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Phase transitions in predator-prey systems
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The relationship between predator and prey plays an important role in ecosystem conservation. However, our
understanding of the principles underlying the spatial distribution of predators and prey is still poor. Here we
present a phase diagram of a predator-prey system and investigate the lattice formation in such a system. We
show that the production of stable lattice structures depends on the limited diffusion or migration of prey as well
as higher carrying capacity for the prey. In addition, when the prey’s growth rate is lower than the birth rate of
the predator, global prey lattice formation is initiated by microlattices at the center of prey spirals. The predator
lattice is later formed in the predator spirals. But both lattice formations proceed together as the prey growth rate
increases.
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I. INTRODUCTION

The relationship between predator and prey populations is
the most essential factor contributing to ecosystem conserva-
tion. As a result, predator-prey population dynamics has been
extensively investigated since the study by Lotka and Vortella
[1]. Since their pioneering work, many improved models have
been proposed. One of them, by Rosenzweig and MacArthur
(RM) [2], is adopted in this paper. Predator-prey systems have
played an important role not only in ecology, but also in
the study of general pattern formation. The most well-known
case may be the discovery of chaos in population dynamics
by May [3]. However, these works did not incorporate the
spatial migration of predator and prey. On the other hand,
Turing has pointed out the importance of diffusion in spatial
pattern formation [4]. His activator-inhibitor scheme was later
generalized mathematically as the reaction-diffusion theory
by Meinhardt et al. [5] and successfully applied to various
systems [6]. In the case of the predator-prey system, the
migration of predator and prey appears mathematically as a
form of diffusion. Thus, the spatial pattern formation of the
predator-prey systems has been extensively investigated by
using the reaction-diffusion scheme. Nonetheless, the role of
diffusion in the predator-prey systems has not been clarified
sufficiently well due to the high mathematical complexity
of the scheme. Turing’s idea is that stable spatial patterns
can be produced when the diffusion of the inhibitor is larger
than that of the activator. In the predator-prey systems, prey
and predator should correspond to activator and inhibitor,
respectively, based on their nature. However, to the author’s
knowledge, there have been no reports of a stable Turing
pattern in realistic predator-prey systems, including the RM
model [7–9]. Hassel et al. [10] reported on the stable Turing
pattern in ecology only for the host-parasitoid system. Their
work was based on the cellular automation model, which is an
individual-based model (IBM) [11], not a reaction-diffusion
model. To investigate this problem, we have recently proposed
a stochastic model for the predator-prey system [12]. We
have introduced the concept of stochastic diffusion into the
IBM and succeeded in the reproduction of every pattern,
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including chaotic ones. However, the reproduction of Turing
patterns was not successful. Thus, it is necessary to clarify
the conditions necessary for the reproduction of the stable
Turing pattern in a more systematic manner. In this paper, we
adopt the realistic model by Rosenzweig and MacArthur, and
subsequently search for the general conditions to reproduce
the stable Turing pattern in a systematic manner. As a result of
this procedure, we identified the specific domain for the stable
lattice formation.

II. PHASE DIAGRAM OF PREDATOR-PREY SYSTEMS

To study the Turing pattern in predator-prey systems, we
adopted the well-known model of Rosenzweig and MacArthur:

du

dt
= au

(
1 − u

k

)
− buv

c + u
≡ f (u,v) ,

(1)
dv

dt
= muv

c + u
− nv ≡ g (u,v) ,

where u and v represent the population densities of prey
and predator, a and k represent the growth rate and carrying
capacity of the prey population, and b, c, m, and n represent the
maximum uptake rate, half-saturation prey density, birth rate,
and death rate of the predator, respectively. Since individual
parameters have their distinct meanings, we can find the
biological origin of various patterns.

To simplify our investigation, we defined the following vari-
ables: u = kU , v = acV/b, k/c = β, α = a/m, γ = n/m,

and mt = T . We could then reduce the number of parameters
from six to three and derive the following equation:

dU

dT
= αU

[
(1 − U ) − V

1 + βU

]
≡ F (U,V ) ,

(2)
dV

dT
= V

(
βU

1 + βU
− γ

)
≡ G (U,V ) .

From a stability analysis of the above equation (see the
Appendix for details), it was found that we could divide the
γ -β space into the following three domains [as shown in
Fig. 1(a)]: domain I where 0 < β � β0(γ ), domain II where
β0(γ ) < β � β1(γ ), and domain III where β1(γ ) < β, with
β0(γ ) = γ /(1 − γ ) and β1(γ ) = (1 + γ )/(1 − γ ). A later
analysis showed that in the presence of animal migrations,
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FIG. 1. Schematic phase diagram of pattern formation in the γ -β
space. (a) No diffusion. In domain I, the predator population becomes
extinct. In domain II, both predator and prey populations remain
stable. In domain III, both predator and prey populations show stable
oscillatory motion with some time lag between each other. (b) With
diffusion. Domain III in (a) is divided into three subdomains. In
domain IIIa, concentric waves of predator and prey appear in turn. In
domain IIIb, both predator and prey populations show spiral patterns.
In domain IIIc, stable predator and prey lattices are formed.

domain III is further divided into three subdomains, namely,
IIIa, IIIb, and IIIc, as shown in Fig. 1(b).

First of all, adopting Eq. (2), we show the predator and
prey populations as a function of time in Fig. 2. In domain I,
the predator population becomes extinct; in domain II, both
predator and prey populations remain stable; and in domain
III, both predator and prey populations show stable oscillatory
motion with some time lag between each other.

FIG. 2. Development of predator and prey populations over
time without diffusion when α = 0.3 and γ = 0.5, where β = 0.5
in domain I, β = 2.0 in domain II, and β = 5.0 and 14.0 in
domain III.

FIG. 3. Phase diagram for α = 0.3, and DU ≡ D = 0.01 and
DV = 1 in the γ -β space. When diffusion is introduced, domain
III is further divided into three subdomains, namely, IIIa, IIIb, and
IIIc. Periodic concentric waves and spiral waves appear in domains
IIIa and IIIb, respectively, and stable lattice structures are formed in
domain IIIc.

To investigate the role of diffusion in detail, we adopted the
following equations:

dU

dT
= F (U,V ) + DU∇2U,

(3)
dV

dT
= G (U,V ) + DV ∇2V,

where ∇2 = ∂2/∂x2 + ∂2/∂y2, and DU , DV are diffusion
coefficients of the prey and the predator, respectively. The
effect of migration of the predator and prey was taken into
account as a form of diffusion. We then studied the effect
of diffusion by reducing the value of DU ≡ D from 1, with
DV = 1 . We adopted this procedure only to maintain sufficient
numerical accuracy throughout our study. Our extensive
quantitative analysis showed that patterns in domains I and
II were surprisingly unchanged, even after the introduction of
diffusion terms. However, domain III could be further divided
into three subdomains, i.e., IIIa, IIIb, and IIIc, as shown in
Fig. 3, where we adopted D = 0.01 and α = 0.3. With a
decrease in γ , different patterns appeared one after another in
domain III. Namely, the periodic concentric waves appeared in
domain IIIa, and spiral waves or stable lattice patterns appeared
in domains IIIb and IIIc, respectively. The patterns in domain
IIIc were obviously those predicted by Turing. The border of
domain IIIc expanded in the direction of smaller β values, with
further decreases in the D value.

In Fig. 4, we show the corresponding average predator and
prey population densities V and U as a function of time T

when D = 0.01 and α = 0.3.
Figure 5 shows the time development of the two-

dimensional distribution of population densities of the cor-
responding cases in Fig. 4.

In Fig. 6, we show the time development of the average
population densities in domain IIIa. For comparison, we also
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FIG. 4. Predator and prey population densities V and U as a
function of time T in the four domains, where D = 0.01, α =
0.3, γ = 0.5, and β = 0.5, 2.0, 5.0, and 14.0 in the domains I, II,
IIIb, and IIIc, respectively.

FIG. 6. Predator and prey population densities V and U as a
function of time T in domain IIIa, where D = 0.01, α = 0.3, β = 14,
and γ = 0.7. For comparison, we show V and U for the corresponding
case without diffusion. Both patterns are similar except for the
oscillation period.

show the corresponding case without diffusion. Surprisingly,
the two cases look similar.

We also show the spatial patterns in domain IIIa in Fig. 7.
In domain IIIa, concentric waves of the predator and prey
populations are produced in turn and oscillation centers are
fixed.

We found that the microlattice structure in the centers of
prey spirals, as indicated by the white arrow in Fig. 8, initiates
global lattice formation when α = 0.3. However, prey and

FIG. 5. (Color online) Predator and prey patterns in the four domains, i.e., I, II, IIIb, and IIIc. Here subtle patterns in domain II are dependent
on the initial conditions. But the lattice structure in domain IIIc does not depend on the initial distribution. The time step for this simulation
study is 0.05.
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FIG. 7. (Color online) Concentric waves of predator and prey
appear in turn in domain IIIa, where α = 0.3,β = 14, and γ = 0.7.
The time step is 0.05.

predator lattice formation proceeded together with an increase
of α up to 1.0 in our study, as shown in Fig. 9.

When we started with uneven distributions of predator and
prey, we always observed the above-mentioned pattern for-
mation. However, only globally uniform oscillations appeared
when the uniform, random, initial distributions of prey and
predator were chosen. Figure 10 shows the average prey and
predator oscillatory patterns of V and U in such a case.

Although there was no spatial variation of V and U , V and
U in Fig. 10 are surprisingly similar to V and U in Fig. 2.

FIG. 8. (Color online) The prey microlattices in the centers
of spirals are indicated by the white arrow; these initiate total
crystallization when α = 0.3,β = 8, and γ = 0.5. The time step
is 0.05.

FIG. 9. (Color online) Lattice formation for prey and predator
begins simultaneously when α = 0.5,β = 12, and γ = 0.5. The time
step is 0.05.

Specifically, it is hard to find the effect of diffusion. This is
similar to what is observed with snowflake formation. It is
known that a seed is necessary for snowflake formation, and
the uneven predator and prey population seems to play the role
of the seed in the current pattern formation.

III. ECOLOGICAL STABILITY

In this section, we apply our findings to the issue of eco-
logical stability, which impacts a wide variety of phenomena,
including, for example, locust outbreaks in Africa [13]. The

FIG. 10. With a uniform random distribution of the predator and
prey populations, no specific pattern is formed, where D = 0.01,α =
0.3, and γ = 0.5. Only spatially uniform patterns appear, and the
development of the predator and prey populations over time is very
similar to corresponding cases without diffusion.
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FIG. 11. Phase diagram for α = 0.1 and D = 0.01. Spiral waves
dominate domain III.

appearance of spiral patterns may not be favorable because the
population dynamics demonstrate chaotic behavior, and the
probability of predator extinction can increase as well. Thus,
ecological stability can be expected in domains II, IIIa, and
IIIc. To study this problem further, we investigated additional
cases. Figure 11 shows the case where α = 0.1, and Figs. 12
and 13 show the cases where α = 1.0. In Figs. 12 and 13,
D = 0.01 and D = 0.03, respectively. Domain IIIb, a chaotic
area, expands its territory with an increase in α. On the other
hand, domain IIIa, a concentric wave area, expands its border
with a decrease in α. This means that larger values of α = a/m

are favorable for ecological stability. Large α values mean that
the growth rate of the prey, a, is larger than the birth rate of
the predator, m. But in domain II, β0(γ ) < β = k/c � β1(γ ),
ecological stability does not depend on the α value at all.
Here, β � 1, meaning that the carrying capacity of the prey
population k is much larger than the half-saturation prey
density c, and γ � 1 indicates that the birth rate of the predator
m is much larger than the death rate of the predator n.

FIG. 12. Phase diagram for α = 1.0 and D = 0.01. Concentric
waves dominate domain III.

FIG. 13. Phase diagram for α = 1.0 and D = 0.03. This figure is
similar to Fig. 3. Compared to Fig. 3, however, concentric waves are
more dominant than spiral waves in domain III.

IV. DISCUSSIONS

We found in our study that the γ -β space is appropriate
for systematically classifying the pattern formation of the
RM model as shown in Fig. 1. Figures 3, 11, 12, and 13,
as well as other studies, show that the diffusion effect is
suppressed when β � β1(γ ), namely, in domains I and II.
This is because UV/(1 + βU ) ∼= V U , and D∇2U becomes
negligible compared to V U when βU � 1 and V � 1.
However, domain III can be divided into three subdomains
when the diffusion term is introduced. Lattice structures,
namely, Turing patterns, are observed in domain IIIc, and spiral
waves and periodic concentric waves are observed in domains
IIIb and IIIa, respectively. According to our study, however,
the simple activator-inhibitor scheme for the creation of stable
patterns by Turing does not work here. Not only a small D

value, but also a large carrying capacity for the prey k or small
value of the half-saturation prey density c is needed for the
production of the stable lattice structure. This is because the
prey population decays according to −αUV/(1 + βU ), and
thus the diffusion term D∇2U can play a dominant role when
the value of β (=k/c) is sufficiently large.

Crystallization is initiated in the center of the prey spirals
when the α value is small, as shown in Fig. 8. But with
an increase in the α value, crystallization of the population

FIG. 14. Null lines dU/dT = 0 and dV/dT = 0. (U0,V0) is a
stable point.
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densities of the prey and predator proceeds together since
the coupling between prey and predator becomes stronger,
as shown in Fig. 9.

Similar patterns in the above phase diagrams can always be
observed when uneven distribution of the predator and prey is
chosen as their starting distributions. However, no matter how
small a diffusion value D of the prey is chosen, only spatially
uniform patterns appear when the initial distribution of the
predator and prey is completely random. This is very similar
to what is observed in snowflake formation. Namely, some
seed is necessary for the initiation of the pattern formation.
Furthermore, Fig. 10 shows that the oscillations of the average
predator and prey population densities V and U as a function of
time T are very similar to those of V and U without diffusion,
despite the presence of diffusion.

Our study showed that ecological stability can be expected
in domains II, IIIa, and IIIc. Although stable patterns can be
expected in domains II and IIIa, ecological activity such as
the births and deaths of animals continues as usual in these
domains. Thus, life is not static in the static patterns.

APPENDIX: STABILITY ANALYSIS

Reaction null clines in the Rosenzweig and MacArthur
model are dU/dT = 0 when U = 0, or V = (1 + βU )

(1 − U ), and dV/dT = 0 when U = U0, or V =
0. Furthermore dU/dT = dV/dT = 0 when (U,V ) =
(U0,V0), or (U,V ) = (1,0), where U0 = β0(γ )/β, V0 = [1 −
β0(γ )/β]/(1 − γ ), and β0 = β0(γ ) = γ /(1 − γ ). We have
0 < γ < 1 from U0 > 0, and β > β0 from V0 > 0.

Expanding U,V at (U0,V0) as U = U0 + u,V = V0 + v,
and keeping only linear terms of u,v, we obtain

d

dT

(
u

v

)
=

(
αγ (β − β1) /β −αγ/β

(1 − γ )(β − β0) 0

) (
u

v

)
= A

(
u

v

)
,

(A1)

where β0(γ ) = 1/(1 − γ ) and β1(γ ) = (1 + γ )/(1 − γ ).
Eigenvalues of the matrix A are

λ± = τ ± √
τ 2 − 4�

2
, (A2)

where

τ = tr (A) = αγ

β
(β − β1) ,

� = det A = αγ (1 − γ )

β
(β − β0) .

Thus, (U0,V0) is a stable state when β0(γ ) � β � β1(γ )
and 0 < γ < 1. This is because τ � 0 and � � 0, and λ±
becomes negative and both u and v vanish over time.
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