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Volume phase transitions of biaxial nematic elastomers
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We present a mean-field theory to describe biaxial nematic phases of side-chain liquid crystalline elastomers.
Novel biaxial nematic phases are theoretically predicted in a side-chain liquid crystalline polymer and gel,
where side chains (mesogens) and rigid-backbone chains favor mutually perpendicular orientations. We calculate
uniaxial and biaxial orientational order parameters and examine deformations of the gel and stable biaxial
nematic phases of the liquid crystalline gel dissolved in isotropic solvents. We predict first-order uniaxial-biaxial
nematic phase transitions of the gel and the volume of the gel is discontinuously changed at the phase transition
temperature.
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I. INTRODUCTION

Liquid crystalline elastomers (LCEs) [1,2], or gels, dis-
solved in solvent molecules show volume phase transitions by
changing temperature [3–19]. The key point is that the volume
change is induced by the orientational ordering of the liquid
crystalline gel. Then the liquid crystalline ordering, such as a
nematic and and a smectic phase, can be a major cause of in
the shape change of LCEs.

When we consider a nematic phase of side-chain LCEs
or side-chain LC polymers, there are three possible types in
nematic phases, which were first considered by Wang and
Warner [20]. The three nematic phases can be defined by two
orientational order parameters: one is Sm of nematogenic side
chains (mesogens) and the other is Sb of a rigid-backbone chain
which is connected with a flexible spacer. When one order
parameter is positive, the other can be positive or negative.
Figure 1 shows three principal uniaxial nematic phases for a
side-chain LC polymer. The N1 phase (Sm > 0 and Sb < 0) is
defined as that the mesogens are aligned along to the ordering
direction (z) and the backbone chain is perpendicular to the
mesogens. The N2 phase (Sm < 0 and Sb > 0) is defined as
the backbone chain is aligned along to the ordering direction
z and the mesogens are perpendicular to the backbone chain.
The third N3 phase is defined by Sm > 0 and Sb > 0, where the
backbone and mesogens are oriented to the ordering direction
z. In the N1 phase, the backbone chain adopts an oblate shape.
In the N2 and N3 phases, a prolate shape of the backbone is
obtained. The identification of these nematic phases has been
based on an examination of the shape of the backbone chain
using x-ray diffraction [21,22] and neutron scattering [23,24].
The N2 phase is unusual because the side chains are not
aligned with the director (z axis). Such a polymer requires
both mesogenic side groups and a mesogenic rigid backbone
chain [25,26], where the backbone chain and side groups
simultaneously and independently are ordered.

Recently we have presented a mean field theory to describe
volume phase transitions of a side-chain LCE dissolved in
a solvent molecule and calculated the swelling behavior and
deformations for the three different uniaxial nematic phases
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(N1, N2, and N3) [27–29]. In these uniaxial nematic phases
(N1, N2), we can expect biaxial nematic phases. Biaxiality
occurs if anisotropic particles orient along a second axis
perpendicular to a main director of the particles [30]. Biaxial
phases of side-chain LCEs have been discovered in nematic
and smectic A systems with side-on or end-on attachment of
mesogenic group to the polymer backbone [31–34]. Biaxial
shape memory effect has also been reported in chiral smectic
C elastomers [35].

Figure 2 schematically shows novel biaxial nematic phases
(N1b, N2b) of a side-chain LCE, where the mesogens and
backbone chains favor mutually perpendicular orientations. In
the uniaxial nematic N1 phase, on decreasing the volume of the
gel, we can expect additional ordering of backbone chains in
the direction m (minor director) perpendicular to the director
n (major director). This corresponds to biaxial ordering (N1b).
In the N2 phase, we may have a biaxial nematic (N2b)
phase, where the additional ordering of mesogens appears in
the direction m (minor director) perpendicular to the major
director n. Such mutually perpendicular orientations have been
theoretically predicted in mixtures of a liquid crystal and a
nanotube [36].

In this paper, we present a mean-field theory to describe
the swelling behaviors of the LC gels including the uniaxial
and the biaxial nematic phases. We calculate uniaxial and
biaxial orientational order parameters and examine stable
biaxial nematic phases of the liquid crystalline gel dissolved in
isotropic solvents. We predict the first-order uniaxial-biaxial
phase transitions of the gels and the volume of the gel is
discontinuously changed at the phase transition. We first
theoretically predict a stable biaxial phase of the liquid
crystalline gels.

II. FREE ENERGY

We consider a side-chain liquid crystalline elastomer (or
gel), consisting of liquid crystalline backbone chains and side
chains, dissolved in solvent molecules. Let n be the number of
segments on a subchain between two crosslinks. The repeating
unit on the subchain consists of a mesogen with the axial ratio
nm and a rigid backbone chain of the axial ratio nb connected by
a spacer with the number ns of the segments. The total number
of segments on the subchain is given by n = (nm + ns + nb)t ,
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FIG. 1. (Color online) Three possible uniaxial nematic phases
of side-chain liquid crystalline elastomers. Depending on two
orientational order parameters: one is Sm of a side chain (mesogen)
and the other is Sb of a rigid-backbone chain, we can define a nematic
N1 phase with Sm > 0 and Sb < 0, a N2 phase with Sm < 0 and
Sb > 0, and a N3 phase with Sm > 0 and Sb > 0.

where t is the number of a repeating unit. Let Ng and N0 be
the number of the side-chains ad solvent molecules inside the
gel, respectively.

The volume fraction of the gel is given by

φg = a3nNg/V, (1)

where a3 is the volume of a unit segment, V = a3Nt is the
volume of the gel, and Nt (=nNg + N0) shows the total number
of segments including gel and solvent molecules. The volume
of the gel is also given by V =NgRxRyRz, where Ri is the
length along the i(=x,y,z) axis between crosslink points of
the gel. The volume fraction of the mesogen is given by

φm = a3nmtNg/V = xmφg, (2)
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FIG. 2. (Color online) Biaxial nematic phases of side-chain liquid
crystalline elastomers. A minor director m perpendicular to the major
director n appears by the additional ordering of backbone chains (N1b)
and mesogens (N2b).

where xm ≡ nm/(nm + ns + nb) is the fraction of the mesogen
segments. The volume fraction of the rigid backbone is given
by

φb = a3nbtNg/V = xbφg, (3)

where xb ≡ nb/(nm + ns + nb). The volume fraction of the
spacer is given by

φs = a3nstNg/V = xsφg, (4)

where xs ≡ nb/(nm + ns + nb) and we have φg = φm +
φb + φs .

To derive the equilibrium volume fraction φg of the gel, we
consider thermodynamics of our system. The free energy of
nematic elastomers consists of three terms

F = Fel + Fmix + Fnem, (5)

where the first term shows the elastic free energy due to the
deformation of nematic gels, the second term shows the free
energy for an isotropic mixing of a gel with solvent molecules,
and the last term shows the free energy for nematic ordering.
In this paper we consider both uniaxial and biaxial nematic
elastomers.

A. Elastic free energy

We first consider the elastic free energy due to the defor-
mation of the LC gel, which includes an isotropic, a uniaxial
nematic and a biaxial nematic phase. The elastic penalty of the
gel is given by the deformation of the backbone chains.

The number of configurations of a subchain of the contour
length L(=a(nb + ns)t), connecting two crosslinks separated
by a distance R = (Rx,Ry,Rz) in a network, is proportional to
the anisotropic Gaussian distribution [1]

P (R) ∝
(

a3

Det(lij )

)
exp

(
− 3

2L
Ril

−1
ij Rj

)
, (6)

where the effective step length forms a tensor lij and is given
by

lij = 3a

N

N∑
i,j

〈ui · uj 〉, (7)

where N = (nb + ns)t is the total number of segments on
a backbone chain and ui is the unit vector along the i-th
bond vector of the segment on the backbone chain. The elastic
entropy of the polymer chain is given by

S(R) = kB ln P (R), (8)

where kB is the Boltzmann constant.
In the freely-jointed model [37], there is no correlation

between the different bonds and then we have ui · uj = u2
i δij .

The coordinate projections in the frame where the director
is along z axis give ux = sin θ cos ϕ, uy = sin θ sin ϕ, and
uz = cos θ, where θ (0 < θ < π ) is the angle between the
bond vector and the z direction and ϕ is the azimuthal angle
(0 < ϕ < 2π ). Then the effective step length is given by

lxx = 3a sin2 θ cos2 ϕ,

lyy = 3a sin2 θ sin2 ϕ, (9)

lzz = 3a cos2 θ.
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The spontaneous mean-square end-to-end distance Rs =
(Rx0,Ry0,Rz0) of the backbone chain is given by

〈Ri0Rj0〉 = 1
3 lijL, (10)

and we then obtain

R2
x0 = a2N〈sin2 θ cos2 ϕ〉,

= 1
3a2N (1 − Sb + √

3�b), (11)

R2
y0 = a2N〈sin2 θ sin2 ϕ〉,

= 1
3a2N (1 − Sb − √

3�b), (12)

R2
z0 = a2N〈cos2 θ〉,

= 1
3a2N (1 + 2Sb), (13)

where we have used the uniaxial nematic order parameter

Sb = 3
2

〈
cos2 θ − 1

3

〉
, (14)

and the biaxial nematic order parameter

�b =
√

3

2
〈sin2 θ cos(2ϕ)〉, (15)

of the backbone chain. Using the tensor order parame-
ter Sb,αβ = (3/2)Sb(nαnβ − δαβ/3), (α,β = x,y,z), we have
�b = Sb,xx − Sb,yy and Sb = Sb,zz. Here Sb,zz describes align-
ment of molecules along the z axis (major director), whereas
the nonzero value of �b describes ordering along the x or y

axis. When �b = 0, Eqs. (13) and (14) result in the case of the
uniaxial nematic phase [27]. When Sb = 0 and �b = 0, we
have Rx0 = Ry0 = Rz0(=R0), where R0 ≡ a

√
N corresponds

to the ideal chain in an isotropic phase.
Then the entropy change per a backbone chain, due to the

deformation from the initial spontaneous state Rs to the current
state R, is given by

�S = S(R) − S(Rs), (16)

Substituting Eqs. (11)–(13) into Eq. (16), the elastic free
energy Fel due to the deformation of the gel, consisting of
Ng backbone chains, is given by

Fel = −NgT �S,

= 1

2
Ng

[
λ2

xx + λ2
yy + λ2

zz − 3 − ln

(
a3

lxx lyy lzz

)]
, (17)

where T is the absolute temperature and we define

λ2
xx ≡

(
Rx

Rx0

)2

,

= κ2
x (1 − Sb +

√
3�b)−1, (18)

λ2
yy ≡

(
Ry

Ry0

)2

,

= κ2
y (1 − Sb −

√
3�b)−1, (19)

λ2
zz ≡

(
Rz

Rz0

)2

,

= κ2
z (1 + 2Sb)−1, (20)

and κi ≡ Ri/R0, (i = x,y,z). The strain λii is a function of the
order parameters and so it is convenient to use the deformation
(κi), related to the isotropic Gaussian chain. Substituting

Eqs. (18)–(20) into Eq. (20), the elastic free energy can be
rewritten as

βFel = 1

2
Ng

[
κ2

x

1 − Sb + √
3�b

+ κ2
y

1 − Sb − √
3�b

+ κ2
z

1 + 2Sb

− 3 + ln A

]
, (21)

where β ≡ 1/(kBT ) and

A ≡ (1 − Sb +
√

3�b)(1 − Sb −
√

3�b)(1 + 2Sb). (22)

The volume fraction of the gel is given by

φg = a3n

RxRyRz

= 1

c1κxκyκz

, (23)

where c1 ≡ (nb + ns)1.5
√

t/(nm + nb + ns) and then the κx in
Eq. (21) is given as a function of φg , κy , and κz:

κx = 1

c1φgκyκz

. (24)

In this subsection we derive the elastic free energy of the
LC gel. In the following subsection we obtain the mixing free
energy and nematic free energy by taking into account the
intermolecular interactions.

B. Free energy of mixing

The second term Fmix in Eq. (5) shows the free energy for an
isotropic mixing of a gel with a solvent molecule. According
to the Flory-Huggins theory [38] for polymer solutions, this
free energy is given by

βFmix/Nt = (1 − φg) ln(1 − φg) + χφg(1 − φg), (25)

where χ shows the isotropic (Flory-Huggins) interaction
parameter between a gel and a solvent molecule. In this paper
we take that the solvent molecule is a good solvent for the gel:
χ � 0.

C. Nematic free energy

The third term Fnem in Eq. (5) shows the free energy
for nematic ordering. To describe the nematic ordering, we
take into account the orientational-dependent (Maier-Saupe)
interactions between liquid crystalline molecules [39]. Let
νmm(>0) be the orientational-dependent (Maier-Saupe) in-
teractions between the mesogens, νmb be that between the
mesogen and the rigid backbone chain, and νbb(>0) be
that between the rigid backbone chains. These interaction
parameters are dimensionless parameters: νij ≡ Uij/kBT ,
where Uij is the interaction energy between the components
i and j (i,j = m,b). Let fm(u) and fb(u) be the orientational
distribution function of mesogens on the side chain and
the backbone chain with the orientational unit vector u =
{θ,ϕ}, defined by a polar angle (0 � θ � π ) and an an az-
imuthal angle (0 � ϕ � 2π ), or solid angle d� = sin θdθdϕ.
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The nematic free energy is given by

βFnem/Nt =
∑

i,j=m,b

φi

ni

∫
fi(u) ln[4πfi(u)]d�

+1

2

∑
i,j=m,b

φiφj

∫∫
fi(u)fj (u′)βij (u,u′)d�d�′,

(26)

where βij is the Mayer-Mayer function between two compo-
nents i and j . For the orientation-dependent interactions, the
attractive Maier-Saupe interactions are given by

βmm = −νmmP2(cos γ ), (27)

βbb = −νbbP2(cos γ ), (28)

βmb = −νmbP2(cos γ ), (29)

where γ is the angle between the local orientations u and u′.
We here use the additional theorem of spherical harmonics:

P2(cos γ ) = P2(cos θ )P2(cos θ ′) + 2
2∑

k=1

(2 − k)!

(2 + k)!

×P k
2 (cos θ )P k

2 (cos θ ′) cos[k(ϕ − ϕ′)], (30)

where the terms proportional to the associated Legendre poly-
nomials (P k

2 ) will vanish in a uniaxial nematic phase, which
does not depend on the azimuthal angle. In a biaxial nematic
phase, however, the terms of the Legendre polynomials (P 2

2 )
have a finite contribution.

The orientational order parameters Si (i = m,b) of a
uniaxial nematic phase is given by

Si =
∫

P2(cos θ )fi(θ,ϕ)d�, (31)

where P2(cos θ ) = (3/2)(cos2 θ − 1/3) and the biaxial order
parameter is given by

�i =
∫

D(θ,ϕ)fi(θ,ϕ)d�, (32)

where D(θ,ϕ) ≡ (
√

3/2) sin2 θ cos(2ϕ). Then Eq. (30) can be
given by

P2(cos γ ) = P2(cos θ )P2(cos θ ′) + D(θ,ϕ)D(θ ′,ϕ′). (33)

Substituting Eqs. (31)–(33) into Eq. (26), the nematic free
energy is given by

βFnem/Nt =
∑

i,j=m,b

φi

ni

∫
fi(u) ln[4πfi(u)]d�

− 1

2
νmmφ2

m

(
S2

m + �2
m

)
− νmbφmφb(SmSb + �m�b)

− 1

2
νbbφ

2
b

(
S2

b + �2
b

)
. (34)

The free energy F in Eq. (5) is given by the sum of Eqs. (21),
(25), and (34). In the next section, we derive the deformation
κα , the order parameters Si and �i , and the volume fraction
φg of the gel in a thermal equilibrium state.

III. EQUILIBRIUM SWELLING OF LIQUID
CRYSTALLINE GELS

A. Deformation of LC gels

The deformation of LC gels at a thermal equilibrium state
can be determined by the

(∂F/∂κz){κy ,Si ,�i ,φg} = 0, (35)

(∂F/∂κy){κz,Si ,�i ,φg} = 0, (36)

where κx is given as a function of κy and κz as shown in
Eq. (24). The derivatives of the free energies Fmix and Fnem

with respect to the deformation κα become zero since the free
energies Fmix and Fnem do not include the variables κα . Using
Eq. (21), Eqs. (35) and (36) lead to

κ4
z = 1 + 2Sb

c2
1κ

2
yφ2

g(1 − Sb + √
3�b)

, (37)

and

κ4
y = 1 − Sb − √

3�b

c2
1κ

2
z φ2

g(1 − Sb + √
3�b)

, (38)

respectively. Combining Eqs. (37) and (38), we obtain

κx =
[

(1 − Sb + √
3�b)2

(c1φg)2(1 − Sb − √
3�b)(1 + 2Sb)

]1/6

, (39)

κy =
[

(1 − Sb − √
3�b)2

(c1φg)2(1 − Sb + √
3�b)(1 + 2Sb)

]1/6

, (40)

and

κz =
[

1 + 2Sb

c1φg(1 − Sb + √
3�b)1/2(1 − Sb − √

3�b)1/2

]1/3

.

(41)

When �b = 0, Eqs. (39)–(41) result in the deformation of the
gels in a uniaxial nematic phase: κx = κy . When �b = 0 and
Sb = 0, we have an isotropic deformation: κx = κy = κz.

Substituting Eqs. (39)–(41) into Eq. (21), the elastic free
energy of the gel is given by

βFel/Nt = 3

2n

[ (
φg

c2
1A

)1/3

− φg + φg

3
ln A

]
. (42)

In the next subsection we derive the orientational order
parameters.

B. Equilibrium values of orientational order parameters

The orientational distribution functions fm(θ,ϕ) of the
mesogen and fb(θ,ϕ) of the backbone chain are determined
by the free energy (5) with respect to these functions:

(δF/δfm(u)){κα,Si ,φg,fb} = 0, (43)

(δF/δfb(u)){κα,Si ,φg,fm} = 0 (44)

with the normalization conditions for the distribution function:∫
fi(θ,ϕ) sin θdθdϕ = 1. (45)
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These lead to the orientational distribution function

fm(θ,ϕ) = 1

W0
exp[�m,1P2(cos θ ) + �m,2D(θ,ϕ)], (46)

�m,1 ≡ nm(νmmφmSm + νmbφbSb), (47)

�m,2 ≡ nm(νmmφm�m + νmbφb�b), (48)

for the mesogens and

fb(θ,ϕ) = 1

Z0
exp[�b,1P2(cos θ ) + �b,2D(θ,ϕ)], (49)

�b,1 ≡ B
(
Sb(1 − Sb) + �2

b

) + nb(νbbφbSb + νmbφmSm),

(50)

�b,2 ≡ −B(1 + 2Sb)�b + nb(νbbφb�b + νmbφm�m), (51)

B ≡ 3nb

nφbA

[
φg −

(
φg

c2
1A

)1/3]
, (52)

for the backbone chain. The constants W0 and Z0 are
determined the normalization condition (45). Substituting
Eqs. (46) and (49) into Eq. (45), we obtain

W0 = 4πIm[0,0], (53)

and

Z0 = 4πIb[0,0], (54)

where the function Ii (i = m,b) is defined as

Ii[q,r] ≡
∫ ∫

d�[P2(cos θ )]q[D(θ,ϕ)]r

× exp[�i,1P2(cos θ ) + �i,2D(θ,ϕ)], (55)

for q,r = 0,1,2, . . .. Using x ≡ cos θ and y ≡ ϕ/(2π ),
Eq. (55) can also be rewritten as

Ii[q,r] ≡
∫ 1

0

∫ 1

0
dxdy[P2(x)]q[D(x,y)]r exp

[
�i,1

3

2

(
x2−1

3

)

+�i,2

√
3

2
(1 − x2) cos(4πy)

]
. (56)

Substituting Eqs. (46) and (49) into Eq. (31), the uniaxial
orientational order parameter for the mesogen and the back-
bone chain are determined by the self-consistency equation

Sm = Im[1,0]/Im[0,0], (57)

and

Sb = Ib[1,0]/Ib[0,0], (58)

respectively. Similarly, substituting Eqs. (46) and (49) into
Eq. (32), the biaxial order parameters are determined by

�m = Im[0,1]/Im[0,0], (59)

and

�b = Ib[0,1]/Ib[0,0], (60)

The order parameters are determined by solving numerically
these four coupled equations as a function of a temperature.

C. Equilibrium swelling of LC gels

In this subsection we derive the volume fraction φg of the
gel at a thermal equilibrium state. Substituting Eqs. (46) and
(49) into Eq. (34), the nematic free energy is given by

βFnem/Nt = 3

nA

[
φg −

(
φg

c2
1A

)1/3][
S2

b (1 − Sb)

− (1 + Sb)�2
b

] + 1

2
νmmφ2

m

(
S2

m + �2
m

)
+ νmbφmφb(SmSb + �m�b)

+ 1

2
νbbφ

2
b

(
S2

b + �2
b

)

− φm

nm

ln Im[0,0] − φb

nb

ln Ib[0,0]. (61)

Then the free energy (5) is given by the sum of Eqs. (25),
(42), and (61). The chemical potential μ0 of the solvent
molecules inside the gel s given by

β
(
μ0 − μ◦

0

) = β(∂F/∂N0)Ng

= f − φg(∂f/∂φg)

+ 1

n

(
φg

c2
1A

)1/3

+ ln(1 − φg) + φg + χφ2
g

+ 1

2
νmmφ2

m

(
S2

m + �2
m

)
+ νmbφmφb(SmSb + �m�b)

+ 1

2
νbbφ

2
b

(
S2

b + �2
b

)
, (62)

where f ≡ βF/Nt and μ◦
0 is the chemical potential of the pure

solvent molecules outside the gel.
The equilibrium volume fraction φg of the gel can be

determined from the balance among the solvent molecules
existing outside and inside the gel

μ0 − μ◦
0 = 0. (63)

When the osmotic pressure �(=μ◦
0 − μ0) plotted against φg

contains the van der Waals loops, the equilibrium value of
φg can be determined by � = 0. The stability conditions of
the gel are determined by using the Maxwell construction and

0.3 0.4 0.5 0.6 0.7 0.8 0.9
–0.1

0.0

0.1

0.2

βπ

φ g

τ=0.35

0.34

0.33

0.32

0.31

FIG. 3. Osmotic pressure � plotted against φg for cmb = −1 with
nm = 2 and nb = 2. The reduced temperature τ is changed.
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the region (∂�/∂φg)T < 0 corresponds to unstable spinodal
regions (see Fig. 3).

IV. VOLUME PHASE TRANSITIONS

We here define the reduced-temperature τ ≡ 4.54nm/νmm,
which is proportional to temperature, and defined the
anisotropic interaction parameters

cmb = νmb/νmm, (64)

and

cb = νbb/νmm, (65)

where cmb and cb are constants. The larger values of amb shows
the stronger attractive interaction between the mesogen and the
backbone chain. When cmb > 0, the backbone chains favor
to be parallel to the mesogens, while cmb < 0 the backbone
chains favor to be perpendicular to the mesogens [27–29]. In
the following we set cb = 1, ns = 2, t = 10, and χ = νmm/10.

Figure 3 shows the osmotic pressure plotted against φg for
cmb = −1 with nm = nb = 2, which are the same values with
Fig. 6. The reduced temperature τ is changed from τ = 0.35 to
0.31. The closed circles show the equilibrium volume fraction
of the gel at the each temperature. At τ = 0.33, we have the
first-order phase transition from a condensed gel to a swollen
gel. Figure 4 shows the order parameters plotted against φg

at τ = 0.31 in Fig. 3. At φg � 0.52, we have the first-order
phase transition from an isotropic phase to a uniaxial nematic
N2 phase with Sb > 0, Sm < 0, and �b = �m = 0. We also
have the first-order phase transition from a uniaxial nematic
N2 phase to a biaxial nematic N2b phase with Sb > 0, Sm < 0,
�b > 0, and �m < 0. The equilibrium volume fraction for
τ = 0.31 is given by φg � 0.85. As shown in Fig. 3, the
osmotic pressure jumps at the first-order phase transitions.
The equilibrium volume fraction of the gel can be obtained
by solving � = 0 as a function of the temperature. In the
following we show some numerical results of the swelling
behavior of the gel and the deformations as a function of
temperature.

Figure 5 shows the swelling curve of the gel (a) and the
order parameters (b) plotted against the reduced temperature
τ for cmb = 1 with nm = 2, nb = 2. The larger (smaller)
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FIG. 4. Order parameters plotted against φg at τ = 0.31 in Fig. 3.

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0

τ

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0

τ

O
rd

er
 P

ar
am

et
er

s

N3 

φ g

Sb

Sm

Δm Δb

Isotropic

(a)

(b)

FIG. 5. Swelling curve of the gel (a) and the order parameters
(b) plotted against the reduced temperature τ for cmb = 1 with nm = 2
and nb = 2.

values of φg corresponds to a condensed (swollen) gel. At
high temperatures, the gel is swollen and is in an isotropic (I)
state. On decreasing temperature we find the first-order volume
phase transition from a swollen gel to a condensed state. As
shown in Fig. 5(b), the condensed gel is in the nematic N3

phase, where the order parameters have Sm > 0, Sb > 0, and
�m = �b = 0. When cmb > 0, the mesogens and backbone
chains favor to be mutually parallel and then we have the
uniaxial N3 phase at lower temperatures. The shape of the gel
is elongated parallel to the nematic director as shown in Fig. 1.

Figure 6 shows the swelling curve of the gel (a) and the
order parameters (b) plotted against the reduced temperature
τ for cmb = −1 with nm = 2 and nb = 2. When cmb < 0,
the mesogens and backbone chains favor to be mutually
perpendicular orientation. On decreasing temperature, we
find the first-order phase transition from an isotropic to a
uniaxial N2 phase with Sb > 0 and Sm < 0. Further decreasing
temperature, we have the first-order phase transition from the
N2 phase to a biaxial N2b phase, where we have �m < 0 and
�b > 0 [Fig. 6(b)]. We find the discontinuous volume phase
transitions of the gel at the isotropic (I)-uniaxial nematic (N2)
phase transition and at the uniaxial (N2)-biaxial (N2b) phase
transition. We here emphasize that the biaxial nematic phase
of the gel can be stabilized at lower temperature side of the
uniaxial nematic phase.
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FIG. 6. Swelling curve of the gel (a) and the orientational order
parameters Sb, Sm, �b, and �m (b) plotted against the reduced
temperature τ for cmb = −1 with nm = 2 and nb = 2.

Figure 7 shows the deformation κα/κiso of the gel plotted
against the temperature for Fig. 6. The value of κα is
normalized by the deformation κiso in the isotropic phase at the
I-N2 phase transition. In the N2 phase, we have κz > κx = κy

and the gel is a cylindrical symmetry, or a uniaxial nematic
phase, where the backbone chains are elongated along to
the director, while the mesogens are randomly distributed
on the plane perpendicular to the director. In the biaxial
N2b phase, we have κz > κx > κy , where the κz corresponds
to the deformation along to the main director n and κx

shows the elongation along to the minor director m. At the
uniaxial-biaxial phase transition, the values of κx and κy split.

