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Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions
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A phase-separation front will leave in its wake a phase-separated morphology that differs markedly from
homogeneous phase-separation morphologies. For a purely diffusive system such a front, moving with constant
velocity, will generate very regular, nonequilibrium structures. We present here a numerical study of these fronts
using a lattice Boltzmann method. In two dimensions these structures are regular stripes or droplet arrays. In
general the kind and orientation of the selected morphology and the size of the domains depends on the speed
of the front as well as the composition of the material overtaken by the phase-separation front. We present a
survey of morphologies as a function of these two parameters. We show that the resulting morphologies are initial
condition dependent. We then examine which of the potential morphologies is the most stable. An analytical
analysis for symmetrical compositions predicts the transition point from orthogonal to parallel stripes.
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I. INTRODUCTION

Phase separation is a ubiquitous phenomenon observed in
a wide variety of systems. The theoretical analysis of phase
separation has mostly focused on the case where the system
is homogeneously quenched (i.e., moved instantaneously and
uniformly from a mixed state to a state where the system
will separate into different phases). A good overview of this
theoretical work is provided in the book by Onuki [1].

In many practically occurring systems phase separation
does not occur everywhere at once, but rather starts in a specific
region and from this place successively invades the system.
We refer to the surface of transition between the mixed and the
separated regions as the phase-separation front. The resulting
morphologies formed in the wake of a phase-separation front
can differ significantly from the structures resulting from
homogeneous phase separation.

Our interest in phase-separation fronts arose from an
investigation of immersion precipitation membranes [2]. In
these systems a polymer-solvent mixture, applied thinly to
a substrate, is immersed in water. As solvent leaks into the
water and as water enters the polymer-solvent mixture phase
separation is induced. It starts from the water–polymer and
solvent interface until all the solvent migrated into the water
bath and a porous, asymmetric, polymer structure is formed.
This structure shows a thin initial layer of polymer on the
surface that will, ideally, show small holes. Below this layer
one typically finds much larger structures. To understand why
such structures are formed Akthakul et al. simulated immer-
sion precipitation membrane formation in a lattice Boltzmann
framework [2]. Shortly thereafter Zhou and Powell examined
the same system using a finite difference approach [3]. More
recently Wang et al. used a dissipative particle dynamics
method to simulate a the effects of varying polymer chain
length on the formation of immersion precipitation membranes
[4]. However, the system proved much too complicated to
allow the simulations to generate significant insight into the
main phenomena governing the membrane formation.

The simulations by Akthakul et al. suggested to us the
possibility that the main factor controlling the structure
formation was the dynamics of the phase-separation front.
However, we found that the dynamics of phase-separation

fronts in polymer systems was poorly studied. This inspired
us to investigate the simplest possible model for a phase-
separation front, that is, a phase-separation front induced by a
sharp front of a control parameter (solvent concentration in the
immersion precipitation example) moving with a prescribed
speed.

Phase-separation fronts are also of paramount importance
in many eutectic alloys, where the physics of the front
is responsible for the formation and orientation of ordered
structures, and phase separation goes hand in hand with a solid-
ification problem. Jackson and Hunt analyzed the formation of
the lamellar (essentially two-dimensional) and rod structures
sometimes formed in eutectics. They modeled the dynamics as
a steady-state diffusion driven phase separation which occurs
directly ahead of the solidification front [5]. They confirmed
the earlier observed relation between the solidification front
speed and the lamellar spacing, and in doing so refined some
of the earlier theoretical findings. Much of the work on eutectic
solidification fronts following Jackson and Hunt involved
adding refinements to their model, increasing complexity to
make it more like the real alloys under investigation. For
instance, the inclusion of a convection layer just ahead of
the solidification front by Verhoeven and Homer [6].

