau and Hyman [7]
found solutions of the solitary type without infinite tails,
termed solitons with compact support or compactons. These
traveling-wave solutions have a remarkable property: Unlike
the Korteweg de Vries (KdV) soliton, which narrows as the
amplitude increases, the compacton’s width is independent of
the amplitude [8]. As a consequence, two adjacent compactons
do not interact unless they come into contact in a way similar to
the contact between hard spheres [9,10]. Note that the stacking
interaction in the Dauxois-Peyrard-Bishop (DPB) [11] model
is not harmonic, but it still differs fundamentally from that of

statistical models because it does not make reference to any
characteristic energy. Since its introduction, this model has
been used to unravel several aspects of melting. Joyeux and
Buyukdagli (JB) [12] proposed a few years ago a dynamical
model for DNA, which is closer to the statistical ones than
the DPB model, in the sense that it is based on site-specific
stacking enthalpies and showed that the finiteness of the
stacking interaction is, in itself, sufficient to ensure a sharp
melting transition.

In the present work, we show that this finite stacking energy
interaction model supports envelope bright solitary waves with
compact support. To this end, the organization of the paper is
as follows. In Sec. II, we present the model and its equations.
In Sec. III, by means of the semidiscrete approximation, we
derive the extended NLS equation governing modulated waves
in the lattice. Exact analytical solution with compact support is
obtained for this extended NLS equation in Sec. IV. Numerical
investigations are considered in order to verify the validity
and the stability of analytical predictions, and we draw our
conclusions in Sec. V.

II. MODEL AND EQUATION OF MOTION

The general form of the model we are considering in this
paper is

H =
∑

n

1

2m
P 2

n + W (yn,yn−1) + D(e(−αyn) − 1)2, (1)

where we choose the JB model [see the finite stacking potential
in Fig. 1(a)], i.e.,

W (yn,yn−1) = �Hn

C
(1 − e−b(yn−yn−1)2

) + Kb(yn − yn−1)2,

(2)

where �Hn/C is a Gaussian hole of depth and the backbone
stiffness is taken as a harmonic potential of constant Kb. In this
set of equations, m is the reduced mass of the bases, and yn is
the displacement that stretches the hydrogen bonds. The last
term in Eq. (1) is the on-site Morse potential [see Fig. 1(b)],
where D denotes the dissociation energy, and the parameter α,
homogeneous to the inverse of a length, sets the special scale
of the potential. This on-site Morse potential appears as a
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FIG. 1. (Color online) (a) Representation of the stacking interaction potential of base pairs W (yn,yn−1) defined by the JB model as a
function of the relative displacement yn − yn−1. Kb = 10−5 eV A−2 being very small, its effect on infinite behavior (when yn − yn−1 → ∞) is
not visible here. (b) Morse potential with the dissociation energy.

“substrate” potential in the model, which comes directly from
the structure of DNA. In this work numerical values of our
parameters are those of Refs. [12,13], that is, m = 300 amu,
D = 0.04 eV, α = 4.45 Å

−1
, Kb = 10−5 eV Å

−2
. Including

Eq. (2) in (1) yields the corresponding equation of motion of
the nth base pair:

d2yn

dt2
= 2Kb

m
(yn+1 + yn−1 − 2yn) + 2b�Hn

mC

[
(yn+1 − yn)

× e−b(yn+1−yn)2 − (yn − yn−1)e−b(yn−yn−1)2]
+2αD

m
e(−αyn)(e−αyn − 1). (3)

According to the original approach of Ref. [14], it is assumed
that the oscillations of bases are large enough to be anhar-
monic, but still insufficient to break the bond since the plateau
of the Morse potential is not reached. Thus, it is presumed that
the base nucleotides oscillate around the bottom of the Morse
potential. We can therefore expand the exponential function
up to the third-order approximation. Finally, Eq. (3) becomes

d2yn

dt2
=

(
2Kb

m
+ 2b�Hn

mC

)
(yn+1 + yn−1 − 2yn)

− 2b2�Hn

mC

[
(yn+1 − yn)3 − (yn − yn−1)3]

− 2α2D

m

(
yn − 3

2
αy2

n + 7

6
α2y3

n

)
. (4)

On the other hand, it is convenient for the analytical and
numerical calculations to transform these equations into a
dimensionless form by defining the dimensionless variables

Yn = αyn, τ = (
√

Dα2/m)t,

Cl = 2

Dα2

(
Kb + b�Hn

C

)
, Cnl = − 2

Dα4

b2�Hn

C
,

(5)

which transforms Eq. (4) into

d2Yn

dτ 2
= Cl(Yn+1 + Yn−1 − 2Yn) + Cnl

[
(Yn+1 − Yn)3

− (Yn − Yn−1)3
] − ω2

g

(
Yn − 3

2
Y 2

n + 7

6
Y 3

n

)
, (6)

where ω2
g = 2. Note that the control parameters b and �Hn/C

allow one to fix independently Cl and Cnl .
For finite wave amplitude, nonlinearities of the system

give rise to the generation of higher harmonics. However, we
are using the so-called rotating-wave approximation, which
consists essentially in neglecting harmonics, and we substitute
into Eq. (6) the trial solution [15,16]

Yn(τ ) = B(X,T )eiθn + B∗(X,T )e−iθn , (7)

where the asterisk denotes complex conjugation. This expres-
sion of Yn(τ ) includes the fast local oscillation through the
dependence of the phase θn = kn − ωτ , and then preserves the
discrete character of the system [17], while the dependence of
the envelope part is described by the slow amplitude variation
of the function B(X,T ) with respect to the slow variables
T = ε2τ and X = ε(n − vgτ ), ε being a small dimensionless
parameter. Here the lattice spacing has been taken as equal
to unity. The parameter is the group velocity associated to
the wave packet. The linear oscillation frequency of the base
pairs and wave number are related vg = dω

dk
by the dispersion

equation

ω2 = ω2
g + 4Cl sin2(k/2). (8)

As shown by Eq. (8), the linear equation has a gap ωg

and is limited by the cutoff frequency ωm =
√

ω2
g + 4Cl due

to the discreteness, whereas vg = Cl sin(k)
ω

. Instead of applying
the standard reductive perturbation method in the semidiscrete
limit to Eq. (6), which forbids one from appreciating the role
of the nonlinear dispersion in Eq. (6), we substitute Eq. (7) into
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Eq. (6) and neglect all terms in ε5 or more [15,18]. Then this
envelope part leads to the following one-dimensional NLS:

i
∂B

∂T
+ PBXX + Q|B|2B

= Cnl

w

{
il1[|B|2BX] + il2[B∗BXBXX] + 2il3[|BX|2BX

+BBXB∗
XX + BB∗

XBXX] + l4

[
B|BX|2 + 1

2
B2B∗

XX

]
+ l5[|B|2BXX] + 4l6

[
B∗B2

X

] + l7
[
B2

XB∗
XX

+ 2|BX|2BXX

]}
. (9)

The terms proportional to lk with k = 1, 2, 3, . . . ,7 result
from the inclusion of the finite stacking energy. They therefore
include the effect of nonlinear dispersion terms. The different
expressions involved in (9), including the group velocity
dispersion (GVD) P and the self-phase modulation (SPM)
Q depend on k, ω, Cl , and Cnl :

P = Cl cos(k) − v2
g

2ω
,

Q = − 1

2ε2ω

[
7

6
ω2

g + 48Cnl sin4

(
k

2

)]
,

l1 = −24

ε
sin (k) sin2

(
k

2

)
,

l2 = −3ε [sin (k) + sin (2k]) , (10)

l3 = −3ε sin(k)

2
, l4 = 12 sin2

(
k

2

)
,

l5 = −12 sin2

(
k

2

)
cos (k) ,

l6 = −3 sin
(

k
2

)
sin

(
3k
2

)
2

, l7 = 3ε2 cos (k)

2
.

