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Cellular ability to sense spatial gradients in the presence of multiple competitive ligands
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Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability under small gradients of chemical
compounds. In this study, we approach this phenomenon by considering the contribution of multiple ligands to the
chemical kinetics within the Michaelis-Menten model. This work was inspired by the recent theoretical findings
of Hu et al. [Phys. Rev. Lett. 105, 048104 (2010)]. Our treatment with practical binding energies and chemical
potentials provides results that are consistent with experimental observations.
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I. INTRODUCTION

Cellular sensing ability is a general but critical biological
function. It plays important roles in cancer sensing, wound
healing, embryogenesis, and neuron development [1]. This
remarkable ability allows cells to gain necessary energy and
nutrition and to obtain information from other cells [2]. In
general, the size of a cell is only a few micrometers [3],
but it can discriminate the correct direction of the gradient
for a tiny variance of chemical concentration. The minimum
fluctuation that allows detection of the concentration can
be seen as the accuracy of the sensing ability, which was
addressed by Berg and Purcell [4] and then modified by
Endres et al. who considered the unoccupied time intervals
of the ligands and receptors [5]. Moreover, other researchers
reported the physical limits of spatial sensing ability [6], and
then demonstrated the impossibility of increasing an elliptical
cell’s sensing ability by enlarging the cell’s body [7].

According to the report from Hu et al. [6], the accuracy
of sensing the ligand gradient direction will be increased
dramatically by larger cell size. Their results are based on
the basic assumption that the thermodynamics equilibrium
and the chemical kinetics are equivalent. The thermodynamic
results are obtained in the framework of a canonical ensemble.
The gradient sensing ability is calculated from the partition
function, which is completely determined by the energy
of the Hamiltonian. The results of [6] are very interesting
and intriguing in the sense that the sensing ability can be
established in such a simple model. In this work we modify
the model of [6] such that the correlation between energy
and concentration can be relaxed. This is done by considering
the dynamics of ligands. The chemical equilibrium of ligand
and receptor provides a way to break the energy-concentration
constraint by introducing chemical potentials to address the
problem of concentrations. In this work we have reanalyzed the
problem of sensing ability using grand canonical ensembles
with the contribution of ligands included. Furthermore, it is
also interesting to address this sensing problem in a more
general environment for different ligands. In our model, the
cell can distinguish between ligands with different chemical
dissociation constants. This result can only be achieved by
considering the binding energies of both ligands. Fortunately,
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our approach can also be extended to the analysis of this
general environment.

In this report, the assumptions and results of [6] are
discussed in Sec. II. Our approach will be presented in Sec. III,
and we will have a brief discussion on the experiment results
related to our model. Section IV provides the analysis of a
multiple-ligand system within the Michaelis-Menten model.
The conclusion is given in Sec. V.

II. APPLYING THE ISING MODEL
TO THE SENSING PROBLEM

To deal with the cellular sensing problem, Hu et al. treated
the receptors as an Ising spin chain. From this model, they
could derive the asymptotic variances as functions of the
gradient steepness p and direction of gradient φ, which are
parameters related to the concentration. According to the
Cramér-Rao inequality, these variances determine the lowest
uncertainties of cell sensing ability [8]. Here we briefly review
their calculation procedures.

In this model, cells with diameter L and N receptors were
immersed in the concentration environment, which contains
identical ligands. In their work all results were calculated
with N = 80000, which is close to the practical situation
[9]. The local concentration of ligands at the nth receptor
is Cn = C0 exp[p

2 cos(ϕn − φ)], where C0 is the background
concentration, p is the steepness of the gradient (p ≡ L

C0
| ��C|),

ϕn = 2nπ/N denotes the location of the nth receptor, and the
direction of the gradient is φ. In this approach, ignoring the
dynamics of ligands, the system is completely described by
receptors that have only binding state (Sn = +1) with energy
−εn and unbinding state (Sn = −1) with energy εn, where εn

is given in units of thermal energy kBT . Due to the Boltzmann
distribution, the binding probability of the nth receptor is
Pon = eεn/(eεn + e−εn ). Using simple receptor-ligand kinetics,
the binding probability of the nth receptor is Pon = Cn