Figure 8 shows the swelling curve of the gel (a) and the
order parameters (b) plotted against the reduced temperature
τ for cmb = −1 with nm = 3 and nb = 2. On decreasing
temperature, we find the first-order phase transition from an
isotropic (I) to a uniaxial N1 phase with Sb < 0 and Sm > 0.
Further decreasing temperature, the firs-order phase transition
from the N1 phase to the biaxial N1b phase takes place, where
we have �m > 0 and �b < 0 [Fig. 8(b)]. We also find the
discontinuous volume phase transition of the gel at the I-N1

phase transition and at the uniaxial (N1)-biaxial (N1b) phase
transition temperature. When the length of mesogen is slightly
larger than that of backbone (nm = 3, nb = 2), the main
director is given by the orientational ordering of mesogens
and the minor director of the biaxial N1b phase is given by

FIG. 7. (Color online) Deformation κα/κiso (α = x,y,z) plotted
against the reduced temperature τ for cmb = −1 with nm = 2 and
nb = 2.

orientational ordering of the backbone chain. The deformation
of the gel is shown in Fig. 9. In the biaxial N1b phase, the gel
has a rectangular shape with κy > κx > κz.

When nm = nb = 3, we have the first order phase transition
from an isotropic to a biaxial N1b phase and the volume of
the gel is discontinuously changed at the phase transition
temperature as shown in Fig. 10. The long backbone chains
stabilize the biaxial N1b phase and the uniaxial N1 phase
in Fig. 8 disappears. The biaxial nematic phase is strongly
dependent on the length of a mesogen and a rigid-backbone
chain. If the backbone chain is short (nb < nm), we only have
the uniaxial N1 or N3 phase. In order to form a stable biaxial
nematic phase, we need the condition ns � nm � nb.

We emphasize that the idea of these biaxial nematic phases
is important to reconsider the structure of nematic phases of
LC polymers and elastomers. Such biaxial nematic phases
may be hidden at the lower temperature sides of a uniaxial ne-
matic phase. The mutually perpendicular orientation between
mesogens and backbone chains can be a major cause of the
novel biaxial nematic phases. Such attachment geometries can
be achieved by side-chain side-on elastomers. Biaxiality of
nematic polymers and elastomers sets in when the rotational
diffusion around the long axis gets hindered enough to allow
biaxial nematic phase. Recent experiments have suggested that
the side-on attachment of the mesogens hinders the rotation
of the molecules around their long axes more than the other
geometries, such as end-on and main-chain attachment [34].

In this paper we neglect excluded volume interactions
between rigid molecules because the mesogens and backbones
are short chains. To study biaxiality in elastomers containing
long rigid rods [40], such as carbon nanotube, it is important
to consider the steric interactions between rods. In this paper
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FIG. 8. Swelling curve of the gel (a) and the orientational order
parameters Sb, Sm, �b, and �m (b) plotted against the reduced
temperature τ for cmb = −1 with nm = 3 and nb = 2.

FIG. 9. (Color online) Deformation κα/κiso (α = x,y,z) plotted
against the reduced temperature τ for cmb = −1 with nm = 3 and
nb = 2.
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FIG. 10. Swelling curve of the gel (a) and the orientational order
parameters Sb, Sm, �b, and �m (b) plotted against the reduced
temperature τ for cmb = −1 with nm = 3 and nb = 3.

we obtain the first-order volume phase transitions, where the
volume, or shape, of the gel is discontinuously changed.
Our model corresponds to monodomain LCEs. Either the
continuous or discontinuous volume change may depend on
the other factors, such as quenched disorder in LCEs [41],
polydomain LCEs [42], and polydispersity of chain lengths,
etc., however, our theory presented in this paper predicts novel
biaxial nematic phases of LCEs.

V. SUMMARY

We have presented a theory to describe novel biaxial
nematic phases of a side-chain liquid crystalline gel dissolved
in an isotropic solvent and considered three different uniaxial
nematic phases (N1, N2, and N3) and two biaxial nematic
phases (N1b and N2b). We calculate uniaxial and biaxial
orientational order parameters and examine swelling behavior
of the LCEs dissolved in isotropic solvents, depending on
temperature. We predict the first-order uniaxial-biaxial phase
transitions, N1-N1b,N2-N2b, and the isotropic-biaxial phase
transition of the gel. The volume of the gel is discontinuously
changed at the phase transition temperature. The mutually
perpendicular alignment between mesogens and backbone
chains can be a major cause of the novel biaxial nematic phases.
We hope that these results encourage further experimental and
theoretical studies for biaxial nematic phases of LCEs.
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