Assuming that B(X,T ) and all its derivative converge
to zero sufficiently rapidly as X −→ ±∞, Eq. (9) has
two conservation laws, which can be expressed in terms
of continuity equations. The first conserved quantity is the

Hamiltonian H = ∫
ĤdX corresponding to invariance under

translations in X, where the Hamiltonian density is

Ĥ = Ĥ1 + Ĥ2 + Ĥ ∗
2 , (11)

with

Ĥ1 = −P |BX|2 + Q

2
|B|4 + 3l7Cnl

2ω
|BX|4 − l5

[|B|2|BX|2],
(12)

Ĥ2 = Cnl

ω

{
il1

2
[|B|2BB∗

X] + il2

4
[B∗|BX|2BX]

+ il3

2
[|BX|2B∗

X] + 3l4

4

[
B2B∗2

X

] + 2l6
[
B∗2B2

X

]}
. (13)

The second important invariant is the normalization of the
envelope

N =
∫

|B|2dX. (14)

The conservation of norm is intimately connected to the
phase invariance of Eq. (9), i.e., the fact that if {B} is a solution
so is {Beiϕ} for any constant phase ϕ ∈ R.

III. BRIGHT SOLITONS WITH COMPACT SUPPORT
SOLUTION

The existence of compact waves has been rigorously proven
by Saccomandi and Sgura [19] for Hamiltonian systems,
provided that an anharmonicity condition is fulfilled. To
proceed with the integration of the extended NLS equation
(9), we first separate the complex envelope function and the
phase shift [15] ξ (X,T ) according to

B(X,T ) = φ(X,T ) exp[−iξ (X,T )], (15)

where φ and ξ are real functions of X and T . From the
analysis of the coefficients lk with k = 1, 2, 3, . . . ,7, it appears
that 8l6 = 2l5 − l4. By using this relation and substituting the
expression (15) into Eq. (9), we obtain a nonlinear system
of two equations by separating real and imaginary parts. It,
respectively, reads

−
[

∂ξ

∂T
+ P

(
∂ξ

∂X

)2]
φ + P

∂2φ

∂X2
+ Qφ3 = Cnl

ω

{
−

[
l1

∂ξ

∂X
+ 8l6

(
∂ξ

∂X

)2

+ (l2 − 2l3)

(
∂ξ

∂X

)3]
φ3

−
[

3l7

(
∂ξ

∂X

)4]
φ3 + (l4 + 4l6)

[
φ2 ∂2φ

∂X2
+ φ

(
∂φ

∂X

)2 ]
(16)

−
[

(2l2 + 2l3)
∂ξ

∂X
− 5l7

(
∂ξ

∂X

)2]
φ

(
∂φ

∂X

)2

−
[
l2

∂ξ

∂X
− l7

(
∂ξ

∂X

)2]
φ2 ∂2φ

∂X2
+ 3l7

(
∂φ

∂X

)2
∂2φ

∂X2

}
,

∂φ

∂T
+ 2P

∂ξ

∂X

∂φ

∂X
= Cnl

ω

{[
l1 + 16l6

∂ξ

∂X
− (l2 − 10l3)

(
∂ξ

∂X

)2

− 6l7

(
∂ξ

∂X

)3]
φ2 ∂φ

∂X

+
[

2l3 + 2l7
∂ξ

∂X

] (
∂φ

∂X

)3

+
[
l2 + 4l3 + 2l7

∂ξ

∂X

]
φ

∂φ

∂X

∂2φ

∂X2

}
. (17)
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Let us look for traveling wave solutions in the form
φ(X,T ) = φ(z) with z = (X − veT ) and linear phase shift
ξ (X,T ) =γ (X − vφT ), where ve and vφ are the envelope and
phase velocities, respectively. We can simplify Eqs. (16) and
(17) by considering the following equations:

φT = −veφz, φX = φz, (18)

which reduces straightforwardly Eq. (17) to

Cnl

ω

{
[l2 + 4l3 + 2l7γ ]φ

d2φ

dz2
+ 2(l3 + l7γ )

(
dφ

dz

)2

+ [l1 + 16l6γ − (l2 − 10l3)γ 2 − 6l7γ
3]φ2

}
+ ve − 2Pγ = 0. (19)

By using the drop boundary conditions

φ → 0, φz → 0 at z → ±∞, (20)

we obtain

ve = 2Pγ. (21)

The first integration of Eq. (16) gives

η1

(
dφ

dz

)4

+ (η2 + η3φ
2)

(
dφ

dz

)2

+ η4φ
4 + η5φ

2 = 0,

(22)

where

η1 = 3Cnl

4ω
l7; η2 = −P

2
; η3 = Cnl

2ω
(l4 + 4l6 − l2γ + l7γ

2),

η4 = −1

4

{
Q+Cnl

ω
[l1γ + 8l6γ

2 + (l2 − 2l3)γ 3 − 3l7γ
4]

}
,

η5 = γ

2
(Pγ − vφ),

γ = l2 + 2l3

4l7
. (23)

Equation (22) leads to(
dφ

dz

)2

= − (η2 + η3φ
2)

2η1

+
√(

η2
3 − 4η1η4

)
φ4 + (2η2η3 − 4η1η5)φ2 + η2

2η1
,

(24a)

or

(
dφ

dz

)2

= − (η2 + η3φ
2)

2η1

−
√(

η2
3 − 4η1η4

)
φ4 + (2η2η3 − 4η1η5)φ2 + η2

2η1
.

(24b)

Taking the phase velocity as

vφ = ve

2
−

η2
(
η3 +

√
η2

3 − 4η1η4
)

η1γ
, (25)

Eqs. (24a) and (24b), respectively, take a simpler form:

(
dφ

dz

)2

= μ2
(
B2

0 − φ2
)
, (26a)

and

(
dφ

dz

)2

= − η4

η1μ2
φ2, (26b)

with

B2
0 =

⎛
⎝ P

η3 −
√

η2
3 − 4η1η4

⎞
⎠ , (27)

and

μ2 =
⎛
⎝η3 −

√
η2

3 − 4η1η4

2η1

⎞
⎠ . (28)

For the resolution of this equation, we use the same technique
as in Refs. [20,21]. The integration of Eq. (26a) yields the
following solution in the compact support:

φ(z) = B0 cos μ(z − z0), if |(z − z0)3 � π/2μ, (29)

while in the noncompact domain, φ(z) = 0, which respects
Eq. (26b). The parameter μ may serve as a measure of
the importance of discreteness effect in the system. This
solution indicates that the compact bright solitary wave is
characterized by amplitude B0 and a strictly limited width
L = π/μ. Moreover, z0 locates the center of mass of the
solution. Note that other solutions of (26a) exist, describing
multicompacton waves, such as φ(z) = B0 cos μ(z − z0) if
|(z − z0)| � π/μ, and 0 elsewhere, i.e., a double compacton
solution (see Sec. IVA). Gaeta et al. [22] combined also two (or
more) kink solutions to obtain a multikink solution, which is a
special type of multicompacton solution, but they considered
a periodic on-site potential leading to an arbitrary sequence
of kinks and antikinks. According to Eqs. (27) and (28), the

FIG. 2. (Color online) Study of the existence criteria of com-
pact bright solitary waves as a function of the wave vector k

for the parameter D = 0.04 eV, α = 4.45 Å
−1

, Kb = 10−5eV Å−2,
�Hn/C = 0.22 eV. [Solid line corresponds to the criterion obtained
from Eq. (32) and dashed line for the one obtained from Eq. (33)]. It
appears that the criteria are satisfied in the same domains of the wave
vector.
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existence of the compact solution (29) is subjected to the
constraints

P

η3 −
√

η2
3 − 4η1η4

� 0, (30)

η3 −
√

η2
3 − 4η1η4

2η1
� 0. (31)

The left-hand side of these criteria of existence (30) and (31)
of a compact solitary wave are calculated as a function of
the wave number and sketched in Fig. 2. From this figure, it

appears that the criteria (30) and (31) are satisfied for the same
domain of wave numbers, that is, in [0,0.29π ] and [0.65π,π ].
Moreover, B2

0 and μ2 admit a maximum for a value very close
to the upper boundary of the first of these domains. These
constraints can be rewritten in terms of the frequency ω of
the carrier wave by means of the dispersion relation (8). By
replacing the parameters ηi by their expressions in Eq. (23), the
existence condition of a compact bright solitary wave becomes

−r < Cnl < 0, (32)

with

r = (7/6)ω2
g

12 sin4(k/2) − (1/8)[l1γ + 8l6γ 2 + (l2 − 2l3)γ 3 − 3l7γ 4]
. (33)

We remark that this criterion is independent of the GVD in
the formation of this compact bright solitary wave. However,
it appears from Eqs. (23) and (25) that the GVD controls the
compact solitary wave’s speed. Equations (30) and (31) show
also that the existence of the compact solitary wave in the
network is closely connected to the presence of the nonlinear
dispersive terms proportional to coefficients η1 and η3. It is
possible to obtain the compact solution even if the self-phase
modulation SPM term is absent (Q = 0). Accordingly, the
SPM term plays a minor role in the formation of the compact
envelope bright solitary wave.

We then check whether this solution is a maximum or a
minimum of the effective Hamiltonian of the system. In fact,
from the study of the nonlinear extended KdV equation, it has
been proved that when the effective Hamiltonian is maximum
(resp. minimum), the compacton solution turns out to be
unstable (resp. stable) [23]. Thus the effective Hamiltonian
can be a simple way of checking stability. We insert in
the Hamiltonian (11), by means of Eqs. (15) and (29), the
following compact form as a trial function:

B0 cos μ(z − z0) exp[iγ (X − vφτ )],|(z − z0)| � π/2μ,

FIG. 3. (Color online) Temporal behavior of compacton (initial
speed equal zero) spacial profile. Magnitude A0 = 0.015, width L =
50, and central site located at n0 = N/2. The solution is stable.

(34)

where B0 and μ are now taken as free parameters. Taking
into account the relationships (11), (12), and (13), we obtain
the following contribution for the compact region of the wave
(|(z − z0)| � π/2μ) in the effective Hamiltonian:

HC = 3πB4
0

8μ

{
3l7

2
[μ4 + γ 4] − 4πP

3B2
0

[μ2 + γ 2]

+μ2

[
l7γ

2 + l1

12
γ + l4

3
+ 2l5

3

]

+
[
Q

2
+ l1

4
γ (1 + γ 2)

]}
. (35)

Due to the fact that solution (34) satisfies the normalization
condition (14), the problem of minimizing H under the
constraint N = const is reduced to the problem of satisfying
the equation ∂H

∂μ
= 0, and we find that the Hamiltonian H has

a minimum at the exact value of μ for fixed N , which indicates
the stability of the analytical compact wave (34).

IV. DIRECT NUMERICAL ANALYSIS

The results discussed in the previous section are only
approximated ones since they are obtained not from the initial
equations of motion (3) but from the extended NLS equation
(9) derived after some hypothesis. In order to check if the above
analytic continuum bright soliton with compact support can
survive in the discrete lattice, different numerical simulations
of Eq. (3) have been performed, using the following initial
condition:

Yn(t = 0)

=
{
A0 cos μ(n − n0) exp[i(k − γ )n], |(n− n0)| � π/2μ

0 otherwise,

(36)

obtained from Eqs. (7), (15), and (29). The system has been
integrated with a fourth-order Runge-Kutta scheme with a time
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FIG. 4. (Color online) Same as in Fig. 3 but the initial envelope
width is now L = 22. The initial compacton loses its shape.

step chosen to conserve the energy to an accuracy better than
10−6 over a complete run. The number of base pairs is fixed at
N = 600 in order to avoid any wave reflection at the end of the
molecule that can affect the creation process and the dynamics
of the localized structures.

A. Stability of the compact static wave

To check the stability of the solutions over time, the solution
is evolved over a very long time. First, the initial velocity
is taken to be zero; i.e., from Eqs. (7), (8), (18), and (21),

vg + ve = 0 (see Sec. IV B). Figure 3 shows the stability of
the lattice profile of the bright soliton with compact envelope
over 2000 normalized time units (4.2 × 10−12s), which is
much greater than the typical time scale of the transversal
movements in DNA (10−14s). The initial width and amplitude
of compactons are chosen to be respectively L = πμ = 50
times the lattice spacing, and A0 = 2B0 = 0.015, where B0

and μ are, respectively, given by Eqs. (27) and (28). As can be
seen from this figure, the initial analytic continuum compact
envelope solutions of Eq. (29) remains stable even after a
very long time in the discrete lattice. We have also considered
the compact envelope solution with width L = 22. In this case,
the results of the numerical simulations show that although the
solution remains stable after 500 time units, it loses its compact
support and develops some structures near its edge after a
larger time: 1000 time units (it starts developing a tail near the
edge of the compacton, thereby destroying the compact nature
of the solutions; see Fig. 4). It is clear that the stability of
the compacton solutions with initial speed equal to zero, in a
discrete lattice, depends crucially on its width which measures
the discreteness effects in the system. Moreover, as can be seen
in Ref. [24], the width and the amplitude are some parameters
acting on the stability of compact wave with the zero velocity.
In order to consider stability against perturbations, we add a
small one to the equilibrium solution Yn(t) = Ŷn(t) + εn(t),

0 500 1000 15000

1

2

3 x 10
−3

τ

|Y
ma

x|
2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

20

40

60

80

A0

L

unstable stable

(a)

(b)

FIG. 5. (a) Regions where the static compact bright solitary wave is stable. The parameters have been chosen as m = 300 amu, D = 0.04 eV,

α = 4.45Å
−1

, Kb = 10−5 eV Å−2. Solid line and dashed line show, respectively, the analytical and numerical studies. We note that the stability
against small perturbations of the compact solitary wave depends on the amplitude and the width of the initial wave. Our analytical and
numerical studies show that in the left region, there exist values of q revealing instabilities, while in the right region, no instability appears,
whatever the value of q. In addition, the dotted line demarcates the region of width where the continuum approximation is not correct.
(b) The initial pulse breaks up into a pulse train, and the amplitude decreases as the time increases, when the perturbation wave number does
not respect the condition of Eq. (41).
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FIG. 6. (Color online) Variation of phase velocity vs negative anharmonicity parameter Cnl and wave number k. In insert, two values of
wave numbers are chosen: k = 0.28π (solid line), k = 0.24π (dashed line).

[Ŷn(t) as given by Eq. (36) when t = 0] and linearize equation
of motion Eq. (6) with respect to εn(t):

ε̈n(t) = Cl(εn+1+ εn−1− 2εn)+ 3Cnl[(Ŷn+1− Ŷn)2(εn+1− εn)

+ (Ŷn−1 − Ŷn)2(εn−1 − εn)]

−w2
g

(
εn − 3Ŷnεn + 7

2
Ŷ 2

n εn

)
. (37)

This form was already considered by Gorbach [25] in the
case of the compact-like breathers in systems with nonlinear
dispersive term. We consider the perturbation in the form
εn(t) = b exp[i(qn − �t)] + complex conjugate, q and �

being wave number and angular frequency of perturbation,
respectively. By considering the compact wave at initial
position, we obtain the following dispersion relation:

�2 = {
4Cl + 12CnlA

2
0[cos2(μ) + 1 − cos(μ) cos(k − γ )]

}
× sin2(q/2) + w2

g

(
1 − 3A0 + 7

2
A2

0

)
. (38)

A modulational instability (MI) will develop in the molecule
if the right-hand side of this equation is negative; i.e., the
perturbed wave can be unstable only if

4Cl+12CnlA
2
0[cos2(μ) + 1−cos(μ) cos(k − γ )] < 0. (39)

It becomes possible to express the initial amplitude A0 with
respect to a threshold amplitude A0,cr. Therefore a compact
solitary wave introduced in the system stays stable for any q

if the initial amplitude exceeds the threshold amplitude A0,cr

defined as follows:

A0 � A0,cr =
√

Cl

3 |Cnl| [cos2(μ) + 1 − cos(μ) cos(k − γ )].

(40)

This is plotted in Fig. 5(a), where the value of the threshold
amplitude A0,cr depends on the width of compact wave. Even
in the unstable region [left part of Fig. 5(a)], the compact wave
stays stable if the perturbation wave number q respects the
following condition:

| sin(q/2)| �

√√√√ w2
g

(
1 − 3A0 + 7

2A2
0

)
∣∣4Cl + 12CnlA

2
0[cos(μ)2 + 1 − cos(μ) cos(k − γ )]

∣∣ . (41)
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FIG. 7. Time behavior of propagating compact bright solitary wave in DNA for Cnl = −0.4, i.e., �Hn/C = 0.22 eV and b = 8 Å
−2

(a)
The initial wave is the compact envelope bright solitary wave located at site n0 = 100 with amplitude A0 = 1.2 × 10−2, width L = 50, and
wave number k = 0.28π . Panels (b) and (c) show the wave at given times of propagation: 80 and 170, respectively. The wave experiences are
uniform, and the propagation is stable along the DNA lattice.

