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Negative Poisson’s ratio and semisoft elasticity of smectic-C liquid-crystal elastomers
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Models of smectic-C liquid-crystal elastomers predict that they can display soft elasticity, in which the shape
of the elastomer changes at no energy cost. The amplitude of the soft mode and the accompanying shears are
dependent on the orientation of the layer normal and the director with respect to the stretch axis. We demonstrate
that in some geometries the director is forced to rotate perpendicular to the stretch axis, causing lateral expansion
of the sample—a negative Poisson’s ratio. Current models do not include the effect of imperfections that must
be present in the physical sample. We investigate the effect of a simple model of these imperfections on the soft
modes in monodomain smectic-C elastomers in a variety of geometries. When stretching parallel to the layer
normal (with imposed strain) the elastomer has a negative stiffness once the director starts to rotate. We show
that this is a result of the negative Poisson’s ratio in this geometry through a simple scalar model.
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I. INTRODUCTION

Liquid-crystal elastomers (LCEs) are soft solids composed
of flexible polymers, with attached liquid-crystalline meso-
gens, crosslinked into a network [1]. A variety of liquid-
crystalline phases of LCEs have been synthesized, including
the nematic and smectic phases. The nematic phase undergoes
deformation at no energy cost, known as soft elasticity [2]
in both monodomain samples stretched perpendicular to
the director [3] and in some types of polydomain samples
[4-6]. Soft elasticity in nematic elastomers requires several
sympathetic shears to develop during the deformation as the
director rotates. The deformation of the sample must also
obey the boundary conditions imposed by the clamps. Thus,
the sample forms a striped microstructure on the micrometer
length scale consisting of domains in which the director rotates
in opposite directions in adjacent domains [7]. Without this
microstructure soft deformations would not be possible. In
nematics this microstructure has been observed in some detail
experimentally [8], and its mathematical properties described
[9]. Theoretically an ideal nematic LCE should be perfectly
soft; however, in practice a small force must be applied to
deform the LCE. This semisoft behavior is due to various
imperfections in the elastomer and can be incorporated into
theoretical models by the addition of a semisoft energy term
that penalizes rotation of the director with respect to the rubber
matrix [10].

Smectic LCEs have been fabricated in both the smectic-A
(Sm-A) and smectic-C (Sm-C) phases, and with both main
chain [11] and side chain [12] architectures. The mechanical
behavior of the side chain systems can be modeled by adding
in the embedded smectic layers to the nematic elasticity free
energy [13,14]. Sm- A elastomers with a high degree of smectic
order exhibit a sharp change in their elastic deformation when
deformed parallel to the layer normal. They are extremely
anisotropic materials, with a Young’s modulus a factor of
100 times larger parallel to the layer normal compared with
perpendicular directions [12,15,16]. However, the response of
smectic elastomers depends on the chemistry, the crosslinking
procedure, and domain sizes in the sample [17]. Theoretical
models of the Sm-A phase have been successful in modeling
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the mechanical behavior of side chain systems. In contrast
to the nematic phase the Sm-A phase does not show any
soft elastic behavior because the director is locked parallel
to the layer normal. The elastic behavior of Sm-C elastomers
is predicted to be more complex. The director is free to rotate
on a cone around the layer normal, with fixed tilt angle as
shown Fig. 1(a). As a consequence it is predicted to have
a soft elastic mode just as in nematic elastomers [18,19]. A
more complicated combination of shears is required in Sm-C
soft modes. As a result of the compatibility requirements
between these deformations a far more restricted set of
tensile geometries are predicted to deform softly with clamped
boundary conditions [20].

To test these theoretical results experimentally, a mon-
odomain must be produced which requires alignment of
both the layer normal and the director. Using a two-stage
crosslinking method, the director field can be uniformly
aligned [21]. However, the layer normals are tilted at a fixed
angle on a cone around the director. We will refer to this
as a pseudo-monodomain [see Fig. 1(b)] [22] in order to
distinguish it from a monodomain, which has both the layer
normal and the director uniformly aligned, and a polydomain,
which has random director and layer normal alignment. The
layer normals in the pseudo-monodomain can be aligned by a
second uniaxial deformation perpendicular to one of the layer
normals [23], or alternatively by a shear deformation perpen-
dicular to the director [24]. To our knowledge no mechanical
experiments on monodomain Sm-C elastomers have been
reported, perhaps because of the difficulty in aligning these
samples. However, the spontaneous deformations associated
with changing the phase of the elastomer from Sm-A to Sm-C
have been observed [25]. Many more experiments have been
carried out on the more accessible polydomain system [11,26].
Unfortunately, as with many polydomain systems, this is more
difficult to model theoretically. However, these experiments
on the main chain Sm-C pseudo-monodomain show that when
stretching the sample perpendicular to the director, the layer
normals rotate toward the extensional axis. If the smectic layers
behaved as embedded planes (a key assumption in the model
of side chain smectic LCEs), then they would rotate away from

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.85.011703

A. W. BROWN AND J. M. ADAMS

(a) /1// (b)*
il :
////////
// /)P
111444

FIG. 1. (Color online) (a) The layer normal k and director n in
the Sm-C phase, and the transverse dipole orientation p in the Sm-C*
phase (polymer chains not shown). (b) The director and layer normals
in a pseudo-monodomain.

the extensional axis. This behavior is thought to arise because
of the unfolding of hairpins in the main chain system [27].

The director reorientation in soft modes may be particularly
important for the electromechanical properties of chiral Sm-C*
phase elastomers [28]. In these systems the mesogenic units
have a permanent transverse dipole, which on average is
oriented perpendicular to both the director and the layer normal
p = n x k as shown in Fig. 1(a). The coupling between the
macroscopic mechanical deformations and the microscopic
orientation of these dipoles results in their piezoelectric
properties. These materials show both the direct piezoelectric
effect in pseudo-monodomains [29], as well as the inverse
piezoelectric effect [30]. Spontaneous polarization of pseudo-
monodomains has also been reported [22].

Under a tensile load materials with a negative Poisson’s
ratio produce a transverse expansion. This property is useful
in gasket applications and has been produced in cellular
materials with a reentrant structure [31]. There is interest in
negative stiffness materials for applications such as stiffening
composites [32] and creating metamaterials having a negative
refractive index to sound waves [33]. Both negative Poisson’s
ratio and negative stiffness are predicted in Sm-C elastomers
by the model described here.

This paper is organized as follows. We will describe the
model of Sm-C elastomers that will be used in Sec. II,
and show that the soft modes in this model have negative
incremental Poisson’s ratio in some geometries. In Sec. III we
will illustrate the effect of the semisoft elastic term in four
different geometries. We will then summarize the effect of
this term and discuss the model predictions in relation to the
mechanical experiments in polydomains in Sec. IV.

II. MODEL FREE ENERGY

The model of a Sm-C elastomer that will be used here is
described in Refs. [34,35]. The free energy has contributions
from the nematic elasticity Fien, sSmectic layer spacing Fyp,
and the energy penalty for changing the tilt of the director
with respect to the layer normal Fyj.. The nematic elasticity is
given by

Frem = suTr[A- Lo - A" - £7'], (1)

where p is the rubber shear modulus, and A is the deformation
gradient. The step length tensor before the deformation has
been applied is £op = 4§ 4 (r — I)mpng, with ny the initial
director, § the unit tensor, and r the polymer anisotropy. The
current step length tensor is denoted by £, and its inverse by
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£7' =8 + (1/r — 1)nn, with n the final director. In principle
a Sm-C elastomer should have a biaxial shape tensor for the
polymer backbone because its shape may be affected by both
the director alignment and the layer normal direction. As a
first approximation we will treat it as uniaxial here, depending
only on the director orientation n. Biaxial soft modes in Sm-A
elastomers [18] and the effect of biaxiality in Sm-C soft
modes [28] are considered elsewhere. We will also assume
that the nematic and smectic order parameters remain fixed
throughout the deformation.

It is assumed that the smectic layers are embedded in the
rubber matrix, so that the corresponding layer normals k will
deform like embedded planes:

_T‘kO

k= —, 2
T ko) @

> | 1>

where K( is the initial layer normal. The layer spacing is
penalized by the smectic liquid-crystal modulus B:

| d cosf \°
Fsm=§B -V = s (3)

dy cosb

where d is the final layer spacing, dj is the initial layer spacing,
andd/dy = 1/|A"T - Kg|. Fym describes the free energy penalty
for deviations of the layer spacing away from that required
to accommodate the smectic mesogens. For tilted smectic
mesogens, the required layer spacing is cos 6/ cos 6y, where
the tilt angle with respect to the layer normal is ) in the initial
state and 6 in the current state. The free energy term that
penalizes the deviation of the director from a tilt angle 6 is

Far = a,[cos” 6p — (- k)°1°, “)

where q, is the tilt modulus and n - k = cos 6.

It will be assumed here that the bulk modulus of the rubber
is much larger than the shear, tilt, and smectic moduli, so that
the deformation gradient obeys det[A] = 1; hence it conserves
volume. Typically the smectic layer modulus is very large
compared to the rubber shear modulus, i.e., B > u (at least
in smectic elastomers of a similar type to that of Nishikawa
et al. [15]), so that the layer spacing remains almost fixed.
The tilt modulus is also large compared to the shear modulus
a: > [, so that the tilt angle remains close to 6 [36].

A. Soft elasticity

The free energy outlined above permits the subset of the
nematic soft modes that maintain the layer spacing. There is
only one soft mode that satisfies this (up to a global rotation),
and it corresponds to a rotation of the director about the
layer normal [18,19]. We summarize some of the properties of
this soft mode here, as they are crucial in understanding the
semisoft response of the elastomer.

We assume that the layer normal points along the z
direction, and the director is tilted into the y direction; i.e.,
ko =z and ny = zcos 6y + ysinfy in the starting state. The
soft modes can be parameterized by the angle ¢ which gives
the rotation of the director ny around the layer normal toward
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the x direction. The deformation matrix is given by [18]

1 (1 _ g)sianﬁ (r—l)sinzeo[sin¢ _ (l _ /_))sin2¢]

a($) 2a($) 2p r) 2a(¢)
0 a(e) % sin 26p[—a(¢p) + cosgp] |
0 0 1
%)
where
p = sin’ 6+ r cos’ 6o, (6)
a(p) = Jcos? ¢ + L sin2 . 7
r

The deformation components as a function of rotation angle
are illustrated in Fig. 2. The soft mode representation shown
in Fig. 2(c) uses the undeformed Sm-C phase as the reference
state. The high temperature isotropic phase is the most natural
reference state for the nematic elastomer free energy [37].
This alternative reference state can also be used to provide a
mathematically simpler free energy to analyze for the Sm-C
elastomer phase [20].

