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Formation and ordering of topological defect arrays produced by dilatational strain
and shear flow in smectic-A liquid crystals
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A microscale shear cell is used to study the formation of parabolic focal conic defects in the thermotropic
smectic-A liquid crystal 8CB (4-octyl-4′-cyanobiphenyl). Defects are produced by four distinct methods: by the
application of dilatational strain alone, by shear flow alone, by dilatational strain and subsequent shear flow, and
by the simultaneous application of dilatational strain and shear flow. We confirm that defects originate within
the bulk, consistent with the previously suggested undulation instability mechanism. In the presence of a shear
flow, we observe that defect formation requires micrometer-level dilatations, whose magnitude depends on the
sample thickness. The size and ordering of both disordered and ordered defect arrays is quantified using a pair
distribution function. Deviations from the predictions of linear stability theory are observed that have not been
reported previously. For example, defects form a square array with greater ordering in the principal flow direction.
Ordering due to shear flow does not change the average defect size. It has been shown previously that the principal
defect sizes of ordered defects scale differently with sample thickness than the wavelength of the small amplitude
undulations. We find that disordered defects show a similar deviation from this predicted wavelength.
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I. INTRODUCTION

A number of macromolecular systems [1] form the lamellar
or smectic phase, with their molecules arranged in parallel
layers. Parallel lamella are unstable, and upon application of
external stress, the layers undergo sinusoidal undulations [2,3]
to relieve the external stress. These undulations, known as
the undulation instability, are characteristic of lamellar mi-
crostructures [4] and can be observed in thermotropic smectic
liquid crystals [2], lyotropics [5,6], cholesterics [7], block
copolymers [8], aqueous DNA solutions [9], and columnar
liquid crystals [10]. The growth of the instability, in ther-
motropics, leads to micrometer-scale defect textures known
as parabolic focal conic defects [11]. Parabolic focal conic
defects can be produced by various methods of deforming
the sample [11–13], and the textures can form highly ordered
patterns [12]. Ordered defect textures produced in this way
have been used as templates for soft lithography [14,15].
However, the size and ordering of these defect textures has
not been quantified as a function of the deformation methods
used to produce them. Most reported studies of size and
ordering focus on linear stability analyses near the stability
threshold [2,11,16].

The present paper reports an experimental study of defect
textures produced in the thermotropic smectic-A liquid crystal
8CB (4-octyl-4′-cyanobiphenyl) in a microscale shear cell. In
the smectic-A phase of 8CB, the rodlike molecules within
each smectic layer are aligned perpendicular to the layer.
The sample is confined between rigid parallel plates with
sample thicknesses of hundreds of micrometers, and defects
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are generated using four different methods of deformation:
(i) by the application of dilatational strain to the sample,
(ii) by the application of shear flow, (iii) by the application
of dilatational strain and subsequent shear flow, and (iv) by
the simultaneous application of dilatational strain and shear
flow. We characterize the defect textures for each method of
deformation using the pair distribution function to quantify the
size and the ordering of the defect textures, and comparing the
results with predictions from linear stability theory.

The undulation instability arises in smectic phases because
layer dilatation requires much more energy than layer cur-
vature [17]. Hence, when a smectic-A sample is confined
between two parallel plates with its layers oriented parallel to
the plate, the layers respond to dilatational strain by forming
periodic undulations. The undulations vary in amplitude across
the sample thickness with the largest amplitude at the center of
the cell, and vanishing amplitude at the plate surfaces. Linear
stability analysis predicts that the undulation instability takes
place at a critical dilatation δc of the order of the interlayer
separation (typically a few angstroms), and this has been
confirmed by light scattering [2,18,19].

The focal conic defects that develop in these lamellar
materials are of the order of tens of micrometers in size,
and they are often assumed to arise from the undulation
instability. A number of studies [5,6,20,21] have argued that
the spherulite-shaped “onion” textures observed during the
shear flow of lyotropic liquid crystals [20] form due to
the undulation instability. In thermotropic smectic-A liquid
crystals, lipid-based liquid crystals [22], and dilute solutions
of lyotropics [23], the undulations give rise to parabolic focal
conic defects. In thermotropic liquid crystals, parabolic focal
conic defects can also be produced as a result of shear flow [13].
In the presence of a shear flow without dilatational strain,
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FIG. 1. Schematic diagram of shear flow and anchoring condi-
tions. The principal flow direction is along the x axis and the neutral
direction is along the y axis. Dilatation occurs along the z axis and
the xy plane of the sample is visualized.

the defects appear to stream from surface irregularities. This
may be a result of dilatation of the layers near the surface
irregularity inducing localized undulations. Thus, while it has
been conjectured that parabolic focal conic defects originate
from undulations [11,24], the mechanism of defect formation
appears to be different in the case of defects formed due to
dilatational strain compared with those formed in the presence
of a shear flow.