Other researchers took an opposite approach; developing
simple models that could be simulated with numerical meth-
ods. Early work by Ball and Essery simulating front-induced
phase separation of a binary mixture noted the remarkable
difference between phase-separation structures formed by
fronts and those formed by homogeneous phase separation
[7]. Their model consists of an underlying Ginzburg-Landau
free energy, similar to our model in this paper. However,
their control parameter is designed to mimic a heat-diffusion
process, in analogy to the temperature front in eutectic
solidification. For slow thermal diffusion they observed the
lamellar structure familiar to eutecticts researchers, in ad-
dition to a lamellar structure oriented orthogonally to the
motion of the temperature front when thermal diffusion was
fast.

More recently, realistic phase-separation fronts induced by
a control parameter with its own dynamics, have also been
studied by Gonnella et al. [8,9]. They examined a binary fluid
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where a phase separation is induced by temperature change at
the walls. The temperature then diffuses into the finite system,
inducing a phase-separation front. In this system the shape and
speed of the control parameter (in this case the temperature)
are space and time dependent, complicating the analysis of the
resulting structures.

Another example of a realistic modeling of a phase-
separation front is given by Köpf et al. who examined pattern
formation in monolayer transfer for systems with substrate
mediated condensation [10]. Here the similar patterns to
the ones predicted in this paper are observed in a more
complicated system where additional hydrodynamic effects
lead to a condensation of surfactants in the deposition layer.
In this case the surfactant concentration in the deposited
later differs substantially from the lipid concentration in
the free film so that the concentration is now depen-
dent on the speed with which the phase-separation front
advances.

Hantz and Biró developed a further simplified model of
a phase-separation front as a moving Gaussian source in a
diffusive system [11]. By decoupling phase separation from
a dynamic control parameter, they are able to control the
phase-separation front more directly. In particular, Hantz and
Biró assembled a rotating front, where the front speed is a
function of distance from the axis, and the direction of motion
of the front changes as it sweeps across the material. They
found, in addition to the expected perpendicular and parallel
lamella structures at the respective slow and fast front speeds,
that the lamellar structures could bend to continue growing
perpendicular to the front. They also observed that the parallel
lamella formed with width and spacing dependent on the speed
of the front, and they noted that this was consistent with
experimental observations of Liesegang patterns. Liesegang
patterns are highly ordered structures formed in the wake of
an electrolyte reaction front in a gel [12]. Antal et al. had earlier
used a similar Gaussian source front to produce patterns with
position and spacing laws consistent with Liesegang patterns
[13]. In an earlier paper of ours, we prove analytically that
Liesegang patterns are reproducible by a similar model [14].
Refer to the citations contained in that earlier paper for other
models which have been demonstrated to produce Liesegang
patterns under the proper conditions.

An even simpler model of a moving phase-separation
front was used by Furukawa for simulating the formation of
phase-separation-induced morphologies [15]. The front in his
model is an abrupt change in the control parameter moving
at a constant average speed. Similar to Ball and Essery,
Furukawa used a Ginzburg-Landau free energy. The model
by Furukawa is very similar to the one used here, with a
few minor differences. The implementation of our model in
numerical simulation, however, is quite different as we will
show in Sec. III. In this paper we focus on the simplest possible
case: We consider a purely diffusive system, as hydrodynamics
adds additional complexity to this problem. We consider fronts
moving with a constant speed, since this allows us to separate
transient phenomena from generic phenomena, simply by
observing the front after a sufficiently long time. Furthermore
we consider a sharp front, so we do not have to consider the
effects of the shape of the front. For this paper we will focus
on two-dimensional systems. Despite its simplicity such fronts

still exhibit a rich collection of behaviors, as we will show in
this paper.

This work is an extension of our work on phase-separation
fronts in one dimension. In the one-dimensional case phase-
separation fronts will leave in their wake alternating domains,
and the only remaining question is the size of these domains
[14,16]. We were able to show that this problem could be
solved analytically, at least in the limit of small velocities. For
two-dimensional systems one possible solution is represented
by stripes oriented in parallel with the front, which are
essentially the same as the one-dimensional systems observed
earlier.