The soft mode in Eq. (5), denoted by A, can be
transformed to different starting configurations of the director
and layer normal by a set of rotation matrices. This is described
in Appendix A for the case of stretching parallel to the layer
normal in the kg = x direction, when ng = cos 6yx + sin yy.
Although the result is analytic, the algebra is not instructive
and is not presented here. The components of the deformation
matrix for this geometry are illustrated in Fig. 3. The 1, com-
ponent increases with imposed 1,,; i.e., the sample expands
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FIG. 2. For the parameter values r =2 and 6y = 0.5 radians,
(a) shows the diagonal components of the deformation matrix, (b)
shows the shear components, and (c) shows an illustration of the
deformations on the LCE, together with the component of the director
perpendicular to the layer normal, c.
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FIG. 3. The components of the upper triangular deformation
matrix for the Sm-C soft mode stretching parallel to the layer
normal, with r = 2 and 6, = 0.5 radians. Initially k) = x and ny =
cos BpX + sin 6yy.

in the direction perpendicular to the imposed elongation. This
is because the constraint requiring a fixed angle between the
layer normal and director results in the director rotating in
the z direction. The sample then expands to accommodate the
anisotropic chain shape, as shown in Fig. 4. This illustrates
an unusual property of some Sm-C soft modes: their negative
Poisson’s ratio. To our knowledge this mechanism for negative
Poisson’s ratio has not been reported before. Alternative mech-
anisms of producing auxetic behavior based on modifying
the attachment of mesogens to the polymer backbone in
smectic LCEs have been proposed and investigated experi-
mentally [38,39]. The microstructure formed by LCEs during
deformation may prevent the observation of negative Poisson’s
ratio for some deformations. This is discussed further in
Sec. IV.

For isotropic materials, the Poisson’s ratio must be in the
range —1 < v < 0.5. LCEs are anisotropic materials and so
have Poisson’s ratios outside this range. As the materials
considered here are volume conserving, the Poisson’s ratio
in the y direction is vy, =1 —v,,. When stretching par-
allel to the layer normal, the Poisson’s ratio for 6y > 0 is
given by

di 1
v = ——= = (8)
dhax |y, =1 (r — 1)cos? 8y

Substituting in typical values of 6, ~ 0.5 radians and r ~ 2 for
a side chain system produces v ~ —1.3. When compared with
other auxetic materials [31] this is a more negative Poisson’s
ratio, corresponding to a larger rate of expansion (albeit in
only one direction here). The extent of the soft mode in this
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FIG. 4. (Color online) An illustration of the Sm-C elastomer deformation when stretching parallel to the layer normal. The director (red)
moves out into the z direction perpendicular to the stretch axis, maintaining its tilt angle with respect to the layer normal (white) causing the

elastomer to expand in the perpendicular direction.

geometry is

1
Ay = \/ 1+ g sin2 26 . )
0

To illustrate the expansion of the LCEs on elongation here, we
will use the incremental Poisson’s ratio (IPR) defined by

dA,,
d)"xx

where an elongation A,, is imposed and X, is the transverse
deformation.

) (10)

Vg = —

B. Semisoft elasticity

Soft modes in ideal LCEs have zero energy cost, and so
the sample requires no force to deform. In practice these
materials have several sources of nonideal behavior, such as
compositional fluctuations and crosslinking points that result
in semisoft behavior. We will use the well known and general
form (up to quadratic order) of semisoft elasticity in nematics
[10]:

FSS — %(XMTI‘[A . (é — nong) . éT . III]T], (11)

Equation (11) is well founded in nematic LCEs and so serves
as a starting point for smectic LCEs, where little is known
about semisoft elastic terms. However, in Sm-C elastomers
the semisoft term in the free energy could in principle involve
any of the directions in the problem including the director and
the layer normal. While a biaxial expression for the semisoft
term could be developed we have used a uniaxial shape tensor
£, so we will neglect these effects here for consistency.
Typical values of « are up to ~0.1 in nematic LCEs, but they
may be even larger in smectic LCEs [35]. We will look at the

effect of varying o in Sm-C systems throughout this paper,

which may change some other experimentally observable

parameters, such as the ratio of shear moduli. A discussion of

the effect of varying « in nematic LCEs can be found in [40].
The neo-Hookean elasticity formula

1 T
Fys = 5auTr[A-A7] (12)

term gives rise to the same qualitative behavior as Eq. (11).
This expression is used as a regularizing perturbation for the
numerical study of the ideally soft case [9]. A numerical study
of the full semisoft free energy has also been carried out [41].

C. Numerical method

The free energy described in Eqgs. (1), (3), (4), and (11) is
subject to the nonlinear constraints that the director remains of
unit length and that the layer normal deforms as an embedded
plane Eq. (2). This constrained minimization can only be
performed analytically in a few circumstances. Numerical
minimization of this free energy using conventional methods
often results in the location of only local minima. We have
used a simulated annealing algorithm to minimize the total
free energy, which finds the global free energy minimum more
reliably. The constraint of the tilt angle of 6 between the layer
normal and the director can be encoded as

n =csiné + kcos9, (13)

where the vector ¢ is perpendicular to k. A particular basis is
required to express c¢. It is convenient to use ¢y, the starting
component of ny perpendicular to kg, and ¢y x Kko. The vector
¢ can be expressed as

c=4acos¢ + bsing, (14)
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FIG. 5. Anillustration of the vectors 4 and b used in the numerical
calculations.

where a o ¢y — Kk(cp - K) is a unit vector constructed from
the component of ¢, that is perpendicular to k, and b is
perpendicular to both & and k (Fig. 5); i.e., b = k x 4. Hence
in the initial configuration ¢ = 0, and & = c¢y.

The simulated annealing algorithm then minimizes the
free energy over ¢,6, and the required components of A.
The global minimum derived from this was then refined
using a NAG sequential quadratic programming library routine.
The imposed constraints are implemented using Lagrange
multipliers. The results of this method are in good agreement
with the results obtained from configurations that can be solved
analytically.

III. ELONGATIONS OF Sm-C ELASTOMERS

We will consider four elongations to illustrate some of
the behavior and to build up some intuition for semisoft
Sm-C elastomers. The orientation of the layer normal and
director in each case is shown in Fig. 6. The motivation for
these different geometries is principally the experimental work
on polydomain Sm-C elastomers [11] and the mathematical
studies of the Sm-C free energy to find which soft deformations
are permitted by the formation of compatible microstructures
[20]. The elastic behavior of the polydomains is considerably
more complicated. Understanding the elastic deformations of
a semisoft monodomain is a useful step toward modeling
the experimentally more accessible polydomain sample. We
will ignore the effect of clamping at the boundaries, and

A./L'.'L‘
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-« b 50"
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|
1 ko | ko

50 (11
22
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FIG. 6. The orientation of the director and layer normal for each
of the elongations considered: (a) perpendicular to the layer normal
(note that the director and layer normal are both perpendicular to the x
direction initially), (b) parallel to the layer normal, (c) perpendicular
to the director, and (d) at an angle i to the layer normal.

PHYSICAL REVIEW E 85, 011703 (2012)

focus on the deformation of sheets of Sm-C elastomer whose
mechanical properties will be dominated by the deformation
of the material in the middle of the long sheet. We will
consider elongations in the x direction, i.e., imposing the A,
component, together with the induced shear deformations. The
appropriate deformation matrix is

)"xx )"xy )‘xz
=1 0 iy A (15)
0 0 A

1>

z

The yx and zx components are set to zero as they would
be resisted by countertorques when applying a load in the x
direction. The zy component can be set to zero by allowing
suitable rotations about the x axis, along which the elastomer
is stretched. In experiment, imposed stress ensembles are
often used, which yield the same results when the stress-strain
curve is monotonic. However, some of the stress-strain curves
calculated here are nonmonotonic; hence there are several
strain values for a single stress value. In this case there is a
difference between the fixed stress and fixed strain ensembles,
and for fixed stress a Maxwell construction must be used to
determine the strain. This is described in [42] and briefly in
Sec. IV.

The model has the parameters u,a;,B,r, and 6y. Typically,
6y ~ 30°[22], B/ = b ~ 60 in well ordered samples [12,15,
17],a;/u = ¢ 2 1and @ ~ 0.1 in smectics [35,36], and r ~ 2
in side chain liquid-crystalline polymers [1]. We will use these
parameter values to illustrate the behavior of the model in what
follows.

A. Elongation perpendicular to n, and k¢

First we consider an elongation deformation in the x
direction, with the starting layer normal kg = z and the starting
director ny = cos 6yz + sin fpy, as illustrated in Fig. 6(a). In
the absence of the semisoft term of Eq. (11) this deformation
is as described in Sec. I A. The full free energy can be
minimized numerically as explained in Sec. I C. The resulting
stress-strain curve and the orientation of the director of this
minimization are shown in Fig. 7 by the thick (green) lines.

For the ideal Sm-C elastomer, this plateau ends at A,, = \/E ,

as can be seen from the soft mode in Eq. (5). The plateau ends
when the director has completed a rotation by /2 around the
layer normal. For nonzero values of « the onset of rotation of
the layer normal is delayed, and it never finishes a full /2
rotation. This is evident in the stress-strain curve, because the
well defined stress plateau for @ = 0 becomes progressively
less sharply defined. For o« ~ 0.01 there is a pronounced stress
plateau, but for larger values of o ~ 0.1 there is no plateau,
merely a knee in the stress-strain curve. Figure 7 also shows
the effect of reducing the tilt modulus c. The knee in the
stress-strain curve becomes less pronounced, and the rubber
hardens more slowly for larger values of A .

The retardation of the director rotation may be significant
for piezoelectric response of these materials. There would
be no piezoelectric response until the strain was above the
threshold. The potential difference across the sample would
be lower in semisoft samples because the alignment of the
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FIG. 7. (Color online) The stress and the angle of rotation of
a Sm-C elastomer when stretched perpendicular to both the layer
normal and the director. The model parameters are b = 60, r = 2,
6o = 0.5 (radians), and the « and ¢ values shown on the figure. The
thick curves (green) are from the more general numerical relaxation,
and the black curves are calculated using the decomposition of the
deformation matrix explained in the text.

electric dipoles associated with director rotation is spread over
a much larger deformation range.

The deformation components when stretching perpendicu-
lar to k are illustrated in Fig. 8. Note that the sympathetic shears
that accompany the director rotation are persistent, because the
director rotation is never completed if ¢ > 0.

0.2 1
0.15 0.995
0.1
2 0.05 0.99
s 0 0.985 &
:\‘ - 5 ~
r<“ 000 AJI,'y — * ‘\'w‘. . - 098
0.1 F Agz AN
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015 | AT
-0.2 | | | | | 0.97
1 1.02 1.04 1.06 1.08 1.1
>\.’IffL'
FIG. 8. The components of the deformation tensor for

(a,b,c,6p,r) = (0.05,60,1,0.5,2) when stretching perpendicular to
both the director and the layer normal. Note that the sympathetic
shears persist, as the director is unable to complete its 77 /2 rotation.
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Numerically it is clear that with the inclusion of the
semisoft term there is a delay in the rotation of the director.
Some analytical progress can be made in this geometry by
decomposing the deformation into three parts: the initial hard
deformation with fixed director and layer spacing denoted
Anhard, the soft mode Ay, and the subsequent shear and
elongation after the soft mode A’ [42]

A = é/ . ésoft . Aharda (16)

where Aparg = diag(Ay,1/A1,1), Asoft i given in Eq. (5), and

¢ 0 7
V=10 1/¢ 0]. (17)
0 0 1

This deformation matrix can be substituted into the free energy
terms of Egs. (1), (3), and (11) (assuming that ¢ — oo, so that
6 = 0y). The problem is then reduced to a minimization over
the variables A1,¢,n, and ¢, with the constraint that the total
Axx 18 prescribed. The threshold before the onset of director
rotation can be calculated by setting ¢ = 1 and n = 0, then
performing a series expansion of the free energy in soft mode
rotation angle ¢. The leading term is O(¢?), and when this
term becomes negative a nonzero value of ¢ will lower the free
energy. To leading order in (A; — 1), this coefficient becomes
negative when A; is approximately

A= 148r%a/{1 + 297 — 297> — 13 + ra + 35r%a
+4r’wcos20 + (r — D[(r — 1)*> + ra]cos46}. (18)

This value is slightly smaller than the corresponding threshold
to director rotation in nematic elastomers of )\? = = _lar [1].
Intuitively this is because in the Sm-C phase the deformation
is restricted to two dimensions by the layer spacing constraint.
Consequently there is a larger contraction in the direction
perpendicular to the stretch which causes the elastic free
energy to rise faster, and hence the director rotation to start
earlier in Sm-C LCEs as compared to the nematic phase.

The minimization of the free energy over 1;,¢,n, and ¢
produces results that are in good agreement with the more
general numerical method. The results are shown by the black
lines in Fig. 7.

B. Elongation parallel to k,

Elongation parallel to the layer normal is illustrated in
Fig. 6(b). The initial layer normal is given by ko =x
and the director ng = xcos 6y + zsin6y. Using the form of
deformation matrix described in Eq. (15), the free energy can
again be minimized using the numerical technique described in
Sec. IIC. The results for various values of the semisoft
parameter « are illustrated in Fig. 9. For ¢ — oo the first
part of the stress-strain curve is determined by the smectic
layer modulus B. The semisoft term prevents the rotation of
the director, and the layer spacing increases. Once the force
required to increase the layer spacing is comparable to that
required to rotate the director the semisoft mode begins. The
stress-strain curve has negative slope once director rotation
starts. As explained in Sec. IT A there is a negative IPR in this
geometry as the director rotates around the layer normal into
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FIG. 9. (a) The stress-strain response for a semisoft Sm-C elas-
tomer stretched parallel to the layer normal. The model parameters
are b = 60, r = 2, and 6, = 0.5, and the values of («,c) shown in the
figure. (b) The corresponding IPRs for the stress-strain curves.

the direction perpendicular to the stretch axis [see Fig. 9(b)].
This lateral expansion, combined with the free energy
expression for the semisoft elasticity, results in the negative
stiffness. For larger values of « the Poisson’s ratio becomes
less negative.

The rotation of the layer normal and director and the
deformation components are illustrated in Fig. 10. The
expansion of the sample in the z direction is clearly visible
at the onset of rotation, as are the usual shear components that
accompany a soft mode. For finite values of ¢ the deformation
becomes more complicated; before the threshold the director
rotates toward the layer normal and the sample shears, which
itself results in movement of the layer normal. There is both an
increase in the threshold to the start of rotation and a reduction
in the amplitude of the semisoft deformation. This is because
the shearing before director rotation results in rotation of the
layer normal, and there is a reduction in the tilt angle before
the onset of shearing.

1. Scalar model of negative slope region

The unusual response above for the Sm-C soft mode can
be illustrated for a much simpler deformation. Consider an
elongation with a diagonal deformation matrix of an imposed

Axx> Az given by
3\ A
—) + — (19)

)\zzzl_A<)‘xx_2 4’

with A, determined by volume conservation. The parameter
A here controls the initial rate of expansion of the material.
Its Poisson’s ratios are —A and 1 4 A. This is similar to the
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FIG. 10. (Color online) For the parameter values («,c)=
(0.05,00) and b =60, r =2, and 6y = 0.5 radians for stretching
parallel to the layer normal, (a) shows the director (thick black) and
layer normal rotation (thin red), (b) the shear components, and (c)
the diagonal components of the deformation tensor when stretching
parallel to the layer normal.

soft mode in a Sm-C illustrated in Fig. 3. The deformation in
Eq. (19) can be substituted into a neo-Hookean model such as
Eq. (12), which is broadly similar to the semisoft elastic energy
term. The resulting stress-strain curve is shown in Fig. 11. It
can be seen from this plot that for sufficiently large values
of A the stress-strain curve has a negative slope similar to
stretching the Sm-C LCE parallel to the layer normal. For
some geometries the Poisson’s ratio is sufficiently negative to
result in a negative stiffness. The configurational entropy of
the perpendicular degrees of freedom decreases as the sample
expands resulting in a positive contribution to the stress.
Once lateral expansion starts to slow sufficiently there is
a weaker contribution to stiffness of the sample from the
perpendicular degrees of freedom and the stress starts to drop,
which produces a negative slope in the stress-strain response.
By tuning the parameter A in the model, the balance between
the parallel and perpendicular degrees of freedom can be
altered, and the stiffness changed from negative to positive.

This scalar model shows that the negative stiffness is a result
of the lateral expansion during the Sm-C soft mode, and not
due to the form of the semisoft elastic term.
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FIG. 11. For the scalar model of the negative stress strain curve
described in the text, (a) shows the stress-strain curves for A =
0.5,0.75,1, and (b) the deformation components for A = 1 for the
scalar auxetic model.

C. Elongation perpendicular to n,

Stretching perpendicular to the initial director, ng is illus-
trated in Fig. 6(c). The results for the numerical calculation of
the stress-strain curve for this geometry are shown in Fig. 12.
This geometry has the remarkable feature that v,, - —oo0

(@) 0-35
0.3
0.25
0.2

O'N//j,

0.15
0.1

FIG. 12. (a) The stress-strain curves for stretching perpendicular
to the layer normal, and (b) the IPR for various parameters b = 60,
r =2, and 6y = 0.5 and values of («,c) shown in the figure.
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FIG. 13. (Color online) When stretching perpendicular to the
director, for the parameter values (a,c) = (0.05,00) and b = 60,
r = 2, and 6y = 0.5 radians, (a) shows the director (thick black) and
layer normal rotation (thin red), (b) the shear components, and (c)
the diagonal components of the deformation tensor when stretching
perpendicular to ny.

when o — 0, as shown in Fig. 12. For larger values of « the
Poisson’s ratio becomes less negative. The jump in the director
also causes a discontinuity in the IPR, and a sudden increase
in the width of the sample. Note that in this geometry there is
a discontinuity in the stress-strain curve, in addition to the
negative stiffness. The discontinuity in the stress-strain curve
is accompanied by a jump in the director as shown in Fig. 13.
Intuitively the discontinuity arises because when the director
jumps the long axis of the polymer shape tensor jumps toward
the elongation direction. Consequently the natural length of the
rubber in this direction is increased, so there is corresponding
drop in the stress.

The jump in the director can be understood from the prop-
erties of the soft mode in this geometry. We can approximate
the first part of the total deformation (until the end of director
rotation) as a hard deformation where there is no director
rotation, followed by a soft mode:

é = )\sofl . Ahard~ (20)
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The soft mode in this geometry can be calculated analytically
as explained in Appendix A. While its analytic form is
algebraically very long, the amplitude of the soft mode has
a much simpler expression, and is given by

Aex = {3+ 7r(Tr —2) 4+ 4(r* — 1) cos 26,
+ 1+ 2 = 3r)r]cos46} 2 /2v2p). (21

The hard part of the deformation has only diagonal elements
and an xz shear component:

Axx 0 Axz
éhard = 0 1/()\xx)‘zz) 0 . (22)
0 0 Az

Substituting this into the full free energy density yields an
approximate solution to the minimization problem, where the
director rotation is assumed to be continuous. The free energy
density in this case is shown in Fig. 14. The analytic solution
with continuous director rotation has higher free energy for
the first part of the deformation. Hence, the elastomer initially
stretches without director rotation. If the director were to start
rotating, then the form of the soft mode results in rapid rotation
of the director and an infinite slope in the free energy. However,
the rate of increase slows, and eventually the state with a
rotated director is lower in free energy than that with a fixed
director. At this point the director jumps to the new orientation.
There is a discontinuity in the slope of the free energy at this
point, or equivalently a jump in the stress.

This behavior is not solely a result of the semisoft energy
term, but again is a result of the shape of the soft mode,
combined with a general semisoft elasticity term. These
calculations are based on an equilibrium model of a Sm-C
elastomer. A scalar model that displays the same behavior
is discussed in Appendix B. In practice kinetic terms, such
as viscosity would smooth out the sharp jump demonstrated
here.

1.53 T T T T T
Analytic SM ]
L5251 (a,¢)=(0.05,00) === . -
1.52 | = |
i 1.515 ¢ -"’-" -

<) J19 "'

151 | ]
1.505 R

1.5 i | | | | |
1 1.05 1.1 1.15 1.2 1.25

A(l?(l?

FIG. 14. (Color online) The free energy calculated numerically
(dashed black), and the free energy trajectory of the semisoft mode
with continuous director rotation (thick green) when stretching
perpendicular to the director. Here b = 60,r = 2,6, = 0.5, and («,¢)
are shown in the figure.
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FIG. 15. (a) The stress-strain curves for stretching at an angle
of ¥ = 0.65 radians to the layer normal, for b = 60,r = 2,6, = 0.5
radians, and various parameter values (o,c), and (b) the Poisson’s
ratio in this geometry.

D. Elongation at an angle ¥ to the layer normal

The last deformation we consider is shown in Fig. 6(d).
The numerical solution of stress-strain curve associated with
this geometry is shown in Fig. 15. The stress-strain curve
is continuous in this geometry, but again has a pronounced
negative slope. There is a negative IPR of ~—1.5 that is
roughly independent of the semisoft parameter. The expansion
of the sample that accompanies the rotation of the director can
be seen in Fig. 16.

IV. DISCUSSION

Soft deformations in nematic LCEs are only possible in
clamped samples with the formation of microstructure. This
has been shown by detailed x-ray experiments [8] and by
numerical study [41,43], and is a result of the nonconvex
energy of nematic LCEs [44]. The characteristic stress-strain
response of Sm-A elastomers [12] also exhibits microstructure
if the sample is clamped during stretching [45]. The clamps
required in experimental investigation of the Sm-C samples
considered here would result in microstructure formation and
some changes to the stress-strain response of the material.

The first three deformations considered above in
Figs. 6(a)-6(c), when made with clamped boundary condi-
tions, would not be soft even without the semisoft elastic term.
This is because no microstructure can be constructed from
the soft deformations that is compatible with the boundary
conditions, due to the shear components in the Sm-C soft
mode [20]. However, the properties of a long sheet of Sm-C
LCE may approximate this behavior as the center of the
sample could deform without rigid boundary conditions. The

011703-9



A. W. BROWN AND J. M. ADAMS

(@) .
0.9
0.8
nake o7
0.6
0.5
0.4
0.3
02
(b) 0.2 :

-0.05 : : : :
(c) 1.05

1

0.95
0.9
0.85
0.8

0.75

FIG. 16. (Color online) For stretching at an angle of ¢ = 0.65
radians to the layer normal, (a) shows the director (thick black) and
layer normal (thin red), (b) the shear components of the deformation,
and (c) the diagonal components of the deformation for stretching
at an angle of ¢ = 0.65 radians to the layer normal, for the case
(a,¢) = (0.05,00) and b = 60,r = 2,6, = 0.5.

final deformation in Fig. 6(d) can be performed with clamped
boundary conditions in the soft case. In the semisoft case the
sample starts to shear before the onset of rotation, which is not
compatible with clamped boundaries, so in experiment it may
be even stiffer initially due to this additional constraint on its
deformation.

The maximum lateral expansion can be deduced from the
soft mode presented in Sec. II A. The shear components are
transformed, through a rotation, into an elongation. At ¢ =
7 /2 the maximum lateral expansion occurs (in the y direction
for the example given in the text) and has a value of \/r/p.

The region of negative slope in the constitutive models
reported here is typically explained by a Maxwell construction.
Similar behavior occurs in the van der Waals gas model which
has a region of negative slope in the pressure-volume curve.
Here there is a two phase region consisting of a mixture of
the liquid and gas phases. In solids the two deformations
on either side of the instability must be compatible to form
a mixture [46]. The system should then disproportionate,
adopting a mixture of the two deformations to achieve the
externally imposed strain. The first order type phase transition

PHYSICAL REVIEW E 85, 011703 (2012)

seen in the example stretching perpendicular to the layer
normal can result in hysteretic behavior as the system jumps
from one energy well to another. The rate of the deformation
in comparison to the sample relaxation times may also result
in hysteresis [47].

Experimental work reporting mechanical testing on Sm-C
monodomains has not been reported. While it is anticipated
that these monodomains should exhibit soft elasticity, the
addition of the semisoft elasticity term to the model suggests
that these effects may be difficult to observe for large semisoft
parameter o. When stretching perpendicular to both the layer
normal and the director, the semisoft term may prevent any
stress plateau being observed; instead only a shoulder is visible
in the stress-strain response.

Although we have only considered the deformations of
monodomains here, the results inform model predictions for
polydomains. Polydomains are difficult to model because of
the requirement of ensuring that adjacent domains deform
in a compatible way. A simplifying approximation used to
model a polydomain is to assume that it consists of an
array of monodomains that deform at the imposed external
strain, but are independent from each other. If we deform the
pseudo-monodomain shown in Fig. 1 by stretching in the x
direction, then deformation component A, averaged over all
the domains is illustrated in Fig. 17 for 50 domains. This
figure shows that there is a negative IPR as the director in
each of the domains jumps causing them to expand. The curve
illustrated here is jagged because the alignment of each domain
jumps at a slightly different threshold. The expansion of the
film thickness and the energy loss as a result of the jump in
the director orientation in this geometry may be observable
in experiments on pseudo-monodomains [11,48]. The larger
values of deformation reported in experiment before the knee
in the stress-strain curve point to a much larger value of o than
in the illustrative plot in Fig. 17.

The features of the Sm-C model described here would
be present in a wide range of models that have soft modes
of nematic elastomers but incorporate the constraint on the
director to remain at a fixed angle to the layer normal. However,
validation of these models awaits either experimental work on
mechanical testing of Sm-C monodomains or theoretical work

1 T T T T T T T T T
0.995 - —

0.99 .
5 0985 .
= 098 F =
0.975 | .
0.97 |

0.965 | | | | | | | | |
1 1.021.041.061.08 1.1 1.121.141.16 1.18 1.2

FIG. 17. The average value of A,, for 50 domains in a pseudo-
monodomain illustrated in Fig. 1 as a function of A,, assuming
they all experience the same strain and deform independently. Model
parameters are b = 60,r = 2,6p = 0.5,¢ = oo,a0 = 0.05.
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on pseudo-monodomains to link up with existing mechanical
experiments on pseudo-monodomains.

V. CONCLUSION

We have studied a model of monodomain Sm-C LCEs
with the inclusion of a semisoft elastic term to describe
imperfections in the elastomer. As result of the negative
incremental Poisson’s ratio inherent in the soft modes of a
Sm-C monodomain, the mechanical properties of a semisoft
monodomain are unusual. When stretching perpendicular to
the layer normal and the director, the response is reminiscent
of a nematic elastomer. A finite force is required to deform
the LCE and initiate the rotation of the director. However,
the stress plateau is less well defined for larger values of
semisoft parameter «; it is reduced to a shoulder in the
stress-strain response. This is at variance to the nematic case
where the plateau in the stress-strain response remains, even
in the limit of large o. When stretching parallel to the layer
normal the elastomer again exhibits a threshold to director
rotation. Once director rotation has started the elastomer has a
negative incremental Poisson’s ratio and a negative stiffness.
A negative incremental Poisson’s ratio of up to v ~ —1.5
has been found for typical model parameters. This arises
because the director rotates in a direction perpendicular to
the stretch axis due to the constraint of the layer normal. This
more detailed understanding of monodomain deformations of
Sm-C elastomers might prove useful in understanding recent
mechanical and piezoelectric experiments on polydomain
Sm-C elastomers.
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APPENDIX A: TRANSFORMING THE SOFT MODE
FOR DIFFERENT STARTING CONFIGURATIONS

The soft mode given by Eq. (5) can be transformed to
other geometries by a pair of rotation matrices. For example,
consider the case of a Sm-C elastomer stretched parallel to
the layer normal. Let us assume that starting layer normal
is kg = x and the starting director is ng = cos 6pX + sin 6py.
The soft mode for this configuration that is an upper triangular
matrix, as described in Eq. (15), can be found as follows. From
the reference configuration a body rotation is performed such
that the layer normal Ky is parallel to the z axis. In this case, a
90° rotation about the y axis

-1

00
o=[01 o0
— \10 o0

(AL)

After this rotation the director is given by n = zcos6y +
ysinfy. Note that in general an additional rotation around
the z axis may be required to ensure the director is in this
orientation. This is the initial configuration for the soft mode
given in Eq. (5). The director now rotates by an angle ¢ around
the new layer normal, and the sample executes the soft mode.

PHYSICAL REVIEW E 85, 011703 (2012)

Finally a rotation of the target state is performed such that
the deformation matrix has the form described in Eq. (15).
This rotation matrix is in general simpler if we first undo the
rotation Q. The rotation matrix P is described by three angles:

cosy, siny, O 1 0 0
P=| —siny, cosyy; O] -0 cosy, siny,
0 0 1 0 —siny, cosy,
cosy, 0 siny,
0 1 0 (A2)
—sinyy, 0 cosvy,

The three angles ,,%,, and v, can be calculated by
substituting into the equation

A1=P 0" hon Q

(A3)

and ensuring that the three lower triangular elements of A are

zero. In the case of stretching parallel to ko and perpendicular
to ng the soft mode can be calculated analytically. The alge-
braic expression for these soft modes is long and unedifying
so will not be presented here.

APPENDIX B: SCALAR MODEL DESCRIBING
STRESS DISCONTINUITY

The semisoft behavior of Sm-C elastomers is characterized
by two deformation modes: before the onset of director rotation
and afterward. A scalar model that exhibits the same behavior
when stretching perpendicular to the director can be developed
based on representing each of these deformation modes as a
spring, and deforming the two springs in series. The total strain
is the sum of two deformation modes corresponding to keeping
a fixed director €y and rotating the director egp:

€T = €y + €sM- (B1)

The two modes of deformation have different energy penalties.
The first arises from a simple uniaxial deformation, so in a
neo-Hookean energy model will result in a free energy term
of the form

Fy = 1K€, (B2)

where K| corresponds to the shear modulus of the rubber.
The second arises from the soft mode, which has a singular
edge in the contraction of the rubber as it is stretched. The
zz component in the soft mode is initially of the form A, =
1/[1 + (Ayr — 1)P] (Where here A, — 1 = egy). When this is
put into the neo-Hookean free energy, it results in free energy
terms to leading order in egy of the form

Fsm = LK€y, (B3)

where K is the corresponding shear modulus for this mode.
In the case of the semisoft Sm-C elastomer, this term arises
because of the rapid rotation of the director during the start of
the soft mode.

The total free energy is then

Fr = 1K (er — esw)* + 1 Kaely, (B4)
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FIG. 18. (a) An illustration of a discontinuous stress-strain curve
for the scalar model described in the text. (b) The free energy as a
function of the variable egy for fixed total strain values. Here K| = 10
and K, = 1.
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where the first spring in this system is Hookean and the
second is nonlinear, being infinitely stiff at zero strain for
0 < B < 1, but softening rapidly as strain increases. This
should be minimized over €sy to determine the distribution
of strain between the two springs. It can be solved analytically
for = 0.5. The behavior of this model is illustrated in Fig. 18.
For small g this system has a discontinuity in the stress-strain
curve, but as f is increased the stress-strain response becomes
continuous. The free energy as a function of egy is also
illustrated in Fig. 18. For small values of et there is only one
minimum at egy; = 0, corresponding to no strain of the second
spring. However, as the total strain increases, the second mode
of deformation becomes activated and there is a minimum for
larger values of egy. Since there is a barrier between the two
minima, the transition is first order, so there is a jump in the
equilibrium value of egy. For larger values of B the phase
transition becomes continuous, and the stress-strain curve no
longer exhibits a jump.

This behavior is analogous to that of the semisoft Sm-C
elastomer as the free energy exhibits a discontinuity when
stretched perpendicular to the director (where the soft mode
has a singular edge). Larger values of B correspond to
stretching at a larger angle to the director, where the soft
mode does not have such a rapid rotation of the director, and
a corresponding sharp drop in the lateral dimension. If the
angle between the director and the elongation direction is small
enough, then the stress-strain response becomes continuous as
in Sec. III D.
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