Cn+Kd

where Kd is the dissociation constant. By assuming these
probabilities are identical, the free energy is

εn = 1

2
ln

C0

Kd

+ p

4
cos(ϕn − φ). (1)

By defining three statistical quantities (z0,z1,z2) =
(
∑

n Sn,
∑

n
1
2Sn cos ϕn,

∑
n

1
2Sn sin ϕn) and the transforma-

tion (α0,α1,α2) = ( 1
2 ln C0

Kd
,p cos φ,p sin φ), the Hamiltonian

is given as HN {Sn} = −α0z0 − z1α1+z2α2
2 . By computing
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FIG. 1. (Color online) The covariance Cov[z1,z2] of both models
under Kd = C0 and φ = π/5, arbitrarily. The dashed line represents
Cov[z1,z2]/σ 2 versus p in Ref. [6], and the solid line represents
Cov[z1,z2]/

√
〈�(z1)2〉〈�(z2)2〉 with p in our model, which will be

described in the next section.

the logarithm partition function ln QN = N ln(2 cosh α0) +
Np2

64 cosh2 α0
+ O(p4), they obtained the expectation values and

fluctuations of z1 and z2:

〈z1,2〉 = NC0Kdα1,2

4(C0 + Kd )2
+ O(p3), (2)

Var[z1,2] = NC0Kd

2(C0 + Kd )2
+ O(p2). (3)

Under the assumption Cov[z1,z2] = 0 [6] the joint probability
density of z1 and z2 is a Gaussian function, and the asymptotic
variances σ 2

p and σ 2
φ can be obtained as

σ 2
p = 8(C0 + Kd )2

NC0Kd

, (4)

σ 2
φ = 8(C0 + Kd )2

NC0Kdp2
. (5)

These asymptotic variances are the minimum fluctuations
with unbiased estimation of p and φ, which are related to
sensing ability. Therefore, the fluctuation σ 2

φ drops as the
gradient increases, and the sensing ability will be increased
with enlarged cell volume since p ∝ L and N ∝ Lδ with
0 � δ � 2 [6].

In passing we would like to show the detailed analysis of
the covariance Cov[z1,z2] = 0, justifying the joint probability
density as a Gaussian distribution. Cov[z1,z2] is given by

Cov[z1,z2] = −
N∑
n

1

4
cos ϕn sin ϕn

(eεn − e−εn )2

(eεn + e−εn )2
, (6)

and the numerical results are plotted in Fig. 1, in which one can
see that it is very small and can be approximated by zero, so
that the probability density can be described by a Gaussian
distribution. In our model will use this approximation for
further analysis, and Cov[z1,z2] from our model is also shown
in Fig. 1.

III. ADDING THE LIGAND INFORMATION

To calculate the physical limit a of multiligand system, the
ligand’s concentration should be considered in the partition
function. The grand canonical ensemble is then appropriate
for constructing our model. Here we adapted the notations

FIG. 2. (Color online) The diagrams of our model. The cell with
identical receptors is located in a concentration pool with particular
direction of gradient. Each receptor can only sense the ligands inside
the sensing volume v. Three different energy levels with binding,
unbinding, and ligand states are all independent of location.

of [6], where the cell with size L has N receptors, and the
spatial information of ligands is given by the concentration
Cn, the gradient steepness p, and the direction of the gradient
φ. Each receptor should only sense the ligands inside an
identical sensing volume independently. In other words, the nth
receptor’s sensing volume v is completely separate from the
others’. Let Ln ≡ vCn denote the number of ligands that can be
sensed only by the nth receptor. The approximate expression
for sensing volume is v = 4πr2d/N , where r = L/2 is the
radius of the cell and d is the size of the ligand. However, to
be consistent in this model, three different energy levels were
set up to describe different states: the unbinding energy εu,
binding energy εb, and ligand energy εl ; and the corresponding
chemical potentials are denoted by μu, μb, and μl respectively
(see Fig. 2). We notice that instead of being position dependent
as in Ref. [6], these energy levels are position independent, as
they should be according to basic quantum principles. The
Hamiltonian of this system is