II. MODEL

The model we use is essentially the same as the one we
presented in our earlier paper [16] extended to two dimensions.
We therefore give the most important aspects in short here.

To construct a model for phase-separation fronts in two
dimensions we consider a mixture of two materials, an A
type and a B type, in an incompressible mixture such that the
total density ρ = ρA(r,t) + ρB(r,t) is a constant. In this paper
the position vector r = (x,y) is two dimensional. The order
parameter for this system is the relative concentration,

φ(r,t) = ρA(r,t) − ρB(r,t)
ρ

. (1)

For simplicity of the model, we choose a φ4-type mixing free
energy [17]:

F =
∫

dx

[
a(r,t)

2
φ(r,t)2 + b(r,t)

4
φ(r,t)4

+ c(r,t)φ(r,t) + κ(r,t)
2

(∇φ(r,t))2

]
. (2)

The c term, linear in the order parameter, adds a constant
to the chemical potential for spatially homogeneous systems.
However, in the equation of motion only gradients of the
chemical potential enter the dynamics, so that a constant added
to the chemical potential does not alter the dynamics of the
order parameter. It is included here, however, since we will
consider different values of c across the front, which does
influence the dynamics.

A phase-separation front constitutes a spatio-temporal
change in the control parameter a(r,t) such that the free energy
at a given location transitions from a mixing state (a > 0)
with a single minimum, to a separating state (a < 0) with two
minima. Again for simplicity, we choose the transition to be
an abrupt jump from a single positive mixing value aM > 0
to a single negative separating value aS < 0. The transition
moves with constant velocity u, is flat and perpendicular to u.
The other control parameters are similarly two-valued, with
an abrupt transition at the front:

a(r,t) = aS + (aM − aS)� [(r + r0 + ut) · û] ,

b(r,t) = bS + (bM − bS)� [(r + r0 + ut) · û] ,
(3)

c(r,t) = cS + (cM − cS)� [(r + r0 + ut) · û] ,

κ(r,t) = κS + (κM − κS)� [(r + r0 + ut) · û] .
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The mixing and separating values are denoted by subscripts
M and S, respectively, and � is the Heaviside step function.

For our diffusive system the equation of motion is

∂tφ(r,t) = ∇ · [m(r,t)∇μ(r,t)] , (4)

where m is the diffusive mobility and μ is the chemical
potential. The chemical potential is derived from the free
energy:

μ(r,t) = δF

δφ
= a(r,t)φ(r,t) + b(r,t)φ(r,t)3

+ c(r,t) − κ(r,t)∇2φ(r,t). (5)

The equation of motion only considers gradients of the full
chemical potential. Since μ is itself continuous Fig. 1(b) of
Ref. [16], we need not be concerned with the computational
messiness of delta functions which result from gradients of
the Heaviside function present in the parameters of Eq. (3).
For this model the diffusive mobility can take different values
across the front:

m(r,t) = mS + (mM − mS)� [(r + r0 + ut) · û] . (6)

For the remainder of this paper, space and time dependence
will not be written explicitly, except where needed to avoid
ambiguity.

Since we intend to simulate our system with a numerical
method, we will only be able to examine a finite system.
The way the system is described above, this would limit
our analysis to times t = lx/u, where lx is the length of the
simulation in the direction of travel of the front. This was
a limitation of an earlier, similar model by Furukawa [15].
In turn, this would make it costly to investigate the system
for large times. To effectively look at large times we employ
a transformation here (as we did in our earlier work [16]),
where we keep the position of the front stationary in our
simulation domain and move the sample with a constant
speed u. This transformation changes the diffusive equation
of motion Eq. (4) to a drift-diffusion equation of motion:

∂tφ(r,t) = ∇ · [−φ(r,t)u + m(r)∇μ(r,t)] . (7)

Mathematically these two approaches are entirely equivalent,
but for simulation purposes the latter approach has the great
advantage of allowing us to examine the front for long times.

We rewrite this model in a dimensionless form by consid-
ering the length, time, and concentration scales of spinodal
decomposition for a symmetrical system (φin = 0) [16].
The spinodal length is the wavelength of the concentration
fluctuation with the fastest growth rate immediately following
a sudden quench of the material into the spinodal region of
the phase diagram. The spinodal time is the inverse of the
growth rate of those spinodal wavelength fluctuations. These
are, respectively,

λsp = 2π

√
2κS

−aS

, tsp = 4κS

mSa
2
S

, φeq =
√−aS

bS

. (8)

One of the benefits of this nondimensionalization is a reduction
in the number of free parameters of this model to the seven
following nondimensional quantities:

A = −aM

aS

, B = bM

bS

, C = cM − cS

aSφeq
,

(9)
M = mM

mS

, K = κM

κS

, 
in = φin

φeq
, U = u

tsp

λsp
.

The nondimensional equation of motion then becomes

∂T 
 + ∇R · (
U)

= 1

2π2
∇R · M∇R

(
A
 + B
3 + C − K

8π2
∇2

R


)
, (10)

where R = r/λsp and T = t/tsp are the discrete nondimen-
sionalized length and time coordinates. The capital script
letters are spatially dependent functions of the nondimensional
parameters:

{A,B,C,K,M} =
{{−1,1,0,1,1}, X < Xf

{A,B,C,K,M}, X > Xf .
(11)

The parameters A,B,M,K are chosen as A = M = K = 1
and B = 0. The choice of B = 0 is unconventional. Its
justification is as follows: Since φ ≈ φin in the mixing region,
we can re-expand the free energy around φ = φin, retaining
only terms to second order. This reduces the number of free
parameters. As in our previous paper [16], we will restrict
ourselves here to the case where μS(±φeq) = μM (φin), so
that there are no long-range diffusion dynamics ahead of the
front. Relaxing this restriction will alter the effective φin at
the front and the details of the domain switching. Our choice
corresponds to C = −A
in.

This leaves as the only remaining free parameters: The
initial concentration of the mixed material 
in, and the speed
of the advancing front U . Details of the effect of changing
some of the other nondimensional parameters can be found in
our previous work [16].

III. SIMULATION METHOD

To simulate the drift diffusion equation (7) we use a lattice
Boltzmann (LB) method, mostly because we intend to extend
our analysis to hydrodynamic systems where lattice Boltzmann
methods have been shown to perform particularly well. Lattice
Boltzmann uses a discretized form of the Boltzmann transport
equation [18]:

fi(r + vi ,t + 1) − fi(r,t) = 1

τ (r,t)

[
f 0

i − fi(r,t)
]
. (12)

Time advances in discrete steps (�t = 1 is implied above),
and space is divided into regular cells which tile the simu-
lation space. The density distribution functions for individual
particles are replaced by a discrete set of distribution functions
fi(r,t) that represent the density of particles at position r
and time t moving with velocity vi . The velocity vectors
are restricted such that from any given lattice site r, the
transformation r → r + vi , for every index i, always results in
an r which lies on a lattice site or a boundary site. Following
C programming language conventions, the lattice sites are
numbered from 0 to lx − 1 in the x direction.
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The zero-order velocity moment of the nonequilibrium
distribution functions is the order parameter:∑

i

fi(r,t) = φ(r,t). (13)

The choice of the equilibrium moment distributions determines
the equation of motion to be simulated. For a drift-diffusion
equation, we chose∑

i

f 0
i (r,t) = φ(r,t),

∑
i

f 0
i (r,t)viα = suαφ(r,t), (14)

∑
i

f 0
i (r,t)viαviβ = sμ(r,t) + s2uαuβφ(r,t)δαβ.

The subscripts α and β are indices for the spatial dimensions x

and y; for instance, uα represents the magnitude of the vector
u in the α direction. The time-scaling parameter s introduced
here could easily be absorbed into the other parameters, but it
provides us with a convenient dial to select the fastest stable
simulation parameters.

In this transformed reference frame, the control parameter
front that induces phase separation is stationary, and the
material is advected across the front. We choose to align
the advection velocity with the x axis: u = (ux,0). The
control parameter front is then implemented by setting the
parameters for x < xf to their separating values, and setting
the parameters for x � xf to their mixing values. For example,
the model parameter a(r,t) from Eq. (3) implies the simulation
parameter:

a(r) =
{

aS, x < xf

aM, x � xf
. (15)

Derivation of the equation of motion from these moments
can be accomplished by a Taylor expansion of the lattice
Boltzmann equation (12) with repeated substitution of the
unknown functions fi with first-order approximations in terms
of the known equilibrium f 0

i . This is shown in more detail in
our previous paper for the one-dimensional system [16], and
the analysis in higher dimensions remains essentially the same.
In terms of the simulation parameters, the equation of motion
becomes

1

s
∂tφ − ∇ · (uφ) + O(∂3) = ∇ · (τ − 1/2)∇μ. (16)

So we have to identify the mobility m with m = τ − 1/2. It
turns out that this method does not show numerical artifacts
for rapidly changing mobilities. This suitability for simulating
abrupt changes in τ was previously used to simulate abrupt
changes in dielectric properties of a medium [19].

To fulfill Galilean invariance and isotropy requirements on
a square lattice, implied by our choice of moment distributions
Eq. (14) for an arbitrary advection velocity u(r,t)—as would
be the case were this simulation coupled to a hydrodynamic
flow—would require the use of nine (or seven on a hexagonal
lattice) velocity vectors in two dimensions. However, because

u = ux is fixed and aligned to the x axis we require only five
velocities in two dimensions:

vi =
{(

0
0

)
,

(−1
0

)
,

(
1
0

)
,

(
0

−1

)
,

(
0
1

)}
, (17)

a so-called D2Q5 LB implementation. For this velocity set we
use the equilibrium distributions:

f 0
0 = (

1 − u2
xs

2
)
φ − 2 μs,

f 0
1 = 1

2

(
u2

xs
2 − uxs

)
φ + μs/2,

(18)
f 0

2 = 1
2

(
u2

xs
2 + uxs

)
φ + μs/2,

f 0
3 = f 0

4 = μs/2.

In lattice Boltzmann units the material velocity is −uxs, and
can be made arbitrarily small by adjusting s.

The equilibrium distributions contain the chemical potential
μ given by Eq. (5). The chemical potential contains a Laplacian
which is evaluated on the discrete lattice as

∇2φ(x,y) =
1∑

i,j=−1

wijφ(x + i,y + j ), (19)

where the weights wij are the elements of the stencil matrix,

w = 1
4

⎛⎝ 1 2 1
2 −12 2
1 2 1

⎞⎠ , (20)

where the row and columns are numbered {−1,0,1}. This
choice of discrete Laplacian with (x ± 1,y ± 1) terms is
less susceptible to certain instabilities than those which have
only (x ± 1,y), and (x,y ± 1) terms, allowing us to use an
almost twice as large an effective time step [20] at very small
computational cost.

We still need to define the boundary conditions. The
y-dimension boundary conditions are periodic. The inflow
boundary condition at x = lx is straightforward with homo-
geneous material advancing with a constant prescribed flux:

f1(x = lx − 1,y,t + 1) = f2(x = lx − 1,y,t) + uxsφin. (21)

To calculate the Laplacian on this boundary we simply set
φ(lx,y) = φin.

The outflow boundary condition is somewhat more com-
plicated, since we now have phase-separated material that is
advected out and we need information about φ and μ from
lattice sites that are not part of the simulation space. We define
our outