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It is shown how to compute effective and functional connection matrices (eCMs and fCMs) from anatomical
CMs (aCMs) and corresponding strength-of-connection matrices (sCMs) using propagator methods in which
neural interactions play the role of scatterings. This analysis demonstrates how network effects dress the bare
propagators (the sCMs) to yield effective propagators (the eCMs) that can be used to compute the covariances
customarily used to define fCMs. The results incorporate excitatory and inhibitory connections, multiple structures
and populations, asymmetries, time delays, and measurement effects. They can also be postprocessed in the same
manner as experimental measurements for direct comparison with data and thereby give insights into the role of
coarse-graining, thresholding, and other effects in determining the structure of CMs. The spatiotemporal results
show how to generalize CMs to include time delays and how natural network modes give rise to long-range
coherence at resonant frequencies. The results are demonstrated using tractable analytic cases via neural field
theory of cortical and corticothalamic systems. These also demonstrate close connections between the structure
of CMs and proximity to critical points of the system, highlight the importance of indirect links between brain
regions and raise the possibility of imaging specific levels of indirect connectivity. Aside from the results presented
explicitly here, the expression of the connections among aCMs, sCMs, eCMs, and fCMs in terms of propagators
opens the way for propagator theory to be further applied to analysis of connectivity.
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I. INTRODUCTION

There is enormous interest in quantifying the static and
dynamic connectivity of the brain to better understand how it
processes inputs and performs tasks rapidly, how it maintains
stability while preventing the spread of undesirable activity
such as seizures, how it develops, and how it responds to
damage [1–23]. These and related questions provide much
of the motivation for the current human connectome project
[10,17], for example. One approach to quantification is to
determine anatomical connection matrices (aCMs, often called
structural CMs), which summarize the known anatomical
connectivity between pairs of brain regions. Increasingly,
analyses include numbers of connections (e.g., as measured
by numbers of axons) [1,2,10] and it is recognized that the
corresponding strength-of-connection matrix (sCM) must be
considered, which includes measures of synaptic strength,
which can be time-varying [1]. The sCM is sometimes called
a gain matrix [14,15] or an effective connectivity matrix but
includes only direct effects of one region on another. Here
we reserve the term effective CM (eCM) for the more general
matrix that quantifies the neural effect of one region on another,
whether or not they are directly connected [1,2,10,24]. In
the case of direct connections only, the eCM reduces to the
sCM, which is the main case that has been discussed in
the literature. Functional magnetic resonance imaging (fMRI)
provides information on functional connectivity, which is
usually determined via correlations or covariances of activity
between regions and is summarized in functional CMs (fCMs)
[1,2,7,10,11,25–28].

Anatomical, strength-of-connection, effective, and func-
tional CMs have many similarities, as illustrated in Fig. 1 for
an aCM and corresponding fCM [11]; in particular, most of the

strongest connections are common to both matrices. However,
fCMs are fuller and many questions remain regarding how they
are related [2,10,27–29], including (i) to what extent are the
eCM and fCM determined by the aCM or sCM, and vice versa,
especially as fCMs are usually defined to be covariance matri-
ces of activity relative to baseline in different regions, and, thus,
can have negative entries, and both eCMs and fCMs tend to
have more nonzero entries than aCMs or sCMs? (ii) How does
thresholding of connections (e.g., to eliminate those below a
certain level) affect the appearance and relationships between
CMs? (iii) How do spatial coarse-graining of brain regions, and
temporal averaging of covariances, affect the CMs, especially
with regard to their sparseness? (iv) How does one include
inhibitory connections in CMs, which are usually restricted
to summarizing relatively long-range excitatory connections?
(v) How do local short-range connections more generally
affect CMs? (vi) How are time delays and directionality in
connections to be included in connectivity analysis, especially
in order to reflect and determine functional causality? (vii)
Is connectivity frequency dependent? (viii) What is the effect
of brain stability and approach to instability (criticality) on
CMs? Many of these issues are also relevant to other types of
complex networks [21,22].

Approaches to analyzing structural and functional connec-
tivity have multiplied in recent years, with numerous sugges-
tions for how to proceed. Most methods involve systematic
summary measures of overall network structure (clustering,
path length, centrality, etc.) [2,5,10,29] or even ad hoc or
phenomenological analyses of CMs. What is needed is a
systematic theory that will enable aCMs, sCMs, eCMs, and
fCMs measured by various means to be related both to each
other, to summary measures, and to the underlying anatomy,
physiology, neural activity, and geometry. Some efforts in this
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FIG. 1. (Color online) Examples of (a) anatomical and (b)
functional connectivity matrices. Each of the 998 nodes corresponds
to one row and one column. Entries in the matrix denote the strength
of connections between nodes, with the strongest connections near the
main diagonal and two other prominent diagonals that correspond to
interhemispheric connections between homologous regions. Adapted
from Ref. [11] with permission.

direction have been made, with initial success in relating key
features of fCMs to underlying aCMs in specific examples
[1,3–5,7,11,12,25–27,30], often using highly simplified mod-
els of neural dynamics. The core idea is that eCMs incorporate
the combined effects of direct and indirect neural influences
between regions, whereas sCMs include only neural influences
via direct anatomical connections that are activated under the
conditions of interest. A related point is that such effects as
neuromodulation, long-term potentiation, and plasticity can
change the strengths of specific anatomical connections dy-
namically so they do not contribute to functional connectivity
under all conditions. Hence, eCMs and fCMs are expected to
depend on the time scales over which they are observed, an
effect that has been seen experimentally [2,7].

Here, methods from propagator (Green’s function) theory
are used to help unravel direct and indirect contributions to
connectivity between brain regions, thereby enabling aCMs,
sCMs, eCMs, and fCMs to be interrelated. Before proceeding
to describe the approach it is essential to forestall possible
misunderstanding by stressing that, despite mathematical
links, the methods employed here do not correspond to any
kind of quantum theory of the brain (except insofar as spikes
can be viewed as quanta of activity) but to a systematic
calculational approach that has its roots in long-proven field-
theoretic methods of theoretical physics. These parallels are
discussed in Secs. II and VII.

As demonstrated below, propagator methods prove to be
well suited to disentangling direct and indirect influences
between regions in a systematic way. They help to clarify net-
work effects and enable inhibitory connections, multiple neural
types, temporal delays, and measurement/postprocessing ef-
fects to be included in ways that do not depend on the specific
models of interactions and neural dynamics chosen to evaluate
the results in specific cases. In this approach, propagation of
spikes between neurons, or spike-rate fields between neural
populations in a mean-field approximation, is analogous to
propagation of particles and the fields representing them,
respectively, in quantum theory [31–36]. Likewise, spike-
induced synaptic dynamics that couples neurons is analogous
to scattering. Hence, sCMs correspond to direct (or bare)

propagation between regions without interaction along the
way, whereas eCMs incorporate all intermediate interactions
(e.g., polysynaptic transmission in neuroscience and multiple
scatterings in field theory) and, thus, correspond to dressed or
renormalized propagators.

One approach to dealing with large assemblies of inter-
acting neurons, such as those most relevant to the interac-
tions between the macroscopic regions of interest used in
determining CMs, is to replace individual spikes by a mean
spike rate for each neuron or even to average this spike rate
over many neurons to yield a population-based rate that is a
function of position and time [34–71]. In such neural field
theories (NFTs), mean firing rates, soma potentials, and other
neural properties are averaged over spatial scales of tenths
of a mm to yield a mean-field description of neural activity
and related statistical theories. NFTs have been expressed in
propagator form [40,42] and examples of these are, thus, used
in Secs. V and VI to obtain analytical results. Perhaps most
significantly, NFTs exhibit emergent activity properties that
are not found in single neurons (e.g., collective modes and
oscillations, eigenfunctions, resonances, and criticality).

The structure of this paper is as follows: Sections II and
III describe a form of propagator theory sufficiently general
to encompass both spike-based and neural field interactions
between brain regions and show how sCMs, eCMs, and
fCMs are interrelated. In Sec. IV we discuss how to include
measurement and signal-processing effects in both theoretical
and experimental CMs. Section V then writes the results in
terms of neural field theory and Sec. VI illustrates how to
apply them to specific systems and cases of CMs. This enables
us to unravel structure-function relationships in systems that
involve excitation, inhibition, asymmetry, temporal delays,
resonances, propagating waves, and criticality.

II. GENERAL THEORY

In this section and the next two, we derive relationships
between the propagation of neural activity and structural,
effective, and functional CMs. We also clarify the connections
between discrete matrix-based and continuous operator-based
propagator formulations of neural dynamics and between
purely spatial and spatiotemporal connectivities. Measurement
and signal-processing issues are briefly outlined in Sec. IV.

A. Propagator formulation of neural interactions

We are interested in connectivity involving p distinct
neural populations, each of which is potentially spatially
distributed. We distinguish these populations by a subscript
a = 1,2, . . . ,p. Each produces spikes at an instantaneous local
rate Qa(r,t) = Qa(x), where x denotes the vector consisting
of position r and time t ; here this is simply a notational con-
venience that carries no implications of relativistic effects, so
we do not multiply t by a velocity to make the dimensions the
same for all components, although this could be done without
difficulty. We note that (i) either spiking or averaged (i.e.,
neural field) interactions between neurons can be incorporated
using this approach, by viewing Qa as a discretely (e.g., sum
of δ functions) or continuously varying quantity, respectively
[37,50,51]. In the latter case there is an implicit average over
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a large number of neurons. (ii) When working with the cortex,
which can be approximated as a folded two-dimensional (2D)
sheet for many purposes, r can be treated as a 2D vector, an
approach we use in Sec. III.

An important point here is that Qa can be used to represent
not just a mean firing rate but also a perturbation to that
rate. This is because any rate or rate perturbation, however
small, suffices, in principle, to establish a link between two
neural regions—and, hence, is sufficient to trace a CM.
Indeed, fCMs are usually computed by calculating correlations
or covariances of small differences from baseline activity
[1,2,10,11]. Hence, we concentrate on perturbations from
baseline in the present work and restrict attention to linear
approximations. Similar connectivity results can be expected
to follow in nonlinear cases, but the dynamics linking incoming
and outgoing activity at specific neural locations will be more
complex. None of these points restricts fine-scale dynamics
(e.g., generation of action potentials and pattern formation) to
be linear.

Since spikes in neurons a are caused by neural inputs (from
various afferent populations, which we label b = 1, . . . ,p and
external sources Na), we can write

Qa(r,t) =
∑

b

∫ ∫
�

(0)
ab (r,t,r′,t ′)Qb(r′,t ′)dr′dt ′

+Na(r,t), (1)

where �
(0)
ab (r,t,r′,t ′) = 0 for t < t ′ to preserve causality, the

integrals extend over all locations and times, and the sum is
over all populations, including a. If position and/or time are
discretized, as is usually the case in CM analyses, the integrals
in Eq. (1) are replaced by sums over discrete values of x and
t . The propagator �

(0)
ab in Eq. (1) quantifies the activity evoked

in population a at location r,t by activity directly afferent
from neurons of population b at r′,t ′, as illustrated in Fig. 2,
and includes (as we see in detail in Sec. III) both spatial and
temporal variations of this connection strength in general. This
formulation also permits inhibitory couplings to be included
simply by allowing �

(0)
ab to be negative if population b is

inhibitory. It should be stressed that �
(0)
ab is certainly not a

δ function in space (neurons in a small region project to many
others at various distances); nor is it a δ function in time, since
signals between two small regions will take paths with a variety

FIG. 2. Schematic of the terms in Eq. (1), showing contributions
to activity Qa(r,t), including the local contribution Na(r,t) that results
from external inputs, and the contribution that results from spikes
propagating directly from Qb(r′,t ′).

of different delays, due to variance of the detailed properties
of the axons linking them, and synaptic and dendritic delays
broaden signals in time.

By viewing the Qa(r,t) and Na(r,t) as elements of p-
element column vectors, one element for each population, and
the �

(0)
ab (x,x ′) as elements of a p × p square matrix, we can

write Eq. (1) in the more compact matrix notation

Q(x) =
∫

�(0)(x,x ′)Q(x ′)dx ′ + N(x). (2)

In this notation the column vector Q is a column matrix whose
elements are the fields Q1(x),Q2(x), . . . ,Qp(x).

B. Matrix representation

If we discretize the space and time coordinates, we can
replace the population label a and spatiotemporal coordinates
x by a collective label m and the set b,x ′ by n. One then can
make the elementwise identification

�
(0)
ab (x,x ′) = �(0)

mn, (3)

which puts �(0) in the form of a CM that has been extended
to include temporal delays, akin to the one introduced in
Ref. [25]. The labeling of Q is correspondingly extended
to designate not just population but also location and
time, with Q becoming the column matrix with elements
Q1(x1), . . . ,Q1(xM ),Q2(x1), . . . ,Qp(xM ), where M = nrnt ,
and nr and nt are the numbers of points into which position
and time are discretized, respectively.

In matrix notation (2) becomes simply

Q = �(0)Q + N, (4)

where the integrals over r′ and t ′ have been replaced by the
sums over elements that are inherent in matrix multiplication.
Note that we do not normally show coordinates as arguments
when we use this notation; instead labels designate matrix
elements, as in the right side of Eq. (3). This multiplication
can be made to approximate the integrations in Eq. (2)
as accurately as one wishes by making the spatiotemporal
divisions sufficiently fine. The price paid in obtaining Eq. (4)
from Eq. (2) is that the matrices Q and N now have P = pnrnt

elements. Similarly, �(0) is a P × P matrix.
From Eq. (4) one obtains the standard result for the response

of a linear system to an external stimulus N:

Q = [I − �(0)]−1N, (5)

= TN, (6)

= (I + �)N, (7)

where I is the unit matrix and the superscript −1 denotes the
matrix inverse. Equation (6) defines the transfer matrix T that
links activity Q to inputs N. This interpretation then sets the
correct normalization for �

(0)
ab in Eq. (1), which is an important

point because experimental CMs are usually normalized in an
arbitrary fashion. Equation (7) defines the matrix �, which we
identify as the eCM below. In the case of purely spatial neural
couplings (i.e., neglecting time delays), Eq. (5) has been stated
before [23]; the present result includes temporal aspects and
places the result in a form that can be used to implement results
from propagator theory. Significantly, activity is only linearly
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stable if all the eigenvalues of T have negative real parts. Large-
scale stability is required to avoid such outcomes as epileptic
seizures [6,37,43,44]. We stress that this requirement does
not rule out localized or transient instabilities and nonlinear
dynamics.

Equations (5)–(7) enable the identification of sCMs and
the calculation of their connection to eCMs and fCMs, along
with other properties of neural activity and its correlations. In
Eq. (7), � is the dressed propagator, while �(0) is the bare
propagator—i.e., � includes all propagation routes to x from
other points x ′ (i.e., all network effects, including propagation
within and between populations and via intermediate node),
whereas �(0) incorporates only direct propagation. We can,
thus, identify �(0) with the sCM and define � to be the eCM.

Equations (5)–(7) yield the eCM in terms of the sCM, while
inversion gives

�(0) = I − T−1 = I − (I + �)−1. (8)

We can also expand Eq. (5) in powers of �(0) to give

Q = [I + �(0) + {�(0)}2 + {�(0)}3 + · · ·]N, (9)

which converges provided all the eigenvalues λ
(0)
j of �(0)

satisfy |λ(0)
j | < 1, which is guaranteed whenever the system

is linearly stable. Comparison with Eq. (7) immediately yields

� = �(0) + {�(0)}2 + {�(0)}3 + · · · . (10)

Conversely, one finds

�(0) = � − �2 + �3 − · · · , (11)

which converges under the same conditions as Eq. (9).
Taking the terms on the right of Eq. (9) in order, this equa-

tion expresses activity Q as the sum of different interactions,
with each term represented by a Feynman diagram, as shown
in Fig. 3: the term IN expresses activity directly evoked by the
external inputs, the term �(0)N incorporates activity evoked
by direct connections from externally stimulated neurons, the
term [�(0)]2N represents activity evoked via one intermediate
node (possibly in a different population), the term [�(0)]3N
represents cases with two intermediate nodes, and so on. These
aspects are explicitly illustrated in Sec. V to make them more
concrete and explore their effects.

The form of Eq. (9) can also be written as

Q = [I + �(0)(I + �(0) + {�(0)}2 + · · ·)]N, (12)

which yields Eq. (4) on identifying the contents of the
parentheses (multiplied by N) as being the value of Q at
the location x ′′ of the last node before the final point (the
matrix formulation automatically allows for all places and
populations where that node might be). This equation thus
states that propagation to x from x ′ can be viewed as the
net effect of dressed propagation to all possible x ′′ from x ′
followed by bare propagation to x from those x ′′, as shown in
Fig. 4. This is the exact analog of a standard result in quantum
field theory [31–33].

C. Integral representation

Before proceeding further, it is worth noting that Eqs. (9)–
(11) can also be written in integral form analogous to (1)

FIG. 3. Feynman diagrams showing (a) direct propagation, (b)
propagation via one intermediate node, and (c) propagation via two
intermediate nodes. The dressed propagator is a sum of these, and all
higher-order, bare propagators. Note that there is no requirement that
intermediate locations differ, so loops can occur.

and (2) by using the matrix-field formulation of Eq. (2).
This replaces each matrix multiplication by a spatiotemporal
integration and a sum over populations; e.g.,

�(0)N ←→
∑

b

∫
�

(0)
ab (x,x ′)Nb(x ′)dx ′, (13)

with multiple integrals involved in higher-order terms.
In the above analysis we saw that the propagator �(0) plays

the role of a spatiotemporal sCM. To obtain the commonly
considered, purely spatial sCM, that measures influences of
one point on another without regard to timing, one must
integrate �(0) over all possible values of t and t ′ to account
for all influences that travel directly to x from x ′, regardless of
timing [40]. This yields a purely spatial propagator:

�(0)(r,r′) =
∫ ∫

�(0)(r,t,r′,t ′)dtdt ′, (14)

The left side represents the commonly considered purely spa-
tial propagator, generalized to include multiple populations; an

FIG. 4. Diagrammatic representation of Eq. (12), showing that
dressed (i.e., effective) propagation to x from x ′ can be viewed as
dressed propagation to x ′′ from x ′, followed by bare (i.e., direct)
propagation to x from x ′′, where x ′′ is the location of the last
interaction before x and all its possible locations are integrated over.
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equivalent result holds for �. Note that the dimensions of the
spatial propagators differ from the spatiotemporal ones and
that the integrals in Eq. (14) and similar expressions below
can be extended to ±∞ without error because of the causality
condition imposed in the definition of �(0) at Eq. (1).

Equation (14) can be used to write down purely spatial
analogs of the equations in the preceding sections. For
example, the analog of Eq. (2) is

Q(r) =
∫

�(0)(r,r′)Q(r′)dr′ + N(r). (15)

D. Correlations, covariance, and coherence

A quantity often used to define the functional connectivity
matrix is the covariance matrix of activity at spatial locations
r and r′ [1,2,10,11],

Cov(r,r′) = 〈Q(r,t)QT (r′,t)〉, (16)

where the average is over t or, equivalently if the system is
ergodic, over realizations of the external inputs. The points r
and r′ are defined to be functionally connected if the covariance
exceeds an arbitrarily imposed threshold, but difficulties
surround the choice of threshold and the interpretation of
negative values [2,10].

More generally, the unnormalized correlation matrix C is
defined

C(x,x ′) = 〈Q(x)QT (x ′)〉, (17)

which strictly requires ergodicity and/or time-stationarity to
permit the averaging to be done. In typical experimental cir-
cumstances, the averaging is done over multiple observations,
whose representativity must then be assumed or tested.

The forms of Eqs. (16) and (17) are correct for Q viewed
as a column vector but must be transposed if Q is viewed
as the equivalent row vector, as is sometimes the case in the
literature. We also stress that the population subscripts a and
b are implicit in this notation. In time-stationary systems, C
depends only on the difference τ = t − t ′, so

C(r,r′,τ ) = 〈Q(r,t + τ )QT (r′,t)〉, (18)

with the average taken over t .
The covariance matrix can then be written

Cov(r,r′) = 〈C(r,t,r′,t)〉, (19)

which is symmetric and, hence, contains no information on
timing or the direction of causality between r and r′.

From Eq. (6) one obtains

C(x,x ′) =
〈∫ ∫

T(x,y)N(y)NT (y ′)TT (x ′,y ′)dydy ′
〉
, (20)

=
∫ ∫

T(x,y)〈N(y)NT (y ′)〉TT (x ′,y ′)dydy ′, (21)

=
∫

T(x,y)TT (x ′,y)dy. (22)

In obtaining Eq. (21), T has been assumed to be a fixed
quantity, while Eq. (22) further assumes that N(y) and NT (y ′)

have zero mean, are spatiotemporally uncorrelated, and have
unit amplitude in (21); i.e.,

〈N(y)NT (y ′)〉 = Iδ(y − y ′), (23)

NNT = I, (24)

where Eq. (23) is for the p-element coordinate-dependent form
and Eq. (24) is for the P -element pure matrix form.

Another useful measure is the coherence between two
points. This frequency-dependent quantity is defined as

γ 2(r,r′,ω) = [C(r,r′,ω)]2

C(r,r,ω)C(r′,r′,ω)
. (25)

III. TRANSLATIONALLY INVARIANT CASES

An important family of special cases in which the above
results take on significantly simpler forms involves propa-
gators whose functional forms are translationally invariant
in space and/or steady-state in time. It is important to note
that translational invariance does not imply uniform all-to-all
connectivity, still less activity that is constant; i.e., a system
whose underlying properties are constant in space and time
can support nonuniform activity.

While real brain propagators do not possess exact trans-
lational invariance because of spatial inhomogeneities and/or
time variation, this is often a reasonable first approximation
and it serves here to elucidate the physics and illustrate key
links among sCMs, eCMs, and fCMs without the additional
complications of the general case. The general case then can
be investigated numerically, with its interpretation aided by
insights obtained in more tractable situations. Analytic results
also provide essential tests for verifying general numerical
calculations.

In the spatiotemporally invariant case,

�(0)(x,x ′) = �(0)(x − x ′), (26)

and propagation depends only on the vector displacement
between x and x ′. In the case of time invariance of the
propagator, one has

�(0)(x,x ′) = �(0)(r,r′,t − t ′), (27)

and, if there is translational invariance in space,

�(0)(x,x ′) = �(0)(r − r′,t,t ′). (28)

In the case of full translational invariance of propagators,
the integrals over the translationally invariant variables have
the form of convolutions. These can be further analyzed by
Fourier transforming them, which converts convolutions into
products in Fourier space [72]. Equation (2) becomes

Q(x) =
∫

�(0)(x − x ′)Q(x ′)dx ′ + N(x). (29)

Similarly, the analog of Eq. (14) is

�(0)(r − r′) =
∫

�(0)(r − r′,t − t ′)d(t − t ′), (30)

while Eq. (17) becomes

C(x − x ′) =
∫

T(x − y)TT (x ′ − y)dy. (31)
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In Fourier space we write k = (k,ω), where k is the wave
number and ω is the angular frequency and define the Fourier
transform and its inverse by

F (k) =
∫

e−ik·xF (x)dx, (32)

F (x) =
∫

eik·xF (k)
dk

(2π )D+1
, (33)

where D is the spatial dimensionality and the dot product is
defined by

k · x = k · r − ωt. (34)

In Fourier form, Eqs. (29)–(31) become

Q(k) = �(0)(k)Q(k) + N(k), (35)

�(0)(k) = �(0)(k,ω)δ(ω), (36)

C(k) = T(k)T†(k), (37)

where the dagger denotes the Hermitian conjugate (i.e., the
complex conjugate of the transposed matrix). Equations (33)
and (37) imply

C(x − x ′) =
∫

eik·(x−x ′)T(k)T†(k)
dk

(2π )D+1
, (38)

which is the spatiotemporal version of the Wiener-Khinchtine
theorem [73].

The cross-spectrum C(r,r′,ω) is the temporal Fourier
transform of C in the time-invariant case:

C(r,r′,ω) =
∫

eiω(t−t ′)C(r,r′,t − t ′)d(t − t ′), (39)

= 〈Q(r,ω)Q†(r′,ω)〉, (40)

and represents the correlation between activity at frequency
ω at locations r and r′. When suitably normalized we recover
the coherence γ (r,r′,ω), which has unit entries for maximally
correlated activity. In the translationally invariant case this
becomes

γ (R,ω) = C(R,ω)/C(0,ω). (41)

A major advantage of translationally invariant systems is
that the propagators only have to be parametrized by coordinate
differences, not by the coordinates themselves, which means
that the representations are lower dimensional and much more
compact than in the general case.

IV. MEASUREMENT AND SIGNAL-PROCESSING
EFFECTS

Most experimental estimates of fCMs are based on proxies
for neural activity rather than activity itself. For example, in
fMRI, covariances of perturbations relative to the baseline of
the blood-oxygen-level-dependent (BOLD) signals at different
points are often used to estimate functional connectivity
[1,2,10,11,25]. Similar covariances in signals from other
measurement modalities could also be used.

In fMRI, which is the most commonly used means of
defining fCMs, the BOLD signal results from a complicated
set of hemodynamic interactions driven by neural activity
and is approximately the result of a linear spatiotemporal
convolution of a complex hemodynamic response function

with the neural activity itself [74–76]. In the case of this
and other approximately linear functions of activity, including
smoothing functions that may be applied in postprocessing,
we can write a measured quantity Z as

Z(x) =
∫

M(x,x ′)Q(x ′)dx ′, (42)

=
∫

M(x − x ′)Q(x ′)dx ′, (43)

where M incorporates both the physical processes that lead
from Q to the measurable quantity, and linear postprocessing
that yields the reported measurement Z. Equation (43) holds
in the translation-invariant case, which is an idealization, in
which case we then find

Z(k) = M(k)Q(k). (44)

In the translationally invariant case a propagator for Z itself
can be derived by Fourier transforming Eq. (43) and using
Eq. (4), which yields

Z(k) = M(k)�(0)(k)M−1(k)Z(k) + M(k)N(k). (45)

Hence, the bare propagator for Z is

�
(0)
Z (k) = M(k)�(0)(k)M−1(k), (46)

with

�
(0)
Z (k) = �(0)(k), (47)

if M commutes with �(0). The eCM �Z for Z is, thus,
defined by analogy with the case for Q. Figure 5 illustrates the
correspondence between the propagators for the firing rates Q
and those for the observed quantity Z.

One can define the correlation matrix for Z

CZ(x,x ′) = 〈Z(x)ZT (x ′)〉, (48)

=
∫ ∫ ∫

M(x,y)T(y,z)

× TT (y ′,z)MT (y ′,z)dydy ′dz, (49)

where Eq. (49) assumes Eq. (23). In the translationally
invariant case, Eq. (48) yields

CZ(k) = Z(k)Z†(k), (50)

= M(k)T(k)T†(k)M†(k), (51)

FIG. 5. Schematic of the correspondence between the propaga-
tors for the firing rates Q and those for the observed quantity Z. The
dashed arrows indicate the convolution over a spacetime region that
yields Z from Q.
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which emphasizes that this class of measurement matrices M
act as spatiotemporal filters.

The above results can be used to estimate the effects of
coarse-graining CMs. Typically, coarse graining of measure-
ments occurs because it is not experimentally possible to trace
connections between arbitrarily small brain regions of interest
(ROIs). Instead, the brain is parcellated into some number R of
regions to form the basis of a purely spatial CM. As the spatial
size of ROIs increases, the likelihood of pairwise connections
between nodes rises and the CMs become fuller. We note that
it is possible for a signal to pass through multiple synapses
within a single node before progressing to another; however,
this effect becomes less important as node sizes decrease.

Coarse graining can be written in the form of Eq. (41),
at least approximately, by making M a spatial kernel function
with characteristic width equal to the size of an ROI. Similarly,
the effects of time averaging in determining CMs can be
explored by using Z to model a temporal averaging window,
which, thus, can be pictured as a “temporal ROI.” This is
relevant to the question of task-related changes to functional
connectivity, which are critical to specific responses but tend to
average out over long periods of time [2,7,11]. Spatiotemporal
ROIs can also be defined and are actually implicit in all
existing ROIs, since these all involve both spatial and temporal
measurement scales. Spatial and temporal averaging restricts
attention to low-k and low-ω components of the fCM—in other
words, to large-scale, long-lasting features.

A step that is often taken in estimating CMs is to threshold
the raw fCM to remove all values below a certain level [this
is not of the form of Eq. (42) or Eq. (43) but can be handled
separately] [1,2,10]. Alternatively, information on strengths
of connections is omitted and the CM is simply converted
to binary form, with entries equal to 1 (an above-threshold
connection exists) or 0 (no above-threshold connection). These
give similar results, but it is increasingly being recognized that
connection-strength information should be retained if possible
[1,2,10].

The outline of measurement and signal-processing issues
presented here is far from comprehensive but serves to indicate
how such effects can be incorporated into CM analysis. We
illustrate these points in Secs. V and VI.

V. NEURAL FIELD FORMULATION

In this section we use NFT to write the above results
in forms that can be applied to a variety of situations in
Sec. VI to provide concrete illustrations of the key results.
To achieve this we use a specific model of the corticothalamic
system that has been successfully applied to explain many
aspects of brain activity [8,37,43,44,52–54]. In addition, use of
translationally invariant propagators in the analysis permits us
to use analytically tractable forms and, thus, to obtain insights
that would be difficult to achieve in the general case. In Sec. V
A we briefly review the model used, which has been introduced
and discussed in detail in the publications just cited. Section III
B then expresses the key results from Secs. II–IV in this form.
We note that this is just one example of NFT and that one
can also use propagators derived from other variants; e.g.,
Refs. [34–36,38,39,45–49,55–71], although not all of these

include the axonal time delays that are essential to calculate
full correlation matrices, for example.

A. Model system

We illustrate the key aspects of the analysis in Sec. II
using an established model of the corticothalamic system,
schematically illustrated in Fig. 6 [42–44,52,53]. This system
includes cortical excitatory (e) and inhibitory (i) populations,
along with populations representing thalamic specific relay
(s) nuclei and the thalamic reticular (r) nucleus; external
inputs (n) are also included. It has sufficient flexibility to
model corticothalamic systems using physiologically realistic
parameters, while also enabling specialized limiting cases to
be examined to elucidate more fundamental issues, which is
the approach taken here. We approximate the dynamics using
NFT, in which the properties of many neurons are averaged
over to obtain equations of motion for mean activity as a
function of position and time [34–49,77]. This is likely a
good approximation to cortical networks, which have up to
1011 nodes when viewed as networks of neurons. Note that
the cortex can be viewed approximately as a two-dimensional
sheet, due to its thinness, while the coordinates in the thalamus
are related one to one to those in the cortex via the primary
thalamocortical mapping. This means that distances between
thalamic points are actually expressed in terms of distances
between the corresponding points on the cortex, so a single
coordinate can be used to refer to all structures [42]. Physical
distances (and corresponding velocities) on the thalamus are
about 0.1 times the one-to-one mapped cortical distances
r [42].

It has been previously established that the system in Fig. 6
has a steady-state solution with low population firing rates,
so long as the input is not too strong [40,43,52–54]. Here
we consider small perturbations from this fixed point, and all
quantities are viewed as perturbations.

FIG. 6. Schematic of the model systems considered. (a) Corti-
cothalamic system, showing the excitatory (e), inhibitory (i), reticular
nucleus (r), and specific nuclei (s) populations, inputs n, and the
fields that travel among them. (b) The cortical subsystem. (c) Purely
excitatory subsystem.
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Perturbations Qa of mean firing rate can be approximated
as being linearly related to perturbations of the mean soma
voltage Va , with

Qa(r,t) = ρaVa(r,t), (52)

where ρa is the slope of the full nonlinear response curve that
relates Qa to Va , evaluated at the fixed point; ρa is assumed
constant here.

The perturbation Va to mean soma potential is a sum of
contributions Vab from various other populations b

Va(r,t) =
∑

b

Vab(r,t). (53)

The subpotential Vab responds to the incoming field of afferent
activity φab from neurons b according to

DabVab(r,t) = νabφab(r,t − τab), (54)

Dab = 1

αβ

d2

dt2
+

(
1

α
+ 1

β

)
d

dt
+ 1, (55)

where α and β are characteristic rates of soma voltage decay
and rise, respectively, which we treat as independent of a and
b here, although this assumption can be easily relaxed [42]. In
Eq. (54) νab = Nabsab, sab is the synaptic strength expressed
as the time-integrated soma voltage response to a unit input,
and τab is any discrete time delay required for signals to reach
population a from b and is always zero if a = b (for a = b

time delays are accounted for via the internal propagation of
φaa , as discussed below). Quantities such as velocities, ranges,
and time delays are interpreted as mean or typical values in
NFT, not as extremal ones.

We can also write Eq. (54) in temporal propagator form as

Vab(r,t) = νab

∫ t

−∞
Kab(t − t ′)φab(r′,t ′ − τab)dt ′, (56)

Kab(u) = αβ[e−αu − e−βu]/(β − α), (57)

for u � 0, with Kab(u) = 0 for u < 0, and with β � α without
loss of generality. In Fourier space, we have

Kab(ω) = (1 − iω/α)−1(1 − iω/β)−1 = L(ω), (58)

where Eq. (58) defines L(ω).
The activity fields φab derive from the source Qb and

propagate according to the propagator equation

φab(r,t) =
∫ ∫

�ab(r − r′,t − t ′)Qb(r′,t ′)dr′dt ′, (59)

whence

φab(k,ω) = �ab(k,ω)Qb(k,ω), (60)

where �ab is the mean propagator for axons projecting to
r,t from r′,t ′ and we have assumed translation invariance for
simplicity, although this is not mandatory in NFT [42].

Using (52)–(57) we can write

Qa(r,t) =
∑

b

∫ ∫
�

(0)
ab (r − r′,t − t ′ − τab)

×Qb(r′,t ′)dr′dt ′, (61)

with

�
(0)
ab (r − r′,t − t ′) = Gab

∫
Kab(t − t ′′)

×�ab(r − r′,t ′′ − t ′)dt ′′, (62)

�
(0)
ab (k,ω) = GabL(ω)�ab(k,ω)eiωτab , (63)

Gab = ρaνab = ρaNabsab, (64)

where the gain Gab is the average number of extra spikes
produced in neurons of type a per extra incoming spike from
neurons of type b. Note that Eq. (63) clarifies how the sCM
�(0) is related to the underlying aCM, which we identify with
�, with �(0) including the effects of both time delays and
strengths (i.e., gains) of connections.

A number of forms of �ab have been proposed, including
integral forms that are either local or nonlocal, either of which
can be employed in the analysis developed above, although
some nonlocal propagators do not retain the axonal delays
required to calculate correlations, for example. A particular
class of axonal propagator corresponds to differential equa-
tions (typically damped wave equations) for the fields φab

[37–40,45,46,48,49]. Using one such form [40,42], Eq. (59)
can be written in differential form as

Dabφab(r,t) = Qb(r,t), (65)

Dab = 1

γ 2
ab

∂2

∂t2
+ 2

γab

∂

∂t
+ 1 − r2

ab∇2, (66)

where rab is the characteristic range of axons projecting to
neurons a from b, vab is the mean axonal velocity, and γab =
vab/rab is an effective damping rate that reflects the rate at
which spikes traverse the finite range of axons. Equations (60)
and (66) imply

�ab(k,ω) = 1

(1 − iω/γab)2 + k2r2
ab

, (67)

= 1

Dab(k,ω)
. (68)

Note that when we write k and ω, or r and t , separately (as here
and below), rather than in space-time notation [cf., Sec. II A,
where k = (k,ω)], we use the standard notations k = |k| and
r = |r| for simplicity.

In the approximately 2D cortex, the propagator [Eq. (67)]
has the coordinate-space form [40]

�ab(R,τ ) = vabe
−γabτ�(vabτ − R)

2πr2
ab(v2

abτ
2 − R2)1/2

, (69)

where the Heaviside function �(τ ) enforces causality. Thus,
the effect of a δ-function stimulus at the origin dissipates
at a rate γab while propagating outward behind a front that
moves at velocity vab. Mean-field dissipation corresponds to
the reduction in amplitude that occurs when signals terminate
at the ends of axons, which are approximately exponentially
distributed in range.

In 1D, one finds

�ab(X,τ ) = e−γabτ

2rabτ
[�(X + vabτ ) − �(X − vabτ )]. (70)
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Here we write the spatial coordinate difference as X to
distinguish it from the spatiotemporal coordinate x used in
earlier sections.

For some purposes it is useful to have a simpler form
than that of Eq. (69) or Eq. (70), including for some of the
illustrations in later sections. Hence, in 1D we introduce the
asymmetric form

�ab(X,τ ) = 1
2e−γabτ [(1 + η)δ(X − vabτ )

+ (1 − η)δ(X + vabτ )], (71)

with −1 � η � 1, which corresponds to two dissipative δ

functions propagating away from the origin, with strengths
(1 ± η)/2. The case η = 0 corresponds to the symmetric
propagator introduced in Ref. [38]. Fourier transformation of
Ref. [71] yields

�ab(k,ω) = (1 − iω/γab) − ikrabη

(1 − iω/γab)2 + k2r2
ab

. (72)

The 1D differential equation that corresponds to Ref. [72] is

Dabφab(x,t) =
(

1 + ∂

∂t
− ηrab

∂

∂x

)
Q(x,t), (73)

with ∇2 = ∂2/∂x2 in Eq. (66) in this case. It is important to
stress that asymmetry is not equivalent to lack of translational
invariance: The asymmetry can be the same at every point.

It should be noted that propagators such as Eqs. (67)
and (72) have recently been described as corresponding to
a long-wavelength limit of an integral formulation akin to
Eq. (59) or Eq. (62) [58,61] and, hence, as being less general.
However, this is a misinterpretation: the present propagator
�ab and the one in the cited references both approximate the
actual brain connectivity and either can be derived exactly
from the other in the Fourier domain if krab → 0 is valid
for all relevant wave numbers—so neither propagator is
more fundamental and neither should be considered a “long-
wavelength approximation.” Indeed, Ref. [58] noted that PDE
forms can be derived without such an approximation, in the
process rediscovering a previous expression for the propagator
in terms of a difference of two Macdonald functions (modified
Bessel functions of the second kind) [40,72]. In fact, the main
difference between the two propagators is that they approach
zero at slightly different rates as krab → ∞, a difference that
cannot be distinguished on the basis of current connectivity
data. Both can be, and have been, successfully used down to
scales of order 1 mm [63–65,70,71].

B. NFT evaluation of connection matrices

The sCM �(0) has elements defined by Eq. (63) with
the accompanying definitions of L(ω) and �ab(k,ω). From
this it is immediately possible to calculate �, correlations,
and covariances via the matrix manipulations discussed in
previous sections. To obtain more insight into the physical
effects involved, including measurement issues, we focus on
cases relevant to electroencephalographic (EEG) and fMRI
measurements, especially as it is the latter that are most often
used to define fCMs. The overall sCM for the system shown

in Fig. 6(a) is

�(0) =

⎛
⎜⎜⎜⎝

�(0)
ee �

(0)
ei 0 �(0)

es

�
(0)
ie �

(0)
ii 0 �

(0)
is

�(0)
re 0 0 �(0)

rs

�(0)
se 0 �(0)

sr 0

⎞
⎟⎟⎟⎠ , (74)

which interrelates the following quantities from Eq. (2):

Q =

⎛
⎜⎝

Qe

Qi

Qr

Qs

⎞
⎟⎠ , (75)

N =

⎛
⎜⎝

0
0
0
Ns

⎞
⎟⎠ , (76)

where Eq. (76) highlights that external stimuli enter the system
via the relay nuclei.

The system in Fig. 6(a) has been previously studied [42–44].
It has been found that rab ≈ 0 is a reasonable approximation for
b = i,r,s, implying that the corresponding γab ≈ ∞, the local
interaction approximation [40,42], in which �ab(k,ω) = 1.
Moreover, since the average number of synapses linking
cortical neurons of types a and b is closely proportional to
the numbers of neurons involved [40,48,78], and synaptic
properties (e.g., excitatory or inhibitory) depend on the afferent
neuron, we can make the random connectivity approximation
that �ib = �eb for b = e,i,s. These approximations yield

�(0)
ee = �

(0)
ie = GeeL

(1 − iω/γee)2 + k2r2
ee

, (77)

= Jee�ee, (78)

�
(0)
ei = �

(0)
ii = GeiL = Jei, (79)

�(0)
es = �

(0)
is = GesLeiωτes = Jes, (80)

�(0)
re = GreLeiωτre = Jre, (81)

�(0)
se = GseLeiωτse = Jse, (82)

�(0)
rs = GrsL = Jrs, (83)

�(0)
sr = GsrL = Jsr , (84)

�(0)
sn = GsnL = Jsn, (85)

where we have introduced the compact notation [42]

Jab = GabLeiωτab , (86)

and have noted that the only nonzero discrete interpopulation
delays are τes , τse, and τre, with intrapopulation delays included
via the γaa [42,43,52]. In some previous work, the notation
Ns = �snφsn was used [42], with φsn being the incoming signal
from outside the corticothalamic system, as shown in Fig. 6(a).

C. EEG and fMRI measurements

Both EEG and fMRI measurements primarily detect signals
resulting indirectly from spikes afferent at synapses that cause
synaptic currents due to transient opening of ion channels.

In the case of EEG, synaptic currents close to form
current dipoles that are strongest for cortical pyramidal cells,
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particularly as these are more numerous than inhibitory
interneurons and tend to be aligned so the dipoles reinforce
one another instead of canceling [39,79–81]. EEG then detects
resulting voltage changes at the scalp after spatial filtering by
the effects of volume conduction in the intervening material.

The primary contribution is fMRI is the metabolic load
required to restore the resting voltage difference after synaptic
ion channels have been opened by afferent spikes [82,83];
again pyramidal cells dominate and dominate in driving the
astrocytic signaling that mediates the hemodynamic response
[82–84] that is ultimately detected via the BOLD signal in
fMRI [74,75,84–86].

Given the points made in the previous paragraph, we choose
the signal

z(r,t) = φee(r,t), (87)

to trace our sCM, eCM, and fCM rather than tracking the
full matrices. This retains spatial information, but only in a
single field rather than the 10 internal fields in Fig. 6(a), but
ignores effects that link φee to the final measurements, which
depend on the type of measurement done. The corresponding
measurement matrix is

M(r,t) = diag[�ee(r,t),ε,ε,ε], (88)

where ε is an arbitrarily small nonzero quantity that preserves
the invertibility of M. We, thus, find �

(0)
Z = �(0), as in Eq. (47),

and then take the limit ε → 0 from this point onward.
In Fourier space, we have

φee(k,ω) = �ee(k,ω)Tes(k,ω)Ns(k,ω), (89)

since the only external input is Ns in Fig. 6(a).
From Eqs. (5)–(7) and (74)–(86) we can now calculate the

eCM �es in Fourier space, noting that δes(k,ω) = 0:

Tes(k,ω) = δes(k,ω) + �es(k,ω) = �es(k,ω), (90)

= [I − �(0)(k,ω)]−1
es , (91)

= �(0)
es

det[I − �(0)(k,ω)]
, (92)

det[I − �(0)] = [
1 − �(0)

ee − �
(0)
ei

][
1 − �(0)

sr �(0)
rs

]
−�(0)

es

[
�(0)

se + �(0)
sr �(0)

re

]
. (93)

Using Eqs. (90)–(93), we can write φee = TZesNs , with the
Fourier space form

TZes(k,ω) = A(ω)

k2r2
ee + p2r2

ee

, (94)

A(ω) = Jes/�, (95)

p2r2
ee = (1 − iω/γee)2 − Jee(1 − JsrJrs)/�, (96)

� = (1 − Jei)(1 − JsrJrs) − Jes(Jse + JsrJre). (97)

D. EEG and fMRI propagators, correlations,
covariance, and coherence

The form of Eq. (94) of Tee is particularly convenient
for studying the correlation and covariance properties of the

system. First, we note that the spatial transfer function is
obtained from Eq. (47), which gives

�Z(k,ω) = TZes(k,ω). (98)

By inverse Fourier transforming the result [Eq. (36)] in space,
and using Eq. (98), we obtain the spatial eCM

�Z(x) = Gese
−p0|x|

2r2
eep0�0

, (99)

�Z(R) = GesK0(p0R)

2πr2
ee�0

, (100)

where p0 and �0 are the values of p and � at ω = 0.
Averaging over any small range of position (as is unavoidable
experimentally), while allowing for the implicit 2πR factor
mentioned earlier, removes the singularity in Eq. (100) at
R = 0, so it and related singularities below do not cause any
practical difficulties.

Using the results of Ref. [41] for transfer functions of this
general functional form we can immediately write

CZ(k,ω) =
∣∣∣∣ A(ω)

k2r2
ee + p2r2

ee

∣∣∣∣
2

, (101)

CZ(x,ω) = |A(ω)|2e−pr |x|

4|p|2
[

cos(pix)

pr

+ sin(pi |x|)
pi

]
, (102)

CZ(R,ω) = π |A(ω)|2
pipr

Im[K0(p∗R)], (103)

where Eqs. (102) and (103) apply in 1D and 2D, respectively;
pi and pr are the real and imaginary parts of p, respectively;
the asterisk in Eq. (103) denotes the complex conjugate; and
K0 is a Macdonald function (modified Bessel function of
the second kind) [72]. The Fourier transforms required to
find CZ(R,T ) from Eqs. (102) or (103) can be evaluated
analytically only for certain limiting cases of the system in
Fig. 6 and are usually most easily evaluated by numerical
means.

The coherence function can be calculated directly from
Eq. (103) using the definition of Eq. (41). This gives

γ (x,ω) = e−pr |x|
[

cos(pi |x|) + pr sin(pi |x|)
pr

]
, (104)

γ (R,ω) = ImK0(p∗R)

Argp
, (105)

in 1D and 2D, respectively, where Arg is the complex
argument; Eq. (105) is equivalent to a previous result [41]
and is unity at R = 0.

VI. ILLUSTRATIVE APPLICATIONS

In this section we apply the NFT results of Sec. V to
study systems of increasing generality in order to explore
specific physical effects and thereby elucidate the theoretical
results. In particular, we explore the case of a single excitatory
population, the purely cortical case of excitatory and in-
hibitory neurons, and situations with loop-induced resonances;
asymmetric cases such as Eq. (70) can equally be treated
using the same methods. In all cases, we use z = φee to
trace connection matrices. In future, general cases can be
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analyzed with the benefit of interpretations that draw on these
results.

A. Excitatory population only

The simplest subcase of the system shown in Fig. 6(a) is
the one shown in Fig. 6(c), which we use to illustrate some
of the key aspects of our analysis. This corresponds to setting
Jes = Jsn = 1, Jie = Jre = Jse = Jsr = Jrs = 0 and deleting
terms corresponding to the ei, ie, is, and ii connections, which
removes references to these in Eqs. (77)–(86).

Equation (67) shows �ee(k,ω), with Eqs. (69) and (70)
giving the corresponding coordinate space forms in 2D and 1D,
respectively. The spatial aCM is obtained by integrating these
expressions over time or, more simply, by Fourier transforming
the relevant analog of (36), which gives

�ee(x) = e−|x|/ree

2ree

, (106)

�ee(R) = K0(R/ree)

2πr2
ee

, (107)

in 1D and 2D, respectively, and the sCM is obtained by multi-
plying these by Gee. Equation (76) enables the corresponding
results to be calculated for the sCM �(0)

es , which equals �ee

here because we have set Jes = 1.
The eCM is given by Eq. (98) with A(ω) = 1 and

p2r2
ee = (1 − iω/γee)2 − GeeL. (108)

From Eqs. (99) and (106), we obtain the spatial eCM

�Z(x) = 1

2ree(1 − Gee)1/2
exp

[
−|x|(1 − Gee)1/2

ree

]
. (109)

Figure 7(a) shows the 1D eCM �Z(x) for various values
of the gain Gee, with �

(0)
Z corresponding to the case Gee = 0.

We see that the scale length of �Z diverges as Gee → 1, in
accord with Eq. (109). The point Gee = 1 has previously been
determined to correspond to a saddle-node bifurcation in this
system [40]. This divergence occurs because an average of
Gee action potentials are regenerated for each action potential
that is produced. Accordingly, the spatial integral of Eq. (108)
is (1 − Gee)−1 = 1 + Gee + G2

ee + · · ·, which diverges at the
critical point. As Gee → 0 the sCM and eCM become equal,
which is in accordance with the picture in Sec. II, and in Fig. 3
in particular, when the strength of scattering is zero.

The divergence of the correlation length at the critical
point implies that the system becomes closely coupled over
increasingly long ranges and that influences can, thus, cascade
throughout it. This accords with the results of a number
of authors on avalanches of neural activity and other signs
of criticality (self-organized or otherwise) in neural systems
[12,16,18–20], but we stress that criticality is inherent at all
spectral resonances for the reasons discussed here and in
other contexts [41]: The existence of a resonance implies low
damping, so coherent waves can propagate long distances and
build up to high amplitudes.

0.0 0.1 0.2 0.3 0.4

|x| (m)

0.01

0.10

1.00

10.00

100.00

Λ
Z
(x

) 
(m

-1
) (a)

0.0 0.1 0.2 0.3 0.4

R (m)

0.01

0.10

1.00

10.00

100.00

Λ
Z
(R

) 
(m

-1
) (b)

FIG. 7. Effective CMs �Z for the system of Fig. 6(c) with
ree = 0.08 m, a typical value in the cortex [39,42,52], Ges = 1, Gee =
0,0.8.0.95 (from bottom to top in each frame), and α = β = 1000 s−1

to minimize complexities arising from synaptodendritic low-pass
filtering in this example. The sCM �

(0)
Z corresponds to the case

Gee = 0. (a) 1D vs. |x|. (b) 2D vs. R.

Figure 7(b) shows the corresponding propagators for the
2D case, from Eqs. (100) and (108). Here the scale length
diverges in the same way as in 1D, with

�Z(R) = K0[R(1 − Gee)1/2/ree]

2πr2
ee

. (110)

The amplitude of this result has a weakly divergent (logarith-
mic) dependence on 1 − Gee as Gee → 1, while the spatial
integral of Eq. (110) again diverges as (1 − Gee)−1 for the
same reason as in 1D. Although �Z diverges logarithmically
as R → 0, as seen in Fig. 7(b), this must be multiplied by a
factor 2πR to find the differential number of connections per
unit R, which has no singularity.

Figure 8 shows the fCM given by normalized values
of the covariance CovZ(x) = CZ(x,T = 0) and CovZ(R) =
CZ(R,T = 0) for the 1D and 2D cases, respectively. The
covariance is evaluated by integrating CZ(x,ω)/2π and
CZ(R,ω)/2π over ω. These integrals are dominated by reso-
nant frequencies ωres where Eqs. (102) or (103) are large; i.e.,
points where |pree| � 1. In the present case, ωres = 0 and near
this frequency p2 can be approximated by a complex-valued
linear function of ω that passes close to the origin, with a
minimum modulus proportional to 1 − Gee. Concentrating on
the dominant spatial dependence, we, thus, find

CovZ(x) ∝ exp[−|x|(1 − Gee)1/2/ree], (111)

CovZ(R) ∝ K1

[
R(1 − Gee)1/2

ree

]
, (112)

where K1 is a Macdonald function [72]. In both cases, the
correlation length diverges near the critical point, as (1 −
Gee)−1/2, as for the underlying propagators. The amplitude
of the unnormalized correlations also increases as Gee → 1,
but the functional form is not simple and the integrals cannot be
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FIG. 8. Spatial functional CM CovZ for the system of Fig. 6(c),
evaluated numerically for ree = 0.08 m, γee = 125 s−1, α = β =
1000 s−1, and Ges = 1, with Gee = 0,0.8.0.95 from bottom to
top in each frame. (a) 1D CovZ(x)/CovZ(0) vs. |x|. (b) 2D
Cov′

Z(R)/Cov′
Z(0) vs. R, where Cov′

Z is an average of CovZ over
a few mm, as would occur in experimental measurements, which
removes the singularity at R = 0.

evaluated analytically in closed form. The coherence function
also has the same divergent correlation length ree/p0 as the
critical point is approached.

Figure 9 shows the dependence of normalized forms of the
correlation function CZ(0,T ) versus T for the same system as
in Figs. 7 and 8; i.e., the temporal correlation at a given spatial
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FIG. 9. Normalized correlation function CZ for the system of
Fig. 6(c), evaluated numerically for ree = 0.08 m, γee = 125 s−1,
α = β = 1000 s−1, and Ges = 1, with Gee = 0,0.8.0.95, from bottom
to top in each frame. (a) 1D CZ(0,T )/CZ(0,0) vs. |x|. (b) 2D
C ′

Z(0,T )/C ′
Z(0,0) vs. R, where C ′

Z is an average of CZ over a few
mm, as would occur in experimental measurements, which removes
the singularity at R = 0.
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FIG. 10. 1D spatiotemporal functional CMs CZ(x,T )/CZ(0,0)
vs. |x| and T for the system of Fig. 6(c) with the same parameters
as Figs. 7–9 and light colors indicating high values, with contours
in steps of 0.2. (a) sCM (eCM with Gee = 0). (b) eCM, Gee = 0.8;
(c) eCM, Gee = 0.95.

point. There is a rapid fall off with T in both 1D and 2D, with
a slope that decreases rapidly in magnitude as Gee → 1, again
reflecting the existence of the critical point. Analytic results
for Gee = 0 show that the correlation time is the lesser of α−1

and γ −1
ee , which is confirmed by the results in Fig. 9 and similar

calculations for other parameters.
In Figs. 10 and 11 we show normalized forms of the

spatiotemporal fCM CZ(x,T ) and CZ(R,T ) in 1D and 2D,
respectively, for several values of Gee. In both cases, the zone
of high correlation expands rapidly as Gee → 1, in accord with
the results in Figs. 8 and 9, whose curves are cuts along the
coordinate axes of the frames in Figs. 10 and 11, respectively.

Connectivities are most often visualized by dividing the
cortex into nodes and then plotting the results for the spatial
propagators and correlations in the form of CMs, whose axes
are labeled by node number, as in Fig. 1 [1–3,5,7–12,16,25].
Figure 12 shows the spatial sCM, eCM, and fCM in this
format for the 1D propagator (99) and various Gee. The
strongest connections are short-range, corresponding to the
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FIG. 11. 2D spatiotemporal functional CMs C ′
Z(R,T )/C ′

Z(0,0)
vs. R and T for the system of Fig. 6(c) with the same parameters
as Figs. 7–9 and light colors indicating high values, with contours
in steps of 0.2, and where C ′

Z is an average of CZ over a few mm,
as would occur in experimental measurements, which removes the
singularity at R = 0. (a) sCM (eCM with Gee = 0). (b) eCM, Gee =
0.8; (c) eCM, Gee = 0.95.

main diagonal, and fall off rapidly with distance, as was
seen in earlier figures. As Gee increases, the eCM and fCM
increasingly fill with larger entries.

When node numbers are used to label 2D CMs, it is
impossible to give all adjacent nodes consecutive labels, and
the appearance of the resulting CM depends sensitively on the
actual labeling used [9]. Recently, a labeling was introduced
that preferentially assigns nearby labels to adjacent nodes [9]
via an iterative algorithm. In this approach, the 2D spatial
array of nodes is divided in half along each dimension, giving
four equal subnetworks. Each subnetwork is then assigned
a random sequential quarter of node labels available for the
whole network. These steps are then repeated for each of the
subnetworks and iterated until each node has a unique label.
The stages for a 64 node network are shown in Fig. 13 [9].

When the labeling described in the previous paragraph is
applied to a 2D system with 64 nodes, we find the CMs seen
in Fig. 14. These CMs have the characteristic appearance of

FIG. 12. 1D spatial sCMs, eCMs, and fCMs from Figs. 7(a) and
8(a), displayed in the connection matrix format of Fig. 1, with light
colors indicating strong connections. A linear system of length 0.8 m
with open boundaries has been divided into 64 nodes. The left column
shows eCMs (the sCM is the topmost frame), while the right column
shows fCMs. The rows have Gee = 0,0.8,0.99, from top to bottom.

approximate block diagonality seen in many published CMs
[cf. Fig. 1(b)] and giving a strong impression of nested levels
of modules that is often taken to be a sign of modularity
and/or hierarchy in experimental CMs. However, as discussed
recently [9], this is an illusion: The present system has no
hierarchy, and no modularity beyond that implicit in the fact
that nearby nodes are more likely to be connected than distant
ones, due to the rapid fall-off in distance seen in Eqs. (99) and
(100).

The top left and bottom right frames of Fig. 14 are the ones
that correspond most closely to figures such as Fig. 1 [which,
however, has 998 nodes rather than the 64 in Fig. 14, giving a
finer structure]. The fCM only fills with large entries very close
to the critical point. This raises the possibility that proximity to
the critical point may be measurable via comparisons between
sCMs and fCMs, which would be analogous to previously
suggested spectral measures of proximity to criticality [40].

B. Excitatory and inhibitory populations

The approach introduced here has the advantage that it
covers multiple neural populations, including inhibitory ones.
If we generalize the analysis of Sec. VI A to include both
populations in Fig. 6(b), this corresponds to setting Ges =
Jsn = 1, Gse = Gre = Gsr = Grs = 0 in Fig. 6(a). The results
of Sec. VI A remain qualitatively unchanged, except that A(ω)
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FIG. 13. 2D 64-node labeling method [9]. (a) First subdivision
and random assignment of 16 consecutive labels to each subdivision.
(b) Second subdivision and random assignment of 4 consecutive
labels to each subdivision. (c) Final subdivision with unique labels
assigned randomly to each node.

and the term GeeL in Eq. (108) are both divided by the factor
1 − GeiL. This leads to

�Z(x) = 1

2ree�0

(
1 − Gee

1 − Gei

)−1/2

× exp

[
−|x|

ree

(
1 − Gee

1 − Gei

)1/2
]

, (113)

�Z(R) = 1

2πr2
ee�0

K0

[
R

ree

(
1 − Gee

1 − Gei

)1/2
]

, (114)

�0 = 1 − Gei, (115)

in 1D and 2D, respectively. These results can be summarized
by noting that the quantity Gee�Z is the propagator for all the

FIG. 14. 2D spatial sCMs, eCMs, and fCMs from Figs. 7(b) and
8(b), displayed in the connection matrix format of Fig. 1. A square
system of linear size 0.64 m has been divided into 8 × 8 nodes and
relabeled using the method illustrated in Fig. 12. The left column
shows eCMs (the sCM is the topmost frame), while the right column
shows fCMs. The rows have Gee = 0,0.8,0.99, from top to bottom.
This figure should be compared with the top-left or bottom-right
quarter of Fig. 1(b), which contain intrahemispheric connections.

Gee spikes produced per spike afferent on the e population in
Sec. VI A and that this is modified by the replacement Gee →
Gee/(1 − Gei) throughout. This replacement corresponds to a
renormalization of the propagator due to the inhibitory effects
of the i population. Correspondingly, the results shown in
Eqs. (111) and (112), and the resulting correlation length,
are modified in the same way. There is still a saddle-node
bifurcation at p0 = 0, but this now occurs at Gee/(1 − Gei) = 1
or, equivalently, Gee + Gei = 1 [40]. This allows large, nearly
balanced gains to coexist, while maintaining stability, since
Gei is negative. Correlation lengths and times diverge at the
critical point in similar ways to those discussed in Sec. VI A.

C. CT system: Effects of resonances

For the system in Fig. 6(a), with Jes = 1, the results (98)–
(105) apply, with

A(0) = 1/�0, (116)

p2
0r

2
ee = 1 − Gee(1 − GsrGrs)/�0, (117)

�0 = (1 − Gei)(1 − GsrGrs) − Ges(Gse + GsrGre)eiωt0 .

(118)
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FIG. 15. 1D spatiotemporal functional CMs C(x,T )/C(0,0) vs.
|x| and T for the system of Fig. 6(a) with the parameters α = β =
60 s−1, γee = 125 s−1, ree = 0.08 m, t0 = 0.08 s, Gee = Gei = Gre =
Gse = 0, Ges = 1.0, Gsr = −1.85, Grs = 1.85. Light colors indicate
high values and contours where C(x,T ) = 0 are marked by solid
curves.

The most significant difference from previous sections is the
appearance of the oscillatory term involving the factor eiωt0 ,
with t0 = τes + τse = τes + τre being the total loop delay,
which produces resonances as it moves in and out of phase with
the lead term in Eq. (118). Positive static feedback corresponds
to the prefactor of eiωt0 being positive, in which case there are
resonances when ωt0 ≈ 2πm, with m = 0,1,2, . . . [43,44,54].
The system continues to exhibit a saddle-node bifurcation at
ω = 0 when p0 = 0, and the correlation length diverges as
ree/p0 as p0 → 0.

Resonances occur when |p(ω)ree| � 1 at nonzero ω. To
probe their effect, we first examine a case of an intrathalamic
resonance that occurs in the loop that reciprocally links the r

and s nuclei in Fig. 6(a). This loop has a resonance at

ω =
√

αβ, (119)

which becomes linearly unstable when

GsrGrs = −(α + β)2/αβ, (120)

[42,43,53]. On tuning the system close to this instability, we
find the 1D covariance seen in Fig. 15, which is analogous
to that in Fig. 10(c). Now, strong temporal modulations of
the covariance are seen, with a period consistent with the
frequency shown in Eq. (119) and that extend to increasingly
large T as the critical point is approached. Negative values of
covariance occur because the oscillations of the least stable
frequency are out of phase when observed at locations where
they are half a cycle apart, which occurs with a period in accord
with Eq. (119).

Another type of resonance occurs in the corticothalamic
system in Fig. 6(a) when the positive feedback loop from
e to s and back is dominant, giving rise to a resonance at
ω ≈ 2π/t0. This feedback induces a system resonance, which
lies at approximately 10 Hz when α and β are large [43,54].
Paralleling the discussion that leads to Eqs. (111) and (112), we
expect divergent correlation length and time as this resonance
becomes sharper and approaches a subcritical Hopf bifurcation
[44]. Moreover, the corticothalamic waves that correspond to
this resonance have a propagation velocity close to vee, which
should yield a normalized correlation that varies in both space
and time. Figure 16 shows just this behavior, with small-|x|
correlations that oscillate vs. T , similarly to those in Fig. 14,
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FIG. 16. 1D spatiotemporal functional CMs C(x,T )/C(0,0) vs.
|x| and T for the system of Fig. 6(a) with the parameters α = 80 s−1,
β = 800 s−1, γee = 116 s−1, ree = 0.086 m, t0 = 0.085 s, Gee = 6.8,
Gei = −8.1 Gre = 1.0, Gse = 2.5, Ges = 1.7, Gsr = −1.9, Grs =
0.8, which are the same as those in Ref. [52], where typical human
corticothalamic values were inferred for cases with strong alpha
resonances. Light colors indicate high values and contours where
C(x,T ) = 0 are marked by solid curves.

plus large-|x| oscillations that propagate at approximately 10
m s−1 = vee [87], as indicated by the sloping contours (the
period is about 0.06 s because of the combined effects of both
the alpha frequency and its harmonic). Even at T = 0 both
positive and negative values of the covariance are possible, a
phenomenon seen in experimental fCMs.

VII. SUMMARY AND DISCUSSION

This paper introduces an approach based on propagators
(Green’s functions) to facilitate the analysis of anatomical,
effective, and functional connection matrices (aCMs, sCMs,
eCMs, and fCMs) in brain networks. The methods of neural
field theory are then applied to evaluate and explore the results
in illustrative examples that highlight the main findings. Some
of the key results obtained are as follows:

(i) Anatomical, strength-of-connection, effective, and func-
tional CMs have been defined in terms of propagators that
incorporate both spatial and temporal aspects of connectivity:
aCMs and sCMs correspond to bare propagators that carry
signals directly between points along direct anatomical con-
nections, with sCMs including the strength of connectivity;
eCMs correspond to dressed propagators that include all
neural influences of one point on another, whether direct
or via intermediate nodes; and fCMs are defined in terms
of normalized correlations between points. Very low levels
of activity, or perturbations in activity, suffice to define
connections between points, so linear theory can be used to
probe the relationships between CMs (nonlinear interactions
are, of course, also possible, but are not considered here).
Either spiking or rate-based measures of activity work in such
definitions.

(ii) The definitions in (i) are sufficiently general to enable
multiple effects to be included whose incorporation has
hitherto been problematic: excitation and inhibition, multiple
cortical and noncortical neural populations, loops, time delays,
directionality, measurement and postprocessing effects, and
matrix and continuum formulations that can handle approxi-
mations to CMs or CMs determined from experimental data.

(iii) Use of the definitions in (i), plus the machinery of
propagator theory, enables sCMs and eCMs to be interrelated
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and fCMs to be calculated from the other two. Notably,
eCMs can be expanded in terms of powers of sCMs, which
elucidates the roles of indirect paths involving various numbers
of intermediate nodes and may permit interpretation of brain
imaging in terms of these effects. The relationship shown in
Eq. (6) of sCMs to the transfer function enables a canonical
normalization of the sCM �(0) to be defined and to replace the
arbitrary normalizations used in the literature to date.

(iv) The importance of indirect connections is highlighted,
particularly as these give rise to network effects, including
feedback loops and resonances, some of which involve
multiple structures (e.g., corticothalamic loops) and delays.
This emphasizes the need to include temporal aspects and
noncortical structures in analyses of brain connectivity and
provides the tools to do so.

(v) It is shown how measurement and postprocessing effects
can be incorporated. These include unavoidable distortions of
neural activity measures in the indirect signals that are actually
recorded, e.g., the EEG which results after dipole currents
are generated and resulting potential changes are modified
by volume conduction [39,81], and fMRI which measures
the BOLD signal that arises after complex spatiotemporal
hemodynamics [74–76,86]. Postprocessing such as spatial
and/or temporal averaging, thresholding, and other steps can
also be included. It is anticipated that further consideration
of these aspects will help to clarify the connections between
CMs determined at different spatial and temporal resolutions,
including the effects of transient network modulations under
task conditions.

(vi) The main results have been re-expressed in terms of
NFT in order to treat continuum approximations to neural
systems. NFT approaches also enable analytic insights to be
obtained into a range of phenomena, including critical points
and other aspects of propagator behavior. Continuum approx-
imations become increasingly appropriate as the number of
network nodes increases beyond the tens or hundreds typically
used to date, especially when one considers that the brain
actually has 10 to 100 billion nodes at the neural level.

(vii) Neural field theory has been used to compute the
CMs for exemplar model single-population, cortical, and
corticothalamic systems. These examples serve to illustrate the
methods and key physical effects, but propagators from other
forms of NFT and other physical systems can equally well be
used in the present analysis. Notably, critical points exist at
previously discovered saddle-node and Hopf bifurcations of
the dynamics of this system. At these points, the system is
marginally stable, correlation lengths and times diverge, and
eCMs and fCMs increasingly fill with non-negligible entries
as the whole system becomes highly correlated prior to a
transition to a nonlinearly synchronized state [40,43,44]. This
filling of the matrices accords with observations [2,10,11].
When delay loops exist, resonances occur that ultimately
give rise to Hopf bifurcations [43,44]. These also produce
long-range correlations of activity at the resonant frequency as
the critical bifurcation point is approached. Such correlations
can have either sign, leading to negative entries in the fCM, and
can be either propagating or nonpropagating, depending on the
system modes that underlie them. The present work potentially
enables the proximity to critical points to be determined
quantitatively from fCMs.

(viii) The coherence matrix has also been computed and
found to diverge near critical points in a similar manner to
the eCM and fCM. This is relevant to recent observations
of critical behavior at a wide variety of frequencies in brain
networks [13,16].

(ix) NFT results for completely uniform systems have
also been displayed in the standard matrix format that is
widely used to display spatial CMs. In the 2D case, this
highlights the recently noted fact that CMs can have a
strong visual appearance of hierarchy and/or modularity,
even when they are completely homogeneous and contain no
spatial nonuniformities aside from a rapid decrease in neural
connection strength with distance that has the same functional
form at every point [9].

(x) The propagator-based approach provides a number
of natural analogies with other field theories of physics,
particularly in quantum contexts. These analogies can lead to
useful insights in the neural case, some of which are discussed
in Sec. II, but must not be taken too far. In particular, the present
work does not constitute a quantum theory of the brain.

Some of the analogies with field theories are summa-
rized in Table I. Other aspects have been investigated in
connection with field theories of the statistics of two- and
three-state spiking-neuron models, which we do not pursue
here [34–36,88].

Overall, the work here answers many of the questions raised
in the first paragraphs of the Introduction or provides tools
to help address them. It might be argued that the present
approach is quite complex and that one could successfully
employ simpler approaches tailored to specific situations.
However, the problem of brain connectivity is a difficult
one, and many obstacles have been identified as lying in the
path of previous methods. Thus, while simpler approaches
may well work in restricted situations, the present framework

TABLE I. Some parallels between standard quantum theories of
interactions of photons with atoms and the neural propagator theory
developed here.

Standard Neural

Atom Node
Atomic state
(discrete neural population
state levels) (Continuous voltage)
Bare vacuum Neural silence
Dressed vacuum Steady-state firing
Photon Spike
Antiparticle Inhibitory spike
Stimulated emission Spike due to

incoming spike
Absorption Incoming spike does not

evoke a spike
Bare propagator sCM �(0)

Dressed propagator eCM �

Scattering Neural interaction
Multiple scattering Polysnaptic propagation
Charge Gain Gab

Renormalized charge Renormalized gain,
e.g., Gee/(1 − Gei)
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provides at least some of the means to interrelate such
techniques, determine their regimes of validity, and provide
improved methods (including advances on the present work)
in future.

Some directions for future investigations based on the
groundwork laid here include applications to experimental
CMs, currently underway, investigation of measurement and
postprocessing effects in more detail, calculation of other
network measures from the theory, and design of alternative
methods that exploit the propagator formulation to achieve
improved and novel imaging outcomes, such as imaging of
specific levels of polysnaptic connectivity. Similar approaches

to other complex networks may also be envisaged, with
implications for multiple applications in physics and other
fields [21,22].
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[22] M. Barthélemy, Phys. Rep. 499, 1 (2011).
[23] R. F. Galán, PLoS ONE 3, e2148 (2008).
[24] A. Aertsen and H. Preissl, in Nonlinear Dynamics and Neuronal

Networks, edited by H. G. Schuster (VCH, New York, 1991),
p. 281.

[25] S. A. Knock, A. R. McIntosh, O. Sporns, R. Kötter, P. Hagmann,
and V. K. Jirsa, J. Neurosci. Methods 183, 86 (2009).

[26] M. D. Grecius, K. Supekar, V. Menon, and R. F. Dougherty,
Cereb. Cortex 19, 72 (2009).

[27] C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran,
R. Meuli, and P. Hagmann, Proc. Nat. Acad. Sci. USA 106, 2035
(2009).

[28] P. Skudlarski, K. Jagannathan, V. D. Calhoun, M. Hampson,
B. A. Skudlarska, and G. Pearlson, NeuroImage 43, 554 (2008).

[29] M. Rubinov and O. Sporns, NeuroImage 52, 1059 (2010).
[30] C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and Ph.

Scheltens, Cereb. Cortex 17, 92 (2007).
[31] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics

(McGraw-Hill, New York, 1964).
[32] W. Greiner and J. Reinhardt, Quantum Electrodynamics, 2nd ed.

(Springer, Berlin, 1994).
[33] W. Greiner, Relativistic Quantum Mechanics: Wave Equations

(Springer, Berlin, 1990).
[34] M. A. Buice and J. D. Cowan, Phys. Rev. E 75, 051919 (2007).
[35] M. A. Buice and J. D. Cowan, Prog. Biophys. Molec. Biol. 99,

53 (2009).
[36] M. A. Buice, J. D. Cowan, and C. C. Chow, Neural Comput. 22,

377 (2010).
[37] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K.

Friston, Pub. Lib. Sci. Comp. Biol. 4, e1000092 (2008).
[38] V. K. Jirsa and H. Haken, Phys. Rev. Lett. 77, 960 (1996).
[39] P. L. Nunez, Neocortical Dynamics and Human EEG Rhythms

(Oxford University Press, Oxford, 1995).
[40] P. A. Robinson, C. J. Rennie, and J. J. Wright, Phys. Rev. E 56,

826 (1997).
[41] P. A. Robinson, J. Theor. Biol. 222, 163 (2003).
[42] P. A. Robinson, Phys. Rev. E 72, 011904 (2005).
[43] P. A. Robinson, C. J. Rennie, and D. L. Rowe, Phys. Rev. E 65,

041924 (2002).
[44] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N.

Mahant, and P. A. Robinson, Cerebral Cortex 16, 1296 (2006).
[45] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, M. T. Wilson,

and L. C. Wilcocks, Phys. Rev. E 72, 061910 (2005).
[46] P. L. Nunez, Math. Biosci. 21, 279 (1974).
[47] H. R. Wilson and J. D. Cowan, Kybernetik 13, 55 (1973).
[48] J. J. Wright and D. T. J. Liley, Behav. Brain Sci. 19, 285

(1996).
[49] R. L. Beurle, Philos. Trans. R. Soc. London B 240, 55 (1956).
[50] P. A. Robinson and J. W. Kim, in Advances in Cognitive

Neurodynamics III (Springer, Berlin, 2012).

011912-17

http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1186/1471-2202-10-55
http://dx.doi.org/10.1093/cercor/10.2.127
http://dx.doi.org/10.1093/cercor/10.2.127
http://dx.doi.org/10.3389/fninf.2010.00112
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1103/PhysRevLett.103.108104
http://dx.doi.org/10.1103/PhysRevLett.107.018102
http://dx.doi.org/10.1103/PhysRevLett.107.018102
http://dx.doi.org/10.1016/j.neuroimage.2010.01.071
http://dx.doi.org/10.1016/j.neuroimage.2010.01.071
http://dx.doi.org/10.1073/pnas.0606005103
http://dx.doi.org/10.1007/s10827-008-0128-0
http://dx.doi.org/10.1007/s10827-008-0128-0
http://dx.doi.org/10.1016/j.neucom.2008.09.006
http://dx.doi.org/10.1016/j.neucom.2008.09.006
http://dx.doi.org/10.1002/hbm.20016
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1016/j.physrep.2010.11.002
http://dx.doi.org/10.1371/journal.pone.0002148
http://dx.doi.org/10.1016/j.jneumeth.2009.07.007
http://dx.doi.org/10.1093/cercor/bhn059
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1016/j.neuroimage.2008.07.063
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1093/cercor/bhj127
http://dx.doi.org/10.1103/PhysRevE.75.051919
http://dx.doi.org/10.1016/j.pbiomolbio.2009.07.003
http://dx.doi.org/10.1016/j.pbiomolbio.2009.07.003
http://dx.doi.org/10.1162/neco.2009.02-09-960
http://dx.doi.org/10.1162/neco.2009.02-09-960
http://dx.doi.org/10.1103/PhysRevLett.77.960
http://dx.doi.org/10.1103/PhysRevE.56.826
http://dx.doi.org/10.1103/PhysRevE.56.826
http://dx.doi.org/10.1016/S0022-5193(03)00023-7
http://dx.doi.org/10.1103/PhysRevE.72.011904
http://dx.doi.org/10.1103/PhysRevE.65.041924
http://dx.doi.org/10.1103/PhysRevE.65.041924
http://dx.doi.org/10.1093/cercor/bhj072
http://dx.doi.org/10.1103/PhysRevE.72.061910
http://dx.doi.org/10.1016/0025-5564(74)90020-0
http://dx.doi.org/10.1007/BF00288786
http://dx.doi.org/10.1017/S0140525X00042679
http://dx.doi.org/10.1017/S0140525X00042679
http://dx.doi.org/10.1098/rstb.1956.0012


P. A. ROBINSON PHYSICAL REVIEW E 85, 011912 (2012)

[51] P. A. Robinson and J. W. Kim, J. Neurosci. Meth. (submitted).
[52] P. A. Robinson, C. J. Rennie, D. L. Rowe, and S. C. O’Connor,

Hum. Brain Mapp. 23, 53 (2004).
[53] P. A. Robinson, C. J. Rennie, D. L. Rowe, S. C. O’Connor,

and E. Gordon, Philos. Trans. R. Soc. London B 360, 1043
(2005).

[54] P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali,
E. Gordon, and D. L. Rowe, Phys. Rev. E 63, 021903 (2001).

[55] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and D. T. J.
Liley, Phys. Rev. E 60, 7299 (1999).

[56] B. Ermentrout, Rep. Prog. Phys. 61, 353 (1998).
[57] S. Coombes, Bio. Cybern. 93, 91 (2005).
[58] S. Coombes, N. A. Venkov, L. Shiau, I. Bojak, D. T. J. Liley,

and C. R. Laing, Phys. Rev. E 76, 051901 (2007).
[59] D. J. Pinto and G. B. Ermentrout, SIAM J. Appl. Math. 62, 226

(2001).
[60] F. M. Atay and A. Hutt, SIAM J. Appl. Math. 65, 644

(2005).
[61] I. Bojak and D. T. J. Liley, PLoS Comp. Biol. 6, e1000653

(2010).
[62] S. Amari, Biol. Cybern. 27, 77 (1977).
[63] P. C. Bressloff, Phys. Rev. Lett. 89, 088101 (2002).
[64] P. C. Bressloff and J. D. Cowan, Physica D 173, 226 (2002).
[65] G. B. Ermentrout and J. D. Cowan, Biol. Cybern. 34, 137

(1979).
[66] S. Coombes, G. J. Lord, and M. R. Owen, Physica D 178, 219

(2003).
[67] C. R. Laing and W. C. Troy, SIAM J. Appl. Dyn. Syst. 2, 487

(2003).
[68] D. J. Pinto, R. K. Jackson, and C. E. Wayne, SIAM J. Appl. Dyn.

Syst. 4, 954 (2005).
[69] F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg,

Kybernetik 15, 27 (1974).
[70] P. A. Robinson, Phys. Rev. E 73, 041904 (2006).
[71] P. A. Robinson, Biol. Cybern. 97, 317 (2007).

[72] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark
(eds.), NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010).

[73] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965).

[74] P. M. Drysdale, J. P. Huber, P. A. Robinson, and K. M. Aquino,
J. Theor. Biol. 265, 524 (2010).

[75] K. M. Aquino, M. M. Schira, P. A. Robinson, P. M. Drysdale,
and M. Breakspear, PLoS Comp. Biol. (submitted).

[76] K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, NeuroImage
12, 466 (2000).

[77] W. J. Freeman, Mass Action in the Nervous System (Academic
Press, New York, 1975).
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