HN {Sn} =
N∑

n=1

[
εb

(
1

2
+ Sn

2

)
+ εu

(
1

2
− Sn

2

)

+ εl

(
Ln − 1

2
− Sn

2

)]
. (7)

To simplify our discussion, we denote the nth receptor’s
grand canonical partition function as the binding part zbn and
unbinding part zun, which are given by

zbn = 1

(Ln − 1)!
e−β[(εb−μb)+(εl−μl )(Ln−1)], (8a)

zun = 1

Ln!
e−β[(εu−μu)+(εl−μl )Ln]. (8b)

The factorial factors appear here since ligands are all
identical. The total grand canonical partition function of the
whole cell becomes

Z =
N∏

n=1

(zbn + zun) =
N∏
n

∑
Sn={+1,−1}

1(
Ln − 1

2 − Sn

2

)
!

× e−β[(εb−μb)( 1
2 + Sn

2 )+(εu−μu)( 1
2 − Sn

2 )+(εl−μl )(Ln− 1
2 − Sn

2 )]. (9)

The binding probability due to the Boltzmann distribution
is Pbn = zbn/(zbn + zun). The binding probability of chem-
ical equilibrium at the nth receptor is given by Pcn = Cn/
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(Cn + Kd ). By imposing Pbn = Pcn we obtain the relation

a ≡ Kd

C0
= 1

vC0
e−β[−(εb−μb)+(εu−μu)+(εl−μl )]. (10)

Equation (10) shows that the chemical dissociation constant
Kd under this assumption should depend on energy levels,
chemical potentials, and the sensing volume. Moreover,
the binding probability would depend on concentration and
position, but the energy levels are independent of position. By
using Eq. (10) all the dependencies on ε and μ are replaced
by the dissociation constant Kd and the local concentration
C0. In particular, the sensing ability will be determined by
a ≡ Kd/C0; more details will be discussed below.

With the statistical quantities (z0,z1,z2) = (
∑

n Sn,∑
n

1
2Sn cos ϕn,

∑
n

1
2Sn sin ϕn) and the transformation

(α1,α2) = (p cos φ,p sin φ), the analysis of discrimination

can proceed with the expectation values z1 and z2. These
expectation values are calculated by using a direct summation
method. Defining ζn = eiϕn , then

z1 = Re

[
N∑
n

ζn

(zbn − zun)

(zbn + zun)

]

and

z2 = Im

[
N∑
n

ζn

(zbn − zun)

(zbn + zun)

]
.

Under the small-p assumption (which is also true for the
experimental environment), we expand the summation to
second order of p, and treat the summation as an integral
over [0,2π ]; hence the integrals can be computed as

z1 � N

2π

∫ 2π

0

cos ϕ

1 + a
[
1 − ( α1

2 cos ϕ + α2
2 sin ϕ

)+ 1
2

(
α1
2 cos ϕ + α2

2 sin ϕ
)2]dϕ, (11a)

z2 � N

2π

∫ 2π

0

sin ϕ

1 + a
[
1 − ( α1

2 cos ϕ + α2
2 sin ϕ

)+ 1
2

(
α1
2 cos ϕ + α2

2 sin ϕ
)2]dϕ, (11b)

and both results of z1 = Re[�] and z2 = Im[�] are

� = 8Neiφ

ap2
√

A (2+a)
a

(√
2 + a

a
cos

θ

2
+ sin

θ

2

)
, (12a)

Aeiθ =
(

− 1 − 8

ap2

)
+ i

8

p2

√
(2 + a)

a
. (12b)