Although the most unstable wavelength near the stability
threshold is well described by linear stability analysis [25–27],
the change in layer structure during the growth of the instability
is not well understood [28]. Linear stability analysis of the
undulation instability induced by the simultaneous application
of dilatational strain and shear flow [16] predicts the formation
of perfectly square arrays of parabolic focal conic defects with
sizes equivalent to those formed in the absence of shear flow.
Experimentally observed sizes of ordered defects deviate from
this prediction [12]. It is not clear whether this difference in
size is due to the applied shear flow, or a change in scaling
during the nonlinear growth of the instability. Similarly, visual
observations suggest a square ordering [12], but the ordering
has not been quantified.

In the present paper, we investigate the formation of defect
textures using a custom-built shear cell, shown schematically
in Fig. 1. The smectic sample is confined between two
parallel plates separated by a gap of the order of hundreds of
micrometers. A linear Couette flow is applied in the x direction

with a constant strain rate, and a dilatational strain is applied
in the z direction. Homeotropic anchoring is imposed at the
surfaces of both plates. The defect dynamics are visualized in
real time using a high-speed camera.

A similar shear cell with visualization capabilities and
homeotropic surface anchoring was used previously to produce
ordered textures of smectic liquid crystals [12,29]. The authors
used plate separations of 70 μm <d < 420 μm, a similar
range to that considered here. Horn and Kleman [13,30]
used a modified cone and plate rheometer with homeotropic
boundary conditions at the two surfaces to study the formation
of defects by shear flow alone. The plate separation in a cone
and plate geometry varies with radial distance from the axis,
rendering it difficult to examine the dependence on sample
thickness. Larson and Mather [31] conducted visualization
studies of disordered smectic defect textures confined between
two parallel disks. Shear cells have also been used to study
defect dynamics in cholesteric liquid crystals [32] and nematic
liquid crystalline polymers [33].

The defects are identified by the characteristic pattern
produced by parabolic focal conic defects (PFCD) when
viewed between crossed polarizers. The PFCD texture shown
in Fig. 2(a) has been observed in thermotropics [11,12],
lyotropics [23,34–36], liquid crystalline polymers [37], and
cellulose nanocrystals [38]. A parabolic focal conic defect
consists of smectic layers wrapped around two singularity
lines. The singularity lines form two parabolas oriented in
perpendicular planes that each pass through the focal point of
the other, as Fig. 2(b) illustrates schematically. The defects
are arranged in a dense lattice. When defects are formed by
pure dilatational strain, the lattice forms a polygonal texture,
described in detail by Rosenblatt et al. [11] Simultaneous
application of dilatational strain and shear flow leads to a
square lattice texture [12], with its principal directions aligned
with the flow and neutral directions [16]. The square lattice
is illustrated schematically in Fig. 2(c) and is formed by
the intersections of the crossed parabolas at the midplane
of the sample. Figure 2(a) shows a polarization microscopy
image of the square grid, with the top and bottom of each
parabola marked for the purpose of illustration. The structure
of the three-dimensional grid has been described elsewhere
[11,22,38,39].

FIG. 2. (a) An image of a parabolic focal conic defect array as viewed from the top using polarized light microscopy, with the ends of the
upward-facing parabolas (◦) and the downward facing parabolas (�) marked. (b) Each defect in this lattice consists of two parabolic singularity
lines oriented at right angles to each other with each parabola passing through the focal point of the other. (c) Two-dimensional view from the
top depicting the arrangement of parabolic focal conic defects in a square array. Circles (◦) denote the ends of the upward facing parabolas.
Triangles (�) denote the ends of the downward facing parabolas. Crosses (×) denote the locations of the intersections of the parabolas.
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The present paper describes our experimental observations
of the formation of defect textures, and quantification of their
size and ordering, as a function of the deformation method used
to generate the textures. Section II provides details describing
the materials and methods used to conduct and analyze the
experiments. Section III describes and discusses the results of
the measurements and analysis, and Sec. IV offers concluding
remarks.

II. METHODS AND MATERIALS

In the present study, we examine defect formation in
the smectic-A phase of the small molecule thermotropic
liquid crystal 8CB (4-octyl-4′-cyanobiphenyl). 8CB exists in
the smectic-A phase at room temperature, and undergoes a
transition to the nematic phase at 33.5 ◦C and a transition to
the isotropic phase at 40.5 ◦C. At 25 ◦C, the penetration length
of 8CB is λ = 7 Å [24].

We use a custom-built shear cell to investigate the dynamics
of texture formation. The shear cell is built on the translation
stage of an inverted microscope, allowing the layer structure
to be visualized in real time during the application of a shear
flow or dilatational strain. The sample is confined between
two parallel plates that are separated by a distance d that
varies as 100 μm <d < 500 μm. The lower plate is held fixed
while the upper plate is moved laterally using a stepper motor-
controlled linear stage (Newmark Systems NLS4 stage). The
motor can control the motion in steps of 13 μm. The described
configuration leads to a simple Couette flow profile between
the parallel plates. In this flow, the strain is given by

γ = L

d
, (1)

and the strain rate is given by

γ̇ = U

d
, (2)

where L is the time-dependent distance traveled by the upper
plate, U is the constant velocity of the upper plate, and d

is the sample thickness. Experiments are performed in the
strain rate range 0.1< γ̇ < 5 s−1 for total strains of 0.5 <

γ < 5 strain units. The top plate moves in the x direction,
which is the principle flow direction. The y direction is the
neutral direction and the z direction is the velocity gradient
direction. A dilatational strain is applied in the z direction using
a micrometer. The dilatational strain is applied by moving the
micrometer dial manually in increments of 1 μm. We use the
term “dilatation”, δ, in this study to refer to the distance in
micrometers moved by the upper plate in the +z direction.
The associated dilatational strain ε is given by

ε = δ

d
. (3)

The assembled shear cell is affixed to the translation stage of
the microscope and a region of the sample is viewed by trans-
mitted light. The layer structure can be visualized in real time,
during the application of a shear flow or dilatational strain.

As Fig. 1 indicates, homeotropic boundary conditions are
imposed at both plate surfaces, so that the rodlike liquid crystal
molecules are oriented perpendicular to the plates. The glass
plates are prepared by sonication in soapy water and rinsing

with isopropyl alcohol and acetone. Homeotropic anchoring is
imposed by the adsorption of a surface active layer. Following a
procedure similar to Ignes-Mullol et al. [40], the cleaned glass
plates are dipped in a 0.002 wt% cetyltrimethylammonium
bromide (CTAB) solution (Sigma Aldrich), and withdrawn
slowly. Before the start of each experiment, the anchoring
is verified by placing the sample between crossed polarizers
when the sample is in the smectic phase and observing
complete extinction, indicating parallel layers with molecules
aligned perpendicular to the plates.

The sample is heated by applying a voltage across the
indium tin oxide (ITO) plate that is used as the top plate. Prior
to the start of the experiment, the sample is heated well into the
isotropic phase (42 ◦C) and cooled back to room temperature
(25 ◦C), where the sample has transitioned to the smectic
phase. The rates of heating and cooling are approximately
2 ◦C/min.

The sample is viewed using an inverted microscope (Nikon
Eclipse TE2000U) with a polarizer and analyzer inserted into
the optical path on either side of the sample. Images are
recorded using a high-speed camera (IDT X4, Redlake, Inc.).
Images are captured at a magnification of 30×, where each
pixel corresponds to 0.55 μm on each side. This magnification
provides ample resolution to characterize the micrometer-sized
defect textures.

We analyze the captured images in several ways to quantify
the defect size and ordering. From a raw image such as
that shown in Fig. 2(a), we construct a binary image with
a white background and single black pixel located at the
parabola intersection for each PFCD. We note that the upper
parabolas are oriented along the flow (x) direction. The fast
Fourier transform (FFT) of the images is obtained using
built-in MATLAB subroutines, resulting in a centered plot of
the logarithm of the magnitudes of the Fourier components.

The pair distribution function g(�r), also known as the pair
correlation function, is defined as the probability of finding a
defect location at position �r , given that there exists a defect
location at the origin �r = 0 [41]. The distribution is normalized
by its value for a perfectly random sample. In our case,

g(�r) = g(r,θ ). (4)

To separately quantify both the radial and angular structure
of g(�r), we calculate two special cases, namely the orien-
tational distribution function g(θ ) and the radial distribution
function g(r).

To calculate the orientational distribution function, we first
designate one defect as the origin. The region around the defect
is divided into area sectors with an arc of 5◦.The number of
defects in the area sector for the reference defect is counted.
The procedure is repeated for each defect in the image, and the
average number of defects in an area sector is computed for
all defects in the image. Edge effects are taken into account
by including in the normalization only those defects whose
area sectors lie entirely within the image domain. The sum of
the count is calculated for several values of the radial distance
from each defect, and normalized by the total area dAi of each
area sector. Furthermore, since the image has a finite area, we
have calculated the distributions for defect singularities in five
different images, and then computed the average over the total
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image area. Thus, we average over p = 5 images to obtain

g(θ ) =
∑p

i=1

[∑rmax
r=rmin

gi(r,θ )
]

ρ
∑p

i=1 dAi

, (5)

where ρ is the number density defined as

ρ =
∑p

i=1 Di∑p

i=1 IAi

. (6)

Di is the number of singularities in each image and IAi is
the total area of each image. Angular binning is selected such
that θ = 0◦, 90◦, 180◦, and 270◦ are located at the centers of
their respective bins, allowing any order anisotropy in the flow
direction to be interpreted with minimal effect of finite binning.
The resolution of the angular grid is limited by the pixel reso-
lution of the captured image. A finer angular grid with angular
spacing less than 5◦ would result in wedge perimeters that are
less than one pixel at the radial location of the measurement.

In order to calculate the radial distribution function g(r),
we count the defects that lie within a thin strip at a fixed radial
distance from each defect center and then normalize by the area
of the radial strip 2πrdr . Edge effects are taken into account by
including only those sectors whose area lies entirely within the
image boundary. Finally, we average over multiple images by

normalizing the results over the total number of singularities
and the number density given in Eq. (6) where

g(r) =
∑p

i=1

[∑2π
θ=0 gi(r,θ )

]

p(2πrdr)ρ
. (7)

III. RESULTS

In this section, we study the formation of defect textures
using the microscale shear cell depicted in Fig. 1. Using
four different methods to deform the smectic sample, we
generate arrays of parabolic focal conic defects. Figure 3
shows polarization images of typical defect arrays formed
using these methods. We use four different methods: (i) the
application of dilatational strain alone, (ii) the application
of shear flow alone, (iii) the application of dilatational
strain and subsequent shear flow, and (iv) the simultaneous
application of dilatational strain and shear flow. Each of
these methods has been described previously [11–13]. We
compare the resulting defect texture for each of these four
cases.

When the sample experiences a shear flow alone, with
no accompanying dilatational strain, we observe an array of
PFCDs ordered in a nearly square pattern aligned in the flow
direction, as shown in Fig. 3(a). A similar experiment was
previously performed by Horn and Kleman [13] in a cone
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FIG. 3. Images depicting arrays of parabolic focal conic defects when defects are produced by (a) application of dilatational strain only.
(b) and (c) correspond to textures obtained after 1.33 and 3.5 strain units on the texture shown by (a). (d) Defects produced by the application
of shear flow only and no dilatational strain. (e) Defects produced by the simultaneous application of dilatational strain and shear flow for
d = 100 μm. (f) Defects produced in the same manner as (e) for d = 350 μm.
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and plate rheometer. Defects formed this way are not very
reproducible, and do not form homogeneously throughout the
sample. Instead, the defects are much more prevalent near
the edges of the sample where surface irregularities are more
common. This is consistent with the observations of Horn and
Kleman [13] who observe the formation of defects triggered
by dust particles in the sample.

When the sample is subject to dilatational strain alone,
with no shear flow, we observe a disordered array of PFCDs
as shown in Fig. 3(b), where the sample thickness is d =
150 μm and the dilatation applied is δ = 7μm, corresponding
to a dilatational strain of ε = 0.047. This result is consistent
with that of Rosenblatt et al. [11] who performed a similar
experiment.

Once the disordered array is formed, it cannot be ordered by
subsequent shearing. When a shear flow is applied, we observe
qualitative changes in the structure, but the sample does not
become well ordered. Figures 3(c) and 3(d) show a typical
result for postdilatational shearing for the same sample as in
Fig. 3(b) after 1.33 and 3.5 strain units, respectively. A similar
observation was made by Oswald et al. [12], but the authors
did not characterize the resulting structure quantitatively.

The most highly ordered defect textures are produced by
the simultaneous application of dilatational strain and shear
flow. The sample is dilated using a micrometer at the same
time that a shear rate is applied using the linear stepper motor.
The sample is dilated slowly in increments of 1 μm during
the application of the shear flow. We observe that a quasistatic
dilatation of the sample is needed to produce a highly ordered
texture, since a fast dilatation of the sample does not allow for
the relaxation of the defect texture via ordering.

Examples of two resulting defect arrays using sample
thicknesses of 100 and 300 μm are shown in Figs. 3(e) and 3(f).
The defects are highly monodisperse in size and form a nearly
square array. This enhanced order was previously described
by Oswald et al. [12] who performed a similar experiment to
produce highly ordered defect arrays. The characteristic size
of the individual defects in the array increases with sample
thickness.

The visual observations described above are substantiated
using the Fourier transforms of the images, shown in Fig. 4.
Figure 4(a) shows the FFT of the image in Fig. 3(b), where

defects are formed by a dilatational strain only. There are
no visible peaks in the FFT, indicating the absence of order.
Figure 4(b) shows the FFT of the image in Fig. 3(d). There are
four peaks at right angles to one another, indicating square
ordering. Beyond the first peak, there are no higher-order
peaks, indicating partial alignment due to the shear flow.
Finally, Fig. 4(c) shows the FFT of the image in Fig. 3(f),
where defects are produced by simultaneous dilatational strain
and shear flow. Multiple sharp peaks in the intensity pattern are
observed, indicating a high degree of ordering. The primary
peak in Fig. 4(c) is also much sharper than that in Fig. 4(b),
further indicating a high degree of ordering obtained by
simultaneous dilatational strain and shear flow.

The observations show that the simultaneous action of
dilatational strain and shear flow leads to defect arrays that are
highly ordered, reproducible, and have a tunable periodicity
via the sample thickness. The application of shear flow after
the formation of defects does not lead to well aligned samples,
and the application of shear flow alone does not produce
reproducible defect textures. These observations have been
noted in the literature [11–13] but have not been quantified
experimentally.

Rosenblatt et al. [11] suggested that the defect textures
originate from the sinusoidal undulations of the smectic layers
above a critical dilatation δc of the order of angstroms.
This mechanism is supported by light scattering studies [19],
suggesting that the defects originate within the bulk of the
sample, and not at the surface, where the undulation amplitude
vanishes due to the imposed homeotropic anchoring at the rigid
flat surface. However, when PFCD structures are produced
by shear flow alone, such as in the experiments of Horn
and Kleman [13] and in our experiments shown in Fig. 3(a),
the focal conic domains are observed to stream from surface
irregularities. Horn and Kleman [13] demonstrate, through a
series of images, the nucleation of focal conic domains around
a dust particle.

For the case where defects are formed by dilatational strain
only, similar to [11], where disordered, polygonal arrays of
PFCDs are observed [Fig. 3(b)], we test whether defects form
as a result of surface irregularities or bulk undulations by
comparing the locations of the individual defects within the
texture for two successive experiments for the same sample

FIG. 4. Fast Fourier transforms of the defect textures produced by (a) Fig. 3(b), (b) Fig. 3(c), and (c) Fig. 3(f).
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FIG. 5. Positions of defect centers for two successive dilatation
experiments for the same sample loading. The sample was heated into
the isotropic phase (≈42 ◦C at 2 ◦C/min) and subsequently cooled
to the smectic phase (≈25 ◦C at −2 ◦C/min) in between the two
experiments.

loading. The sample thickness is 300 μm and the amount
of dilatation applied is δ = 4μm (ε = 0.0133). In between
the two experiments the sample is heated to the isotropic
phase (42 ◦C) and cooled back to the smectic phase (25 ◦C)
at heating and cooling rates of 2 ◦C/min. At 42 ◦C, we observe
a clear liquid characteristic of the isotropic phase upon removal
of the polarizer and analyzer from the optical path. With the
polarizer and analyzer inserted and crossed, we observe com-
plete extinction. This confirms that the smectic layering has
completely melted in between the two experiments. However,
the anchoring conditions and the surface irregularities remain
the same for both experiments since the sample is not reloaded.
In Fig. 5, we show the locations of the defects for the two
successive experiments. The locations of the defect centers for
the first experiment are indicated by the crosses and for the
second experiment they are indicated by the filled circles. We
observe that the defect positions for the successive experiments
are not correlated, suggesting that defects originate within the
bulk and not as a result of surface irregularities. These results
are repeatable for experiments performed on multiple samples,
with the same rates of heating and cooling. These experiments
are consistent with the hypothesis of Rosenblatt et al. [11] that
defects originate in the bulk and not from surface irregularities.
We presume that the origination of the defects within the
bulk when dilatational strain is applied is the reason why
PFCD arrays are more uniform and reproducible throughout
the sample compared with production by shear flow alone.

In the case when dilatational strain is applied alone, defects
form easily, requiring only small levels of dilatation of less than
1 μm regardless of sample thickness. This is consistent with the
undulation instability that occurs at angstrom-level dilatations,
well below the resolution of our micrometer [11,19]. This
condition is considerably modified when dilatational strain
and shear flow are simultaneously applied, resulting in ordered
PFCD arrays. We observe that the presence of the shear flow re-
tards the formation of PFCDs such that the amount of dilatation
required to form visible defect textures is of the order of a few
micrometers, i.e., about three orders of magnitude larger than
the critical strain needed to induce the undulation instability.

The amount of dilatation required to form defects is also a
function of the sample thickness. We recorded the dilatational
strain at which defects form as a function of sample thickness.
The sample initially exhibits complete extinction when viewed
between crossed polarizers. We apply Couette flow with a
constant shear rate and extend the maximum strain applied
using a triangular saw tooth strain profile where V = 50 μm/s,
the maximum strain for each cycle is 300 μm, and four cycles
are applied. We dilate the sample by 1 μm between the
second and third cycle. We repeat this shear flow–dilatation
sequence, dilating the sample by 1 μm during each sequence.
The procedure is repeated until we observe a change in the
sample intensity (birefringence), indicating the formation of
parabolic focal conic defects. The change in intensity is not
gradual, but rather, the birefringence increases sharply at
a critical dilatation. The dilatation at which the change in
birefringence occurs is reproducible, and decreases with an
increase in sample thickness. We refer to this sudden change
in birefringence as the “formation of visible defects.” This is
consistent with previous reports of a saturation phase [12],
where the defect intensity is observed to gradually increase
with an increase in dilatation when the defects are formed by
pure dilatational strain, and a sudden increase in intensity to
the saturation phase is observed when defects are formed by
simultaneous application of dilatational strain and shear flow.
This is likely due to the annihilation of the unsaturated defects
by the shear flow.