Therefore, the stability of the compact solitary waves
depends on the parameters of initial compact solitary wave,
including the perturbation. For example, by taking the ampli-
tude and width of the initial wave, respectively, as A = 0.014
and L = 50, the wave suffers eventual destruction when the
perturbative wave number is q = 0.5π and maintains its
stability when the perturbative wave number is q = 0.07π .
For large values of amplitude, the perturbated wave maintains
its stability for all values of perturbating wave number,
but for smaller amplitudes, as can be seen in Fig. 5(b),
the wave predicted to be unstable against MI breaks up
into a pulse train, and the amplitude decreases as the time
increases.

B. Stability of the compact propagating wave

First, we can see in Eq. (25) that the phase velocity vφ

depends on the anharmonicity of the system through ηi .
Namely, in Fig. 6, we plot the phase velocity as a function
of the anharmonic coefficient Cnl . We show that, when
−0.4 � Cnl � 0 , for k near 0.26π , the phase velocity reaches
a minimum value. But the compact wave found as solution of
Eq. (6) propagates, in fact, with a speed that is composed of
the group velocity vg and the envelope velocity ve, given by
Eq. (21), that is, vC = ve + vg . Fixing initially this velocity
to vC = 1.00 cells/normalized time unit (that is, VC = 475
cells/ps in denormalized time unit), which corresponds to
Eq. (36) with wave number k = 0.28π , width L = 50, and
amplitude A = 0.012, we see in Fig. 7 that the initial wave
propagates without change of its initial profile and with the
constant velocity vC = 0.97 cells/normalized time unit (i.e.,

VC = 460 cells/ps), as illustrated in Fig. 7, where the evolution
of the compact solitary wave at 0, 80, and 170 normalized time
is shown. The velocities issued from analytical and numerical
analysis present a small discrepancy, which is remarkable
because approximations have been made from Eq. (6) to
Eq. (36). This behavior confirms the description of bright
compact solitary in a DNA doubled strand with the extended
NLS equation (9), corresponding to energy wave transfer in
DNA molecules. The energy is localized in a limited narrow
region for biologically significant duration and can propagate
as the bright compacton and a large part of the energy is
stored in the hydrogen bonds. Note that a similar result for
topological soliton with compact support was obtained by
Saccomandi [19,20] in the context of an anharmonic lattice
where the nonlinear dispersion is invoked to describe the
dynamic of the system. Our results with compact support are in
agreement with the result of these preceding studies. It is also
interesting to check if a multicompacton solution of Eq. (29)
such as

φ(z) = B0 cos μ(n − n0), if |(n − n0)| � π/μ (42)

can propagate and stays stable. In Fig. 8 two compactons
move with a stable shape to the right with the same velocity,
and for −1 � Cnl � −0.4; Fig. 9 demonstrates the emergence
of stable compactons out of more general initial data. The
emerging compactons are stable and preserve their initial
shape. For the original Rosenau and Hyman [7] compacton
equations, numerical investigations showed some remarkable
properties, namely, whatever initial compact data were given,
they eventually evolved into compactons. We show in Fig. 10
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FIG. 8. Time behavior of multicompacton propagation in DNA. We use the parameter Cnl = −0.4, i.e., �Hn/C = 0.22 eV and b = 8Å
−2

.
The propagation is stable along the DNA lattice.

that an initial compact wave decomposes into a sequence
of compactons whose number depends on the initial energy.
Notably for large energy, two emitted compactons appear and
propagate to the left. From Figure 10 we see that even if the

widths of the emitted compactons are small, they propagate
keeping their stability. This suggests that for the case of a
nonzero initial velocity, the stability of the compact wave
does not depend on their width and amplitude. This may be

n

Y n
(τ
=4

0)

n

Y n
(τ
=8

0)

n

Y n
(τ
=1

70
)

FIG. 9. Same as in Fig. 7, but the anharmonic parameter is Cnl = −0.84, i.e., �Hn/C = 0.1eV and b = 8Å
−2

. The initial compacton
preserves its shape but emits another compacton with a lower amplitude that propagates leftward with a conserved shape.
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FIG. 10. Decomposition of an initial compacton for the parameter Cnl = −0.9, i.e., �Hn/C = 0.09 eV and b = 9Å
−2

. An initial compact
wave breaks into a string of compactons, each of them remaining then stable.

understandable because the energy is contained in a moving
compact region when a deliberately perturbed compact bright
solitary wave with nonzero initial velocity is numerically

tested. Even if the localized energy tends to be shared in
the whole system, the wave stays very robust, as shown in
Fig. 11.

n
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)

n

Y n
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)

FIG. 11. Time evolution of a perturbated moving compact solitary wave, (A = 0.016 and L = 50), modulated with a wave number
q = 0.5π . The perturbated compact solitary wave is stable during the displacement.
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V. CONCLUSIONS

In this paper we have derived an extended NLS equation
governing the dynamics of modulated waves in DNA lattice
with nonlinear dispersion. This equation reduces to the
standard NLS equation in the absence of nonlinear dispersion
of the network. We have shown that this equation allows
to successfully describe the propagation of envelope bright
solitary wave with compact support. Numerical experiments
have been carried out in order to confirm the analytical
predictions. It has been observed that the existence and stability
of the envelope bright compacton with zero velocity, in the
nonlinear lattice with finite stacking energy, depends specially
on the value of the amplitude. Otherwise, we have suggested
that for the case of a nonzero initial velocity, the stability
of the compact wave does not depend on its amplitude or
width. Compact initial data stay stable or decompose into
a train of stable compactons whose width depends on the
number of emitted compactons. For the physical point of our
work, by showing the existence and the stability of compact
bright solitary waves in DNA, we provide a possible physical
mechanism for the effect of finite enthalpy stacking on DNA
dynamics. This model with on site-dependent finite stacking
is used here to show the existence of a compact bright
solitary wave in DNA double strands. This stacking interaction
provides both the linear and nonlinear coupling parameters,
which are fixed independently and control the dynamic and
the stability of the system. As described in some detail in
Ref. [12], this model can also provide the description of the
physics of DNA melting and show that the finite enthalpy
can also be responsible of the denaturation of DNA. We
believe that this work shows a new vision on the concept
of compactification of nonlinear waves in DNA and can also
be exported in the study of many other physical systems. In

the actual stage of the research on structures with compact
support, it is true that the obtained results are still far away
from practical applications. However a recent example reports
that a specific terahertz radiation exposure may significantly
affect the natural dynamics of DNA: Alexandrov et al. [26]
choose the compact wave to be an effective perturbation for
the creation of a localized unbinding state at an arbitrary point.
Moreover, in order to measure the velocity of the soliton in
the model of Peyrard-Bishop-Dauxois, Zdravkovic and Sataric
[4] have proposed single-molecule experiments on the DNA
molecule that might provide support to a couple of models
describing the DNA dynamics and predicting the existence of
nonlinear waves in DNA. In this context, theoretical studies
can suggest interesting experiments in order to improve the
physical knowledge of nonlinear waves in DNA. It is, however,
important to point out that applications of these results in
biology must be done with prudence. From a theoretical point
of view, it is known that the stability and lifetime of localized
solutions are very sensitive to properties of the thermal
fluctuations such as viscosity and temperature [27–29]. The
DNA is in contact with a thermal bath in the cell. Therefore,
the friction and thermal forces play an important role in its
internal dynamics. So it is necessary to explore the role of the
thermal noise in the process of formation of these localized
structures to study the creation and dynamics of localized
structures in the JB model in a cell environment. On the
other hand, such basic complex DNA functional processes
as replication and transcription are controlled by means of
the protein actions [30]. Therefore, to understand the DNA
functioning, taking into account the internal interactions is
necessary, but it should be completed by studying the interplay
between the internal motion, e.g., internal oscillations in the
DNA, and the proteins involved in the processes.
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