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Langevin equations for competitive growth models
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Langevin equations for several competitive growth models in one dimension are derived. For models with
crossover from random deposition (RD) to some correlated deposition (CD) dynamics, with small probability p

of CD, the surface tension ν and the nonlinear coefficient λ of the associated equations have linear dependence
on p due solely to this random choice. However, they also depend on the regularized step functions present in
the analytical representations of the CD, whose expansion coefficients scale with p according to the divergence
of local height differences when p → 0. The superposition of those scaling factors gives ν ∼ p2 for random
deposition with surface relaxation (RDSR) as the CD, and ν ∼ p, λ ∼ p3/2 for ballistic deposition (BD) as the
CD, in agreement with simulation and other scaling approaches. For bidisperse ballistic deposition (BBD), the
same scaling of RD-BD model is found. The Langevin equation for the model with competing RDSR and BD,
with probability p for the latter, is also constructed. It shows linear p dependence of λ, while the quadratic
dependence observed in previous simulations is explained by an additional crossover before the asymptotic
regime. The results highlight the relevance of scaling of the coefficients of step function expansions in systems
with steep surfaces, which is responsible for noninteger exponents in some p-dependent stochastic equations,
and the importance of the physical correspondence of aggregation rules and equation coefficients.

DOI: 10.1103/PhysRevE.85.011601 PACS number(s): 81.15.Aa, 05.40.−a, 05.50.+q, 68.55.−a

I. INTRODUCTION

The technological applications of thin films and multilayers
motivated intense theoretical study of growth models in
the last decades [1–3]. Many processes show evidence of
a competition between different aggregation dynamics. For
instance, this occurs in deposition of diamond-like carbon
by plasma, where growth is mainly due to aggregation of
slow radicals but ion bombardment is essential to create sp3

bonds [4]. When physicochemical conditions are continuously
changed, such as in cyclical electrodeposition or dissolution
of metals, competing dynamics are also present [5]. Con-
sequently, many competitive growth models were already
proposed, with microscopic aggregation rules representing the
atomistic dynamics. They are usually defined on lattices, such
as those with aggregation of different species of particles [6–8]
and those mixing different aggregation rules for the same
species [9–19]. They usually show crossover effects from one
dynamics at small times t and short length scales L to another
dynamics at long t or large L, and in special cases anomalous
roughening is present [20,21].

A widely studied group of models is that showing crossover
from random (uncorrelated) deposition (RD) to some cor-
related deposition (CD) process, hereafter called RD-CD
models. For RD-CD in general, aggregation of each incident
particle follows the rules of the CD process with probability
p and those of RD with probability 1 − p (other models
might also show the same crossover with a parameter that
is not a probability [18]). Another group of relevant models
show crossover from Edwards-Wilkinson (EW) [22] to Kardar-
Parisi-Zhang (KPZ) [23] scaling. A representative model in
this latter group is the competition between ballistic deposition
(BD) [24] and random deposition with surface relaxation
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(RDSR, or Family model) [25], respectively with probabilities
p and 1 − p. In all cases, the crossover appears for small p.

For several reasons, the association of those models with
stochastic growth equations of the Langevin type is a problem
of central interest. First, it facilitates finding asymptotic
properties which are frequently unclear in numerical works
on lattice models [26–28]. Second, renormalization study of
the growth equation may relate unexpected numerical results
to crossover or instability effects [29]. Finally, improvement in
atomistic modeling of thin film growth may be achieved from
the advance on the stochastic equation analysis.

Langevin equations for some of those competitive growth
models were derived in Refs. [15,17,30] and scaling features of
KPZ and EW equations were discussed by several authors [10,
18,19]. For RD-RDSR and RDSR-BD models, Muraca et al.
[15] suggested quadratic dependence of equation coefficients
on the probability p in the crossover regime, which was in
good agreement with available numerical data. They argued
that the time for the less probable process to occur scales
as 1/p and that the corresponding increase in local height is
also proportional to p [Eqs. (1) and (2) of Ref. [15]]. The
results for RD-RDSR were confirmed by scaling arguments in
Refs. [17,18]. However, the claim on the universal quadratic
form of vanishing coefficients [15] is ruled out by the study of
a restricted solid-on-solid (RSOS) [31] model with deposition
and erosion, which shows linear p dependence of the nonlinear
term in the KPZ equation [30], and by the RD-BD model
[17,18], which shows p3/2 scaling of that term.

In this work, Langevin-type equations associated with
various competitive lattice models showing RD-CD and EW-
KPZ crossovers are derived through a standard van Kampen
expansion of the master equation, followed by a proper
choice of the jump moments. From this approach, the form
of the equation coefficients is remarkably different from
the one proposed by Muraca et al. [15]: in all cases, the
random choice of the asymptotically dominant process gives
a linear dependence on p for the coefficients that vanish

011601-11539-3755/2012/85(1)/011601(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.011601
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as p → 0, instead of the quadratic dependence. However,
for RD-CD models, average local slopes diverge as p → 0;
thus the optimal regularization of step functions (present
in the transition rates of all discrete models) have lowest
order coefficients that scale as p or p1/2, depending on the
aggregation mechanism of the CD. The combination of those
scaling relations give equation coefficients of EW and KPZ
equations vanishing as p, p2, or p3/2. In all cases, they agree
with simulations and other scaling approaches [17,18]. For
the RDSR-BD model, we show that a nonasymptotic regime
with quadratic scaling is present, which is associated with the
dominant effect of subsequent BD events, while the asymptotic
linear relation is predicted for p much smaller than that of
previous simulations [14].

The rest of this work is organized as follows. In Sec. II,
three lattice models with the RD-CD crossover are defined
and the approach to predict amplitudes of roughness scaling is
reviewed. In Sec. III, details of the method to derive Langevin
equations are presented and the equation for the RD-RDSR
model is obtained. In Sec. IV, the equations for the RD-BD
model and for the bidisperse ballistic deposition (BBD) are
constructed. In Sec. V, the equation for the RDSR-BD model
is presented and the crossover from quadratic to linear scaling
is discussed. In Sec. VI we summarize our results and present
our conclusions.

II. LATTICE MODELS WITH COMPETITION OF
CORRELATED AND UNCORRELATED DEPOSITION

In these models, growth begins with a flat d-dimensional
substrate with cubic symmetry and L adsorption sites (or
columns) in each direction, with a total of Ld sites. Cubic
particles of lateral size a‖ (parallel to the substrate plane)
and vertical size a⊥ (parallel to the average growth direction)
are sequentially released at randomly chosen columns above
the deposit and fall vertically toward the substrate. The time
interval for deposition of one layer of atoms [Ld atoms] is
τ . Each incident particle may irreversibly stick at the top
of the column of incidence, with probability 1 − p (RD), or
move and stick following some aggregation rule that takes into
account the neighboring column heights (mimicking physical
processes such as diffusion, desorption, or bond formation),
with probability p (CD).

The competitive models where RDSR and BD are the
correlated components were introduced by Albano and co-
workers [10,11]. The rules of RDSR [25] are illustrated in
Fig. 1(a): The particle sticks at the top of the column of
incidence if no neighboring column has a smaller height;
otherwise it sticks at the top of the column with the smallest
height among the neighbors (if two or more neighbors have the
same height, one of them is randomly chosen). In BD, which
is illustrated in Fig. 1(b), the incident particle aggregates at the
first site where it finds a nearest neighbor occupied site (lateral
or below it) [24], which generates a porous deposit.

BBD was introduced in Ref. [32] and is itself defined as
a competitive model. Taking the d = 1 case for illustration,
particles of two different sizes are incident toward the surface:
single-site particles (lateral size a‖, vertical size a⊥) with
probability 1 − F and double-site particles (dimers with
lateral size 2a‖, vertical size a⊥) with probability F . Any
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FIG. 1. Microscopic rules of the models (a) RDSR, (b) BD, and
(c) BBD. The incident particles are shaded squares, the deposited
particles are empty squares with solid boundaries, and the squares
with dashed boundaries indicate the points of first contact with the
surface. In RDSR, the incident particle may move from the point
of first contact, as illustrated by the arrows. In the other models,
aggregation occurs at that point.

incident particle permanently sticks at the first position where
it encounters a previously deposited particle below it. The
aggregation of a dimer leads to pore formation when the
neighboring columns have different heights, similarly to
the lateral aggregation of BD. The rules of BBD are illustrated
in Fig. 1(c).

In these models, the surface configuration is the array of
discrete height variables H = {hi}, where i = 1,2,3, . . . ,Ld .
In all deposits (compact or porous), the height variable is the
one of the highest particle at that substrate site; thus H always
refers to the outer surface of the deposit.

The global roughness of the surface is defined as the rms
fluctuation of the height variables, whose average is h:

W (L,t) ≡
〈

1

Ld

∑
k

(hk − h)2

〉1/2

. (1)

Here the overbars indicate spatial averages over the height
variables, the sum is taken over all the Ld substrate sites, and
the angular brackets indicate configurational averages. At short
times, RD dominates; thus the roughness increases as

WRD ≈ a⊥(t/τ )1/2. (2)

After a crossover time tc, the CD determines the universality
class of the process. The roughness follows Family-Vicsek
(FV) scaling [33] as

W (L,t) ≈ ALαf

(
t

t×

)
, (3)

where α is the roughness exponent, f is a scaling function such
that f ∼ 1 in the regime of roughness saturation (t → ∞), and
t× is the characteristic time of crossover to saturation, which
scales as

t× ≈ BLz, (4)
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where z is the dynamic exponent. For t 	 t× (but t 
 tc), the
roughness scales as

W ≈ Ctβ, (5)

where β = α/z is the growth exponent. In this growth regime,
f (x) ∼ xβ in Eq. (3).

The exponents α, β, and z depend on the basic symmetries
of the CD, but the amplitudes A, B, and C are model
dependent. For small p, they scale as

A ∼ p−δ,

B ∼ p−y, (6)

C ∼ p−γ ,

where the convention of crossover exponents (δ,y,γ ) of
Albano and co-workers [10] was used. FV scaling implies

yβ − δ + γ = 0. (7)

The scaling approaches of Refs. [18,19] explain the values
of the exponents obtained in simulations of lattice models
and show that only one exponent [usually y or δ; Eq. (6)] is
sufficient to characterize the crossover.

For p 	 1, most deposited atoms attach to the top of
the randomly chosen site (RD). Thus, from Eq. (2), the
height difference of neighboring sites is of order 	hRD ∼
a⊥(	t/τ )1/2 after a time interval 	t . On the other hand, the
average time for a correlated event (probability p) to occur at
a given column is τc ∼ τ/p.

In the case of ballistic-like models (e.g., BD or BBD),
the frequent lateral aggregation [e.g., at columns 2 and 8
in Fig. 1(b)] immediately creates correlations between the
neighboring columns. Thus, the time of crossover from random
to correlated growth is

tc ∼ τc ∼ p−1τ. (8)

This applies to other BD-like models, as discussed, e.g., in
Ref. [34].

However, in the case of solid-on-solid (SOS) models, such
as RDSR, the column height changes by a single lattice unit at
each time step. A single CD event does not cancel the random
height fluctuation 	h of neighboring columns; instead, it only
reduces that fluctuation by one lattice unit [e.g., the particle
aggregating at column 3 in Fig. 1(a)]. The height fluctuation
produced by RD will be suppressed only when the number of
correlated events Nc is of order 	hRD/a⊥. At the crossover
time tc, this number is Nc = tc/τc ∼ tcp/τ ; thus

tc ∼ p−2τ. (9)

In both cases, all time scales of the purely correlated system
(p = 1) are also changed by the scaling factor tc/τ , such as the
saturation time t× [Eq. (4)]. Thus we have y = 1 for ballistic-
like models and y = 2 for SOS models with single particle
deposition attempts [Eqs. (6)]. This result does not depend
on the universality class of the CD neither on the substrate
dimension.

The average height difference between neighboring
columns saturates at

	h ∼ a⊥(tc/τ )1/2 ∼ a⊥p−y/2 (10)

for all models (ballistic-like and SOS). This is the scaling
factor for global height fluctuations [Eqs. (3) and (6)]; thus

δ = y/2. (11)

Combined with Eq. (7), it shows that a single exponent (y)
fully characterizes the crossover.

III. THE RD-RDSR MODEL

The equation associated with the RD-RDSR model is
constructed through a van Kampen expansion of the master
equation [35], as discussed in Refs. [28,36,37].

The transition rate W (H′; H) from the height configuration
H = {hi} to the configuration H′ = {h′

i} is

W (H′; H) = 1

τ

∑
k

wkδ(h′
k,hk + a⊥)

∏
j �=k

δ(h′
j ,hj ), (12)

where the δ-function product represents the condition that H
and H′ differ by the deposition of one only particle, and wk is
the rate at which the process hk → hk + a⊥ occurs.

Let K
(1)
i and K

(2)
ij be respectively the first and second jump

moments of W , computed through [35,38]:

K
(1)
i (H) =

∑
H′

(h′
i − hi)W (H′; H) (13)

and

K
(2)
ij (H) =

∑
H′

(h′
i − hi)(h

′
j − hj )W (H′; H). (14)

According to a theorem of Kurtz [39,40], later revisited by Fox
and Keiser in the context of a macrovariable description for
noisy trajectories [41] (see also Ref. [42]), we expect that

∂hi

∂t
= K

(1)
i (H) + ηi(t) (15)

gives the macroscopic description of H in the hydrodynamic
limit. If all the conditions imposed in Ref. [35] and in
Refs. [39–41] are met, the fluctuations in Eq. (15) must obey

〈ηi(t)〉 = 0 (16)

and

〈ηi(t)ηj (t ′)〉 = a⊥K
(1)
i δij δ(t ′ − t), (17)

where we used the identity

K
(2)
ij = a⊥K

(1)
i δij (18)

between the first and second jump moments in Eq. (17). In
fact, all higher order jump moments are proportional to K

(1)
i ,

as can be seen from direct calculation.
For the RD-RDSR model (and related competitive models)

in d = 1, the first jump moment [Eq. (13)] can be cast to the
form

K
(1)
i = p

a⊥
τ

(
ω

(0)
i + ω

(1)
i+1 + ω

(2)
i−1

) + (1 − p)
a⊥
τ

, (19)

where each ω
(k)
j gives the conditions for a particle incident at

column j to move and stick to one of its neighbors or to stick
at the incidence column. Those conditions depend on the local
height configuration.
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The functions ω
(k)
i are called aggregation rules. For the

RDSR model, ω
(0)
i represents the conditions for the particle

incident at site i to stick at i; ω
(1)
i , the conditions for the

particle to relax to its left site (i − 1); and ω
(2)
i , the conditions

for the particle to relax to its right site (i + 1). The aggregation
rules can be written in terms of discrete step functions
as [15]

ω
(0)
i = θ i+1

i θ i−1
i ,

ω
(1)
i = 1

2

(
1 + θ i+1

i

)(
1 − θ i−1

i

)
, (20)

ω
(2)
i = 1

2

(
1 + θ i−1

i

)(
1 − θ i+1

i

)
,

where θ
j

k = �(hj − hk), and �(x) is the unit step function,
defined at our convenience to be �(x) = 1 for x � 0 and
�(x) = 0 for x < 0.

In order to pass from the discrete model to its continuum
limit, we assume there exists a continuous function �(x,t) that
interpolates all points hi(t) of the substrate, while a‖ is kept
small but finite. This is possible if we can write

hi±n − hi =
∞∑

k=1

(
∂k�

∂xk

)
(±a‖n)k

k!
, (21)

for some �(x,t).
We assume further there also exists an analytical represen-

tation of the step function � (see for example Refs. [27,43]),
and we define 	

j

k ≡ hj − hk , so that the function �(	j

k )
can be expanded in a power series of the height differences
as

�
(
	

j

k

) = 1 + A1	
j

k + A2
(
	

j

k

)2 + · · · , (22)

where the expansion coefficients have to be chosen according
to the rules of the lattice model to be represented [27–29,44].

Equation (19) is inserted in Eq. (15), and step functions and
height differences are expanded according to Eqs. (22) and
(21). Retaining terms up to the leading order in a‖ and a⊥,
and in the limit of small p, we obtain the EW equation [22]

∂h

∂t
= ν∇2h + η(x,t), (23)

where

ν = 2a⊥a2
‖

τ
A1p (24)

and

F = a⊥
τ

. (25)

These coefficients differ from those of Ref. [15], which
gave ν = (2a2

‖/τ )A1p
2 and F = (a⊥/τ )[(1 − p)2 + p2]. That

work proposes that the height at a given column increases
by a factor proportional to p (1 − p) after a time interval
τ/p [τ/ (1 − p)] characteristic of the RDSR (RD) process.
This gives the quadratic dependence of ν on p. However, this
hypothesis also leads to a flux F depending on p, which is not
true. Instead, the model is SOS and no deposition attempt is
rejected; thus the flux is independent of p, as given in Eq. (25):
One layer of atoms of height a⊥ is deposited during time τ .

On the other hand, numerical work [10] and scaling
arguments [17,18] give ν ∼ p2 for small p, which apparently

disagrees with Eq. (24). As will be explained below, an
additional p factor is hidden in the coefficient A1 of Eq. (22),
which is known to be model dependent.

Since the step function is limited to values 0 and 1, the sum
of terms in the right-hand side of Eq. (22) is expected to be
of order 1 or smaller. The step at the origin indicates that the
first-order term A1	

j

k is finite and nonzero. Indeed, when Aj

is computed through some continuous representation of the
step function, as in Ref. [15,45], the first-order term is of order
1 for any model.

For pure correlated models, such as RDSR, height differ-
ences 	

j

k are of order 1; thus we expect A1 is of that order. On
the other hand, in RD-RDSR with small p, typical neighboring
height differences 	

j

k diverge as p−1 [Eq. (10) with y = 2].
Thus A1 must vanish as

A1 ∼ p (26)

for a correct regularization of the step function for small p.
Substituting this result in Eq. (24), we obtain ν ∼ p2. Thus,

a first factor p in the surface tension coefficient ν comes from
the random choice of correlated events, while a second factor
p comes from the reduced smoothing effect of each correlated
event in surface steps of depth p−1, as discussed in Sec. II.
This interpretation also differs from that of Muraca et al. [15],
that relates the complete p2 factor to the random choice of
RDSR.

Analogous arguments apply to the step function expansion
of RD-CD models in general. From Eq. (10), they give

A1 ∼ pδ. (27)

Since the second-order term of the expansion in Eq. (22) must
also be of order one, we expect

A2 ∼ p2δ. (28)

Eventually the second-order term in Eq. (22) is zero or
converges to zero as p → 0, which would imply that A2 is
zero or has a higher power in p.

Another important question is a possible crossover effect on
the noise term of the stochastic equations. However, it can be
shown that the noise amplitude is independent of the parameter
p. At the end of Sec. IV, a detailed discussion is presented for
all models with the RD-CD crossover.

IV. THE RD-BD AND THE BBD MODEL

For the one-dimensional RD-BD model, the first jump
moment is

K
(1)
i = p

τ

[
ω

(3)
i (hi−1 − hi) + ω

(4)
i (hi+1 − hi) + ω

(5)
i a⊥

]

+ (1 − p)
a⊥
τ

, (29)

with the aggregation rules given by

ω
(3)
i = θ i−1

i θ i−1
i+1 − 1

2

(
1 − θ i

i−1

)
δi−1
i+1,

ω
(4)
i = θ i+1

i θ i+1
i−1 − 1

2

(
1 − θ i

i+1

)
δi+1
i−1, (30)

ω
(5)
i = θ i

i−1θ
i
i+1,
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where δi
j = θ i

j + θ
j

i − 1 is the Kronecker delta function.

Note that ω
(3)
i + ω

(4)
i + ω

(5)
i �= 1 when hi = hi−1 or hi =

hi+1. However, the corresponding jump moment expression
[Eq. (29)] is correct, since ω

(3)
i and ω

(4)
i are multiplied by

hi−1 − hi and hi+1 − hi , respectively. Also note that ω
(3)
i

and ω
(4)
i account for lateral aggregation, while ω

(5)
i refers to

aggregation at a local maximum (see Fig. 1).
The same steps of the previous model are then followed:

Eq. (29) is inserted into Eq. (15), with step functions and
height differences expanded according to Eqs. (22) and (21).
Retaining terms up to the leading order in a‖ and a⊥, and in
the small p limit, we obtain the KPZ equation

∂h

∂t
= F + ν∇2h + λ

2
(∇h)2 + η(x,t), (31)

with

ν = a2
‖
τ

p, (32)

λ = 10a2
‖

τ
A1p, (33)

and

F = a⊥
τ

. (34)

A naive inspection of Eqs. (32) and (33) suggests ν ∼ p

and λ ∼ p. However, the scaling of A1 and A2 in Eqs. (27)
and (28), with y = 1 for ballistic-like models, gives

ν ∼ p, λ ∼ p3/2, (35)

which agrees with simulation [11] and scaling arguments
[17,18].

Thus, this model also shows that the scaling of the equation
coefficients on p depends not only on the random choice of
BD but also on the scaling of height differences. Moreover, our
analysis shows that equation coefficients which are noninteger
powers of p, such as p3/2, can be predicted by construction
of growth equations from the microscopic rules, with the
noninteger exponent related to the step function regularization.

The coefficient of the surface tension term [Eq. (32)] is
always positive. Indeed, the lateral aggregation rules of BD
[ω(3)

i and ω
(4)
i in Eq. (30)] reduce local height differences,

as illustrated by deposition at columns 2 and 8 in Fig. 1(b),
which is the role of surface tension. This balances the negative
contribution to the surface tension from aggregation at a local
maximum, illustrated by deposition at column 5 in Fig. 1(b).

This result differs from what is obtained with the ag-
gregation rules of Ref. [15]: ν = −(a2

‖a⊥/τ )A1p, which is
negative for (expected) positive A1. With the aggregation rules
presented in that work, lateral aggregation does not contribute
to surface tension; thus aggregation at a local maximum
renders ν negative, as can be inferred from the a⊥ factor
appearing in that formula for ν (in Ref. [15], it follows only
from the expression of ω

(5)
i ).

The preceding discussion shows that it is essential to check
the consistency of the equation coefficients and the geometry of
the model when strong approximations (such as regularization
of step functions) are involved. When the surface is rough,
pure lateral aggregation at edges and steps tends to bring the

surface to a plain surface state, through both nonconservative
(taming of a height difference larger than a⊥) and conservative
mechanisms (taming of a step of height a⊥). Indeed, we chose
aggregation rules for BD such that the pure lateral aggregation
gives a positive contribution to the Laplacian term, as it is
expected. That was only possible by allowing ω

(3)
i + ω

(4)
i +

ω
(5)
i �= 1 in Eq. (30) and avoiding products between terms

such as 1 − θ i
j , which will be subsequently regularized.

Now we consider the BBD model. The first jump moment
is

K
(1)
i = p

τ

[(
ω

(6)
i + ω

(9)
i−1

)
(a⊥ + hi−1 − hi)

+ (
ω

(7)
i + ω

(8)
i+1

)
(a⊥ + hi+1 − hi) + a⊥ω

(6)
i+1

+ a⊥ω
(7)
i−1 + a⊥ω

(9)
i +a⊥ω

(8)
i

] + (1−p)
a⊥
τ

(36)

with

ω
(6)
i = (1/2)θ i−1

i ,

ω
(7)
i = (1/2)θ i+1

i , (37)

ω
(8)
i = (1/2)

(
1 − θ i−1

i

)
,

ω
(9)
i = (1/2)

(
1 − θ i+1

i

)
,

where the factors 1/2 correspond to the equal probability for
the two possible orientations of the dimers on the incidence
site. The KPZ equation [Eq. (31)] is also obtained from this
rules. In the small p limit, it has coefficients

ν = a2
‖
τ

p, (38)

λ = 4
a2

‖
τ

A1p, (39)

and

F = a⊥
τ

(1 + p) . (40)

The p dependence of A1 for ballistic-like models [Eq. (27)
with δ = 1/2] again gives ν ∼ p and λ ∼ p3/2, in agreement
with Ref. [34], which combined scaling properties of the KPZ
equation in one dimension and numerical results.

The relation between the first and second jump moments
[Eq. (18)] shows that this scaling picture can also provide
the noise term of the growth equation. We follow Ref.
[1] and rewrite Eq. (17) as 〈ηi(t)ηj (t ′)〉 = Dδij δ(t ′ − t) to
have D = a⊥K

(1)
i , where D is the amplitude of the noise

correlations. For each model, we expand the step functions
and height differences [Eqs. (22) and (21)] and retain terms
up to the leading order in a⊥ and a‖. This gives D ∼ a⊥F

for all models, as can be found from inspection of Eqs. (24)
and (25), (32) to (34), (38) to (40), and (44) to (46), since
all time and space derivatives of h are finite in the limiting
process. That means D = a2

⊥/τ plus terms of order a⊥a2
‖ or

a2
⊥a2

‖ in all RD-CD models. For BBD, D = a2
⊥(1 + p)/τ +

O(a⊥a2
‖), due to the particular choice of the time unit for that

model.
These results show that, in the small p limit, there is no

effect of this parameter on the noise amplitude. Consequently,
all the crossover effects depend on the coefficients ν and
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λ (in contrast to what is observed in other growth models
[46]).

V. THE RDSR-BD MODEL

This model was introduced in Ref. [9] and involves the
competition of BD (KPZ class), with probability p, and RDSR
(EW class), with probability 1 − p. In Ref. [14], scaling
properties were studied numerically, with the coefficient of
the nonlinear term scaling as λ ∼ p2 for 0.2 � p � 0.5. That
quadratic dependence was proposed analytically by Muraca
et al. [15].

The first jump moment in this case is

K
(1)
i = pKBD

i + (1 − p)KRDSR
i , (41)

where KRDSR
i , KBD

i are the first jump moments

KRDSR
i = a⊥

τ

(
ω

(0)
i + ω

(1)
i+1 + ω

(2)
i−1

)
(42)

and

KBD
i = 1

τ

[
ω

(3)
i (hi−1 − hi) + ω

(4)
i (hi+1 − hi) + ω

(5)
i a⊥

]
, (43)

where ω
(k)
i , k = 0, . . . ,5, are the aggregation rules given in

Eqs. (20) and (30). Following the same approach of the other
models, we obtain the KPZ equation with coefficients

ν = a2
‖
τ

p + 2a2
‖a⊥
τ

A1

(
1 − 3

2
p

)
, (44)

λ = 2a2
‖

τ
A1 (5 − a⊥A1) p, (45)

and

F = a⊥
τ

. (46)

Both RDSR and BD have correlated kinetics which lead to
finite average values of local slopes, even in the steady states.
Consequently, the leading coefficients of the step functions
(A1, A2) do not vanish in the limit p → 0, in contrast with the
models with crossover from RD. Thus, Eq. (45) gives λ ∼ p

as p → 0, while the other coefficients remain nonzero.
This result disagrees with the quadratic dependence ob-

served in simulations of Ref. [14] and suggested in analytical
work of Ref. [15]. In order to understand this discrepancy, the
conditions where the BD component generates nonlinearity in
the RDSR-BD model have to be analyzed.

In Fig. 1(b), deposition at columns 2 and 8 shows the
condition in which lateral aggregation (characteristic of BD)
leads to excess velocity: deposition occurs at a column i

which has at least one neighbor with height larger by 2a⊥
or more. This leads to formation of a hole in column i.
However, for small p, pure RDSR dominates. We simulated
the one-dimensional RDRS model in lattice sizes L = 256
and L = 512 and found that the number of columns where
excess velocity is possible is P ≈ 0.044. This fraction is
small because RDSR produces a very smooth surface, with
a very small number of high steps. On the other hand, in pure
BD, our simulations show that this probability is near 1/2.
Thus, in the competitive model with small p, the fraction of

columns which have lateral growth (i.e., nonlinear growth) is
approximately Pp.

On the other hand, the BD model itself creates conditions
for two neighboring sites to have height difference 2a⊥ or
more: If a column i has one larger neighbor j (hi < hj ), a
BD event at j followed by another BD event at i leads to
lateral aggregation with formation of a hole. For instance,
this would correspond to the deposition in column j = 5,
shown in Fig. 1(b), followed by deposition in column i = 4
(not shown). In the pure RDSR surface, the fraction of
columns with at least one higher neighbor is Q ≈ 0.44, also
obtained from simulation. Thus, the probability of this column
having nonlinear growth due to those subsequent BD events is
approximately Qp2.

From the point of view of Eq. (45), pure RDSR corresponds
to A1 ∼ P in the regularization of step functions, while a BD
event corresponds to A1 ∼ Qp.

For small enough p, we certainly have Pp > Qp2; thus the
crossover EW-KPZ is dominated by BD events taking place
on a nearly pure RDSR surface. This occurs for p < P/Q ≈
0.10. In this regime, the linear dependence of λ on p [Eq. (45)]
is expected. However, simulation results of Ref. [14] are for
p � 0.2. In the lower limit p = 0.2, we have Pp ≈ 0.0088 and
Qp2 ≈ 0.0176. This means that Qp2 is twice as large as Pp,
and their difference is enhanced for larger p. Consequently,
the simulated range of p favors nonlinearities arising from two
subsequent BD events at neighboring columns, which explains
the observed quadratic dependence of the coefficient λ on p.

The arguments of Ref. [15] for the λ ∼ p2 behavior were
also based on the association of the p2 factor to the random
choice of BD. However, it is also a double counting of the
factor p, which is reasonable for the simulated range of p but
fails for very small p.

The linear scaling of the coefficient λ on p was also
found in the RSOS model of deposition and erosion of
Ref. [30], both in simulations and in the derivation of the
associated KPZ equation. The constraint on the neighboring
height difference of the RSOS model leads to rejection of
deposition and erosion attempts, which is the mechanism
to generate nonlinear growth. That rejection occurs with a
probability much larger than the probability P for the RDSR;
thus the linear dependence on p was easily observed in
simulations [30].

VI. CONCLUSION

Langevin equations associated with various competitive
lattice models were derived. The approach is based on a van
Kampen expansion of the master equation, but the correct
assessment of how characteristic times and lengths scale
with the competing parameter plays a central role if we are
to find the true dependence of the equation coefficients in
the crossover regimes. Moreover, it is essential to choose
representations of aggregation rules (using, e.g., step and
delta functions) that lead to physically reasonable equation
coefficients, as RDSR and BD models illustrate.

We considered a series of models with crossover from
random deposition to correlated growth (RD-CD), with prob-
ability p for the latter, and a model with EW-KPZ crossover,
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with probability p for the KPZ component. All coefficients
that vanish as p → 0 show a linear p dependence arising
from the random choice of aggregation rules. However, in
the RD-CD case, neighboring height differences diverge in
that limit, which leads to the p scaling of the parameters
of the optimal regularization of step functions. Thus, the
coefficients depending on those parameters show scaling as
p, p2, and p3/2, in all cases in agreement with simulation
results and other scaling approaches. For the model with
EW-KPZ crossover, the quadratic dependence of the nonlinear
term coefficient, observed in simulations, is explained as a

crossover behavior due to particular model features, while
linear p dependence is expected for very small p. Although the
scaling properties derived here are similar to previous works
on those models [15,17,18], the interpretation is very different
and the applicability of the method is broader, for instance
being extendable to higher dimensions.
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