The critical dilatation for formation of visible defects is
plotted as a function of sample thickness in Fig. 6. The error
bars shown in the figure indicate the variation in the required
critical dilatation for different sample loadings. Figure 6 shows
that the required dilatation δ required to produce PFCD arrays
decreases with sample thickness. For a 100-μm-thick sample,
a PFCD pattern is not observed until nearly 10 μm of dilatation
has been imposed, representing a nearly 10% dilatational
strain. The amount of required dilatation δ decreases nearly
linearly with increasing sample thickness up to a sample
thickness of 300 μm. For sample thicknesses greater than
300 μm, less than 1 μm of dilatation is needed to form
visible defect patterns, representing a dilatational strain of
less than 0.33%. Since the smallest dilatation we can apply

FIG. 6. Amount of dilatation required to form parabolic focal
conic defects in the presence of a shear flow, as a function of the
sample thickness.
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using our instrumentation is 1 μm, we cannot make accurate
measurements for sample thicknesses greater than 300 μm.
Thus, for thicker samples, we say that defects form readily
upon the application of a shear flow.

These observations can be understood qualitatively by
considering the competing forces within the shear cell.
PFCD formation is favored since it minimizes the total free
energy of the layered liquid crystal sample. However, in thin
samples, surface anchoring competes with layer deformation,
introducing an energy penalty associated with the curvature of
layers near the surface. As the sample thickness increases,
surface anchoring becomes less important compared with
curvature energies in the bulk. Hence PFCD formation will
be more favorable and less dilatation will be required to form
visible PFCD textures for thicker samples. This hypothesis
also suggests that the surface anchoring energy may play an
important role in determining the critical dilatation. Oswald
et al. [12] formed ordered arrays of PFCDs in a very similar
manner. However, they do not report values for the critical
dilatation required to form defects. In that study, the authors
imposed homeotropic anchoring by coating the plates with
polysilane [12], which likely has a different anchoring energy
than the CTAB solution used here. Although the anchoring
energies are not known in the present experiments nor in those
of Ref. [12], we hypothesize that a smaller anchoring energy
would result in a smaller variation in the dilatation required
to form visible defect patterns. This hypothesis remains to be
tested. We note here that surface anchoring in smectics entails
additional considerations compared with nematics due to the
layered structure. For example, tilted anchoring in a smectic
would require melting of the layers in the vicinity of the rigid
plates in order to satisfy boundary conditions on the molecular
orientation [42]. Surface-induced smectic ordering at surfaces
imposing tilted anchoring is intimately connected with bulk
tilt elastic constants that arise to maintain the layer normal
orientation of smectic-A molecules [43]. We do not attempt
to decouple the anchoring energy for a tilted surface and the
bulk tilt elastic constant in this work; rather we note that the
role of surface anchoring in the formation of toroidal focal
conic defect textures is well documented [42,44] and hence its
importance cannot be neglected in microscale gaps where the
elastic and anchoring energies compete with each other [42].

To quantify the defect size and ordering, we use the pair
correlation function g(�r). The pair correlation function is often
used to describe atomic configurations [45] and size [46] and
ordering [41] of colloidal particles; here we employ it in the
analysis of focal conic defect textures. Figure 7(a) shows the
angular component of the pair distribution function, g(θ ), for
a sample thickness of 200 μm. The pair distribution function
has been obtained by analyzing multiple images with the
same sample thickness. The sharp peaks at right angles to
one another indicate square ordering. The smaller peaks also
suggest square ordering, since their angles correspond to those
obtained in a square lattice: 22.5◦, 45◦, and 67.5◦. The pair
distribution function shows that the defects are ordered in a
square lattice with principal directions aligned with the flow
and velocity gradient directions. This is consistent with the
visual observations and the FFT patterns in Figs. 3(b), 3(c),
and 4(f).

We further observe that the peaks in the direction of
flow (θ = ±90◦) are greater in height than the peaks in
the neutral direction (θ = 0◦, 180◦). The difference in peak
heights between the flow and the neutral directions are shown
for different sample thicknesses in Fig. 7(b). The difference
in peak heights is always positive, confirming that there is
systematically greater order in the flow direction compared
with the neutral direction. This anisotropy in the square
pattern is in contrast to predictions of linear stability theory.
For example, Oswald and Ben-Abraham [16] predict that
defects will form a square lattice with two equivalent principal
directions, corresponding to the flow and velocity gradient
directions. While the linear stability analysis corresponds to
conditions near the stability threshold, it appears that the
nonlinear growth of the instability leads to a shear flow-
induced anisotropy in the fully formed PFCD arrays.

Closer examination of the polarization images of the PFCD
arrays reveals the source of the ordering anisotropy. Figure 8
shows a typical image of a square PFCD array formed by
simultaneous application of shear flow and dilatational strain.
Imperfections in the square array are apparent in the image,
in which a row of PFCD defects comes to an end and
the rows of defects on either side of the partial row come
together to heal the defect. This structure is analogous to
edge dislocations observed in arrays of atoms [47]. Figure 8

(a) (b)
x

yθ

FIG. 7. The pair distribution function for defects formed by the simultaneous action of dilatational strain and shear flow for d = 300 μm.
(a) Angular dependence of the pair distribution function for the defect centers. Inset defines the angle θ relative to the flow direction. θ = 0o

corresponds to the flow direction. θ = 90o corresponds to the neutral direction, perpendicular to flow. (b) The difference in the maximum peak
height between the velocity direction and the neutral direction as a function of sample thickness.
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FIG. 8. Close-up image of an ordered array of parabolic focal
conic defects produced in the same manner as Fig. 5(b) for d =
200 μm. Dashed lines are drawn between rows of defects in the
neutral direction. Dislocations can occur in the defect array where a
row of defects ends, as indicated by the encircled regions. The scale
bar is 25 μm.

shows one such array-level “dislocation,” where we use the
term “dislocation” to specify imperfections in the focal conic
defect array, not imperfections in the molecular ordering of
the smectic. We have traced the rows of singularity lines using
dashed white lines to guide the eye, and the dislocation has
been encircled for the purposes of illustration. By identifying
multiple dislocations over a larger sample area than that shown,
we have confirmed that the orientation of the dislocation shown
here is representative of the orientations observed throughout
the sample. Dislocations can be described by a Burgers vector,
which represents the magnitude and direction of the lattice
distortion due to the dislocation. In this case, the Burgers
vectors of the dislocations are directed systematically along the
principal flow direction. The distortion of the lattice along the
flow direction results in more bond vectors occurring along
the principal flow direction than along the neutral direction,
consistent with the greater peak heights in the principal
flow direction shown in the angular distribution function of
Fig. 7. A similar analysis was conducted for block copolymer
films oriented in shear flows [48] where, in the case of a
hexagonal lattice, a higher frequency of bond vectors was
systematically observed in the direction perpendicular to flow
and a preferential orientation of the Burgers vector of the
dislocation was related to this result. Directional anisotropy
of “dislocations” within PFCD arrays has not been reported
previously.

Previous measurements of the sizes of ordered defects
produced by simultaneous dilatational strain and shear flow
[12] indicate that the increase in defect size with sample
thickness follows an empirical relationship with a different
functional form than that of the undulations analyzed by
linear stability theory. The sizes of disordered defects formed
by dilatational strain alone have not been measured as a
function of sample thickness. Thus, it is not clear whether
the deviation from the scaling of the undulation instability

FIG. 9. Radial dependence of the pair distribution function. “O”
refers to ordered defects formed by the simultaneous action of
dilatational strain and shear flow, and “DO” refers to the disordered
defects formed by dilatational strain only.

arises due to the later stages of the growth of the undulations
or due to the presence of shear flow, which could alter the
sizes of the defects. To quantify the dependence of the defect
size distribution on sample thickness for ordered as well as
disordered defect arrays, we examine the radial distribution
function g(r), shown in Fig. 9.

The data points shown in Fig. 9 represent ordered PFCD
arrays (O) generated using simultaneous dilatational strain and
shear flow, at two different sample thicknesses, d = 250 μm
and d = 400 μm. These radial distribution functions are
compared with that of a disordered array (DO) generated
using dilatational strain without subsequent shearing at a
sample thickness of d = 250 μm. In all three distribution
functions, we observe a distinct series of peaks. The location
of the first peak indicates the characteristic distance between
the defects in the array, which is equivalent to the size of
the defects since the PFCDs within the array fill the entire
space. The peak height for the disordered array is lower and
the peak width is broader than that of the ordered arrays,
consistent with the reduced degree of ordering in the sample.
A comparison of the locations of the first peak for the ordered
defects indicates that as the sample thickness increases, the
defect size also increases. The ordered arrays exhibit multiple
peaks, while the disordered arrays exhibit a single broad peak
with no obvious higher-order peaks. The higher-order peaks
indicate long-range order that persists within the spatial limits
of the image. Thus, the advantage of analyzing the defect size
using the radial distribution function is that it provides an
objective measure of the defect size and the breadth of the size
distribution for both ordered and disordered defects, whereas
previous manual measurements render it difficult to analyze
these features in a statistically meaningful way.

In Fig. 10 we plot the defect sizes obtained from the
locations of the first peaks of g(r) as a function of the sample
thickness. The sizes of the ordered defects are denoted by (�)
and those of the disordered defects are denoted by (•) symbols.
In addition, the defect sizes measured by Oswald et al. [12]
are plotted using (�) symbols for comparison. The plot shows
that the characteristic defect sizes of ordered and disordered
textures are equivalent to within experimental uncertainty,
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FIG. 10. Defect size as a function of the sample thickness. The
triangles denote the sizes of disordered defects formed by dilatational
strain alone, the circles denote the sizes of ordered defects formed
by simultaneous dilatational strain and shear flow and the squares
denote the experimental results of Oswald et al. [12]. The solid line
corresponds to the predicted scaling from the undulation instability
[18].

although as expected, ordered defects have a narrower size
distribution than disordered defects. Our measured sizes for
both ordered and disordered patterns are in good agreement
with the defect sizes reported by Oswald et al. [12]. As these
authors reported, the empirical defect sizes deviate both in
magnitude and in scaling compared with the wavelength p of
the undulation instability, [18] given by

p =
√

2πλd. (8)

The wavelength predicted for 8CB using the scaling of
Eq. (8) is shown in Fig. 9 (solid line). Oswald et al. [12]
fit an empirical function to their defect size data but did not
offer a physical explanation for the differences observed. Our
observation that the sizes of the disordered and ordered defects
are the same indicates that ordering due to applied shear flow is
not the reason for the change in scaling. Thus, we presume that
the deviation of the defect sizes from that predicted by linear
stability analysis is a result of the nonlinear growth of defects
from the initial undulations. This result is consistent with the
analytical predictions of Oswald and Ben-Abraham [16] that
the critical wavelength of the undulations remains the same in
the presence and absence of shear flow.

IV. CONCLUSIONS

In this study, we describe experimental observations of de-
fect arrays formed using four different methods of deforming
a smectic liquid crystal sample. The smectic liquid crystals are
confined in a shear cell with homeotropic anchoring imposed
on both plate surfaces. Defects are formed by applying
dilatational strain alone, shear flow alone, dilatational strain
and subsequent shear flow, and the simultaneous action of
dilatational strain and shear flow. The latter method produces
the most uniform and ordered arrays of parabolic focal conic
defects. The defects are arranged in square arrays, consistent
with previous experimental observations [12] as well as a linear
stability analysis for smectic layer undulations in the presence
of dilatational strain and shear flow [16].

When defects are formed by application of dilatational
strain alone, PFCDs originate from within the sample, rather
than at the surface. This is consistent with a mechanism [11]
suggesting that defects are formed from sinusoidal layer
undulations within the bulk of the sample. This is an important
difference from the formation of defects based on a pure
shear flow, where defects are formed as a result of surface
irregularities.

By performing experiments over a range of sample thick-
nesses, we show that in the case of simultaneous application
of dilatational strain and shear flow, the critical dilatation
required for formation of visible defects is of the order of a
few micrometers. While layer undulations are likely to occur in
all the samples since undulations only require angstrom-level
dilatations, the formation of visible defect textures requires
dilatations that are about three orders of magnitude larger. Very
thin samples require more dilatation to produce visible defects,
suggesting that bulk elastic interactions dominate over surface
anchoring conditions as sample thickness increases, and thus
the relaxation of the layers into defects is easier for thicker
samples.

We use the pair distribution function to quantify the order
and size of the defect textures formed within the shear cell. The
angular distribution function g(θ ) confirms that the defects
arrange in a square lattice in the presence of a shear flow.
The angular distribution function also shows that there is
systematically more ordering in the flow direction compared
with the neutral direction, a result that is in contrast with
previous theoretical predictions near the undulation threshold
[16]. Closer analysis of images of the defect arrays reveals
that this difference in ordering is a result of dislocations in the
ordered array. These dislocations in the positional order of the
topological defects are more prevalent in the neutral direction.

The radial distribution function is used to determine the
characteristic defect sizes in disordered and ordered textures.
Disordered textures, formed by dilatational strain only, exhibit
a single broad peak indicating the absence of long-range order.
This is contrary to linear stability analysis, which predicts the
arrangement of undulations in square lattices [27]. The disor-
dered textures show the same mean size as ordered textures
and these sizes are consistent with previous measurements for
ordered textures [12]. All of these measurements are different
from the scaling of the wavelength of the undulations. The
applied shear flow itself does not cause a change in defect
sizes, since both ordered and disordered textures show the
same scaling of sizes with sample thickness. We conclude that
although the defects originate from layer undulations within
the bulk of the sample, the development of the undulation
instability far from the threshold leads to changes in size
and ordering that are not predicted by linear stability theory.
An analysis of the texture using the pair distribution function
clearly establishes these changes in the size and ordering far
from the stability threshold.
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