The fluctuations of z1 and z2 are σ 2
1 ≡ 〈�(z1)2〉 = Re[σ 2

+] and σ 2
2 ≡ 〈�(z2)2〉 = Re[σ 2

−], where

σ 2
± = 2N

p
√

a(2 + a)

{
sin θ

2

2
√

A
± ei2φ

[
4

p

√
2 + a

a
−

√
A sin

θ

2
− 1√

A

(
8

p2

√
2 + a

a
cos

θ

2
+ 8

ap2
sin

θ

2

)]}

+ N

p
√

a(1 + a)3

{
2
±e2iφ − 1

η2
sin λ2 ± e2iφ

(
η2

1

η2
sin(2λ1 − λ2) − η1 sin λ1

)}
, (13)

with

η1e
iλ1 = − 4(a + 1)

p(1 + 2a)

(
1 + i

√
1 + a

a

)
, (14a)

η2e
iλ2 =

√[−1

ap2

(
4a + 4

(1 + 2a)

)2

− 4

]
+ 2i

[(
4a + 4

p(1 + 2a)

)2
√

1 + a

a

]
. (14b)

We should mention that all the results are real, although
complex numbers appear from complex integral calculations to
simplify the notation. It is interesting to note that even though
the grand canonical ensemble depends on energy level ε and
chemical potential μ, in this model the expectation values and
fluctuations only depend on p, φ, and a, where a implicitly
depends on ε and μ as given in Eq. (10). The detailed dynamics
of the system, such as the energy levels and the chemical
potentials, determine the dissociation constant Kd . However,
the sensing ability relies on the detailed dynamics only through
the specification of a. In Ref. [6] the authors used the
procedures given in Ref. [8] to estimate the joint probability as

Gaussian function. To apply this assumption one should check
the value of Cov[z1,z2] explicitly. Using Eq. (6), the correlation
is divided by the fluctuation and the result is shown in Fig. 1,
where one can see clearly that Cov[z1,z2] � 0 when p is small.
Under this assumption, according to [8] one can assume the
joint probability density to be a Gaussian function, i.e.,

f (z1,2|z1,2) � 1

2πσ1σ2
exp

[
− (z1 − z1)2

2σ 2
1

− (z2 − z2)2

2σ 2
2

]
.

However, for large p it seems that a more detailed analysis is
called for. Under the maximum likelihood estimator (MLE)
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theorem, the estimators of p and φ, denoted by σ 2
p and

σ 2
φ respectively, can be obtained near the expectation value

without any bias [8]. The estimators (and also asymptotic
variances) related to the sensing ability can be derived by the
Cramér-Rao lower bound:

σ 2
p = 1

〈(∂p ln f )2〉
= 1

1
2σ 4

1

(
∂σ 2

1
∂p

)2
+ 1

2σ 4
2

(
∂σ 2

2
∂p

)2
+ 1

σ 2
1

(
∂z1
∂p

)2
+ 1

σ 2
2

(
∂z2
∂p

)2 ,

(15a)

σ 2
φ = 1

〈(∂φ ln f )2〉
= 1

1
2σ 4

1

(
∂σ 2

1
∂φ

)2
+ 1

2σ 4
2

(
∂σ 2

2
∂φ

)2
+ 1

σ 2
1

(
∂z1
∂φ

)2
+ 1

σ 2
2

(
∂z2
∂φ

)2 .

(15b)

The following figures show the computational results
without any approximation. Figure 3 shows that σ 2

φ , which
relates to the sensing ability, will decrease with increasing p.
Since the steepness of gradient p is proportional to the size of
the cell, L, the sensing ability would increase dramatically
when the volume of the cell expands. The result shows a
conclusion similar to that of [6] without εn being Cn and
position dependent. In Fig. 3, one can see that σ 2

p remains
almost the same for different p, however σ 2

φ will decrease
when the steepness increases under the condition Kd = C0.
We also plotted the results from [6] in Fig. 3, and one can
see that the result of two models are quite close, with similar
characteristics.

It is interesting to see that our results are related to experi-
mental observations. It is well known that the sensing ability
or sensing accuracy strongly depends on the steepness of the
gradient but weakly correlates to background concentration
[10]. In this work we have analyzed this aspect and the
results are also plotted in Fig. 3. σ 2

φ approaches zero when
p is large, which indicates good sensing ability in this range.

FIG. 3. (Color online) The direct summation results of σ 2
p (black)

and σ 2
φ (orange) versus p with a = 1.0 or KD = C0. The dashed

line represents the results from [6]. The triangles represent σ 2
φ when

a = 0.01, which means the local concentration is much larger than
the dissociation constant Kd .

FIG. 4. (Color online) The results of σ 2
p (black) and σ 2

φ (light
orange) versus p in different background environments. The dashed
line represents a = 0.01 and the solid line shows the result for
a = 1000. The results are plotted by direct summation without any
approximation.

When p is larger than 0.1, it can be seen that σ 2
φ for different

concentrations (a = 0.01 and a = 1000) are more or less the
same, which means that the local concentration will weakly
depend on sensing ability when p > 0.2. However, when p

is less than 0.1, the effect of concentration on sensing ability
might be large.

Moreover, it is known that cells can show remarkable
sensing ability in particular steepness and concentration
ranges. For instance, Dictyostelium cells will move toward
cyclic adenosine 3′,5′-monophosphate (cAMP) to function as
a chemoattractant [11]. In general, under p = 2% and Kd ∼
100 nm, the cell can exhibit the sensing ability when cAMP is
in the range of 10 pm to 10 μm [12], or a = 0.01–1000 in our
model. Figure 4 shows the two asymptotic variances σ 2

p and σ 2
φ

within this range. It is obvious that the fluctuation is quite large
at a = 1000 (which means small background concentration
or large disassociation constant), but σ 2

φ is below 1.0 when
p > 0.32. In other words, the sensing ability is exhibited under
small concentration and small steepness of gradient.

IV. MULTIPLE LIGANDS WITH COMPETITIVE BINDING
IN CELLULAR SENSING ABILITY

In practical biological systems, many receptors can bind
with different ligands on the same site to conduct many
important functions [13]. For example, the ions H+, K+, and
Mg2+ can bind with eukaryotic cells’ Ca2+ binding sites of
calmodulin [14], which are related to intracellular movement,
metabolism, and apoptosis [15]. Moreover, different ligands
might present dissimilar effects after binding. For instant,
platelet-derived growth factor (PDGF), which is excreted
by platelet α granules during injury, can strongly attract
monocytes and neutrophils [16]. However, protamine sulfate,
which competitively binds to the surface of monocytes and
neutrophils, will block chemotaxis [16] and shows a distinct
role in chemotaxis. Therefore it is interesting to analyze
sensing ability in the multiple-ligand environment.

In this section we consider the concentration environment
with two different ligands denoted by Ligand 1 and Ligand 2,
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TABLE I. The parameters for two ligands at the nth receptor.

Type Ligand 1 Ligand 2

Background concentration C0 D0

Steepness of gradient p1 p2

Direction of gradient φ1 φ2

Energy level of unbinding ligand ε1 ε2

Energy level of binding ligand ε′
1 ε′

2

Chemical potential of unbinding ligand μ1 μ2

Chemical potential of binding ligand μ′
1 μ′

2

which can bind to the same site of the receptor whenever it
is unoccupied by any ligand. The receptors are still be treated
as an Ising spin chain. Since the effects of binding for these
ligands are in general distinct, two different operators S1n and
S2n are needed to describe the states of receptors for Ligand 1
and Ligand 2, respectively. The eigenvalues of both operators
are equivalent, such as binding state (+1) and unbinding
state (−1). The parameters of the two ligands are listed in
Table I, where the concentrations of both ligands are Cn =
C0 exp[p1

2 cos(ϕn − φ1)] and Dn = D0 exp[p2

2 cos(ϕn − φ2)]
at the nth receptor, and the energy level and chemical potential
for unbinding receptor are εu and μu respectively. All the
energy levels and chemical potentials of the system are
independent of position and concentration. The Hamiltonian
of the system is expressed as

HN {S1n,S2n} =
N∑

n=1

[
−
(

(S1n + 1)(S2n − 1)

4

)
ε′

1

−
(

(S2n + 1)(S1n − 1)

4

)
ε′

2

−
(

(S1n − 1)(S2n − 1)

4

)
εu

+
(

vCn + (S1n + 1)(S2n − 1)

4

)
ε1

+
(

vDn + (S2n + 1)(S1n − 1)

4

)
ε2

]
. (16)

The grand canonical partition function at the nth site Zn can
be separated as parts for unbinding (zun), binding with Ligand
1 (z1n), and binding with Ligand 2 (z2n):

zun = 1

(vCn)!(vDn)!
e−β[(εu−μu)+(ε1−μ1)vCn+(ε2−μ2)vDn], (17a)

TABLE II. The parameters of the Michaelis-Menten model at the
nth receptor. Abbreviation: IC, initial concentration; FC, final con-
centration after equilibrium; CDC, chemical dissociation constant.

Type Parameter

IC of enzyme en0

FC of unbinding enzyme en

FC of enzyme bind with Ligand 1 cn1

FC of enzyme bind with Ligand 2 cn2

CDC for Ligand 1 and enzyme K1 ≡ k1̄/k1

CDC for Ligand 2 and enzyme K2 ≡ k2̄/k2

z1n = 1

(vCn − 1)!(vDn)!

× e−β[(ε′
1−μ′

1)+(ε1−μ1)(vCn−1)+(ε2−μ2)vDn], (17b)

z2n = 1

(vCn)!(vDn − 1)!

× e−β[(ε′
2−μ′

2)+(ε1−μ1)vCn+(ε2−μ2)(vDn−1)]. (17c)

The total partition function � for the cell therefore becomes

� =
N∏

n=1

Zn =
N∏

n=1

(zun + z1n + z2n). (18)

To identify the probabilities of binding and unbinding cases
in chemical kinetics, we apply the Michaelis-Menten model,
which is widely used in nonallosteric enzymes [17] where
the receptors are treated as isolated enzymes in this model.
The parameters of the Michaelis-Menten model are listed in
Table II. The main equations for competitive constraints and
chemical equilibrium for Ligand 1 and Ligand 2 can be written
as

en0 = en + cn1 + cn2, (19a)
dcn1

dt
= k1enCn − k1̄cn1 = 0, (19b)

dcn2

dt
= k2enDn − k2̄cn2 = 0. (19c)

At equilibrium, one can solve for the final concentrations
cn1 and cn2, and for the unbinding receptors. The ratios of
these variables and the original concentration of receptor can
be seen as the probability of binding or unbinding state at the
nth site. Therefore, the probabilities of binding with Ligand 1
(P1n) and Ligand 2 (P2n), or of not binding (Pun), are

Pun = en

en0
= 1

1 + Cn

K1
+ Dn

K2

≡ zun

Zn

= 1

1 + vCne
−β[(ε′

1−μ′
1)−(ε1−μ1)−(εu−μu)] + vDne

−β[(ε′
2−μ′

2)−(ε2−μ2)−(εu−μu)]
, (20a)

P1n = cn1

en0
=

Cn

K1

1 + Cn

K1
+ Dn

K2

≡ z1n

Zn

= vCne
−β[(ε′

1−μ′
1)−(ε1−μ1)−(εu−μu)]

1 + vCne
−β[(ε′

1−μ′
1)−(ε1−μ1)−(εu−μu)] + vDne

−β[(ε′
2−μ′

2)−(ε2−μ2)−(εu−μu)]
, (20b)

P2n = cn2

en0
=

Dn

K2

1 + Cn

K1
+ Dn

K2

≡ z2n

Zn

= vDne
−β[(ε′

2−μ′
2)−(ε2−μ2)−(εu−μu)]

1 + vCne
−β[(ε′

1−μ′
1)−(ε1−μ1)−(εu−μu)] + vDne

−β[(ε′
2−μ′

2)−(ε2−μ2)−(εu−μu)]
. (20c)
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Similar to the case of the single-ligand system, we introduce
b1 and b2:

b1 ≡ K1

C0
= 1

vC0
e−β[−(ε′

1−μ′
1)+(ε1−μ1)+(εu−μu)], (21a)

b2 ≡ K2

D0
= 1

vD0
e−β[−(ε′

2−μ′
2)+(ε2−μ2)+(εu−μu)]. (21b)

It is necessary to define the statistical parameters for Lig-
ands, which are (x1,x2) = (

∑
n

1
2S1n cos ϕn,

∑
n

1
2S1n sin ϕn)

and (x3,x4) = (
∑

n
1
2S2n cos ϕn,

∑
n

1
2S2n sin ϕn) for Ligands

1 and 2, respectively. Furthermore, the expectation value for
each parameter is xi ≡ 〈xi〉, and its fluctuation can be cal-
culated by σ 2

i ≡ 〈(xi − xi)2〉. Assuming these parameters are
independent, their probability distributions can be described
by the Gaussian function g �∏4

i=1
1

2πσi
exp[−(xi − xi)2/σ 2

i ],
and the Fisher information matrix F then can be obtained as [8]

F = (−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈
∂2 ln g

∂x1
2

〉 〈
∂2 ln g

∂x1∂x2

〉 〈
∂2 ln g

∂x1∂x3

〉 〈
∂2 ln g

∂x1∂x4

〉
〈

∂2 ln g

∂x1∂x2

〉 〈
∂2 ln g

∂x2
2

〉 〈
∂2 ln g

∂x2∂x3

〉 〈
∂2 ln g

∂x2∂x4

〉
〈

∂2 ln g

∂x1∂x3

〉 〈
∂2 ln g

∂x2∂x3

〉 〈
∂2 ln g

∂x3
2

〉 〈
∂2 ln g

∂x3∂x4

〉
〈

∂2 ln g

∂x1∂x4

〉 〈
∂2 ln g

∂x2∂x4

〉 〈
∂2 ln g

∂x3∂x4

〉 〈
∂2 ln g

∂x4
2

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

The asymptotic variances of φk (k = 1,2 for the two
ligands) can be obtained by the inequality [8]

Ck − RT
k F−1Rk � 0, (23)

where Rk is the transformation vector of φk and F−1 is
the inverse of the information matrix. Ck is the minimum
fluctuation of φk . The definition of RT

k is

RT
k =

[
∂φk

∂x1

∂φk

∂x2

∂φk

∂x3

∂φk

∂x4

]
. (24)

By expanding the Cn and Dn to second order of p, we obtain
φ1 and φ2 as

φ1 = arctan

[(
2 + 1

b1

)
x2 − (1 − 1

b1

)
x4(

2 + 1
b1

)
x1 − (1 − 1

b1

)
x3

]
, (25a)

φ2 = arctan

[(
1 − 1

b2

)
x2 − (2 + 1

b2

)
x4(

1 − 1
b2

)
x1 − (2 + 1

b2

)
x3

]
. (25b)

The minimum of Ck is obtained by inequality (23). By
taking p2 = p1 = p, Figs. 5 and 6 show the results for fixed
b1 with different b2 by numerically differentiating Eq. (25)
with statistical parameters xi .

One would expect that small asymptotic variance presents
better ligand sensing ability. Due to the lack of experimental
evidence for σ 2

φ , we set a criterion σ 2
φ � 1 to be the condition

for sensing ability. In Fig. 5, with b1 = 0.01, b2 = 0.4, and
p = 0.02, σ 2

φ1
� 300 and σ 2

φ2
� 1000; it seems that the cell

cannot sense any ligand. As p increases, for example p = 0.4,
σ 2

φ1
= 0.81864 and σ 2

φ2
= 2.50598, which means the cell has

small asymptotic variances indicating better resolution of the
ligands. One may infer that the cell might recognize a more
distinct direction and move toward Ligand 1. Meanwhile, the
difference of the asymptotic variances is not so prominent
when bj (j = 1,2) are almost equal. As can be seen from

FIG. 5. (Color online) The results of σ 2
φ1

and σ 2
φ2

versus p for
b1 = 0.01 with different b2, with φ1 = 0 and φ2 = π/10. We just
plot the range 0.02–0.2 due to lack of space.

Fig. 5, for the case b2 = 0.02 and p = 0.61, σ 2
φ1

= 0.98659 and
σ 2

φ2
= 1.01726, and the cell could not determine a preferred

direction for motion even though σ 2
φ satisfy our criteria. The

cell might be insensitive when σ 2
φ1

� σ 2
φ2

.
It is interesting to see whether the above observation

depends on the magnitude of bj . The results from fixed
b1 = 100 with different b2 are plotted in Fig. 6. For the case of
b2 = 400, we have σ 2

φ1
= 14.99085 and σ 2

φ2
= 187.88 at p =

0.04, and σ 2
φ1

= 0.95067 and σ 2
φ2

= 11.91643 for p = 0.16.
It seems that better sensing resolution is exhibited with
larger gradient. On the other hand, for the case b1 = 100,
b2 = 120, and p = 0.2, σ 2

φ1
= 0.812736 and σ 2

φ2
= 1.1280, so

confusing information also exists in this situation. Therefore,
Fig. 6 indicates the occurrence of good resolution with large
difference of bj ; this is a general feature in this theoretical
model. However, further experimental observation will be
needed to clarify this assertion.

Since large bj corresponds to unbinding, it is important to
see the effect of unbinding in Fig. 7. For large b2, such as

FIG. 6. (Color online) The results of σ 2
φ1

and σ 2
φ2

versus p for
b1 = 100 and various b2 with φ1 = 0 and φ2 = π/10.
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FIG. 7. The results of σ 2
φ1

and σ 2
φ2

versus p for b1 = 100 and
b2 = 400,4000 with φ1 = 0 and φ2 = π/10.

b2 = 4000, the results show that the cell has no information
for Ligand 2 through binding, therefore one would expect a
large σ 2

φ2
and our results in Fig. 7 also shows such tendency.

Furthermore, when b2 decreases to 400, the cell can have more
binding receptors, therefore σ 2

φ2
decreases.

The discussion above indicated that better sensing resolu-
tion exists when both conditions σ 2

φ � 1 and large difference
of σ 2

φ1
and σ 2

φ2
are satisfied. In addition, the asymptotic variance

decreases when the receptor tends to bind with the ligand, and
the cell could receive more information from ligands.

We have provided the extension to deal with a two-ligand
system by using the Michaelis-Menten model. Under the
equilibrium situation, minimum fluctuations of sensing ability
can be obtained. It is noted that such a system can be analyzed

by including the ligand concentrations inside the partition
function.

V. CONCLUSION

In this work we have modified the mechanism of sensing
ability by including the dynamics of the ligand. In our approach
we are able to avoid having energies correlate with the
ligand concentration. This was accomplished by setting up the
system with different energy levels and chemical potentials,
and using a grand canonical partition function to address the
sensing ability. It is interesting that this model can still exhibit
remarkable sensing ability. Moreover, in our approach the
energy levels are free parameters that can be used for any
cellular complex. Therefore our model has predicting power
for other physical quantities, such that further experimental
results can be used to justify the correctness of this kind of
model.

We have also studied a more complicated environment
with multiple ligands under a competitive binding situa-
tion. The results indicate that cells can distinguish different
ligands under the small gradient with different chemical
dissociation constants. This extension suggests a possible way
to predict the reactions of a cell in a practical biological
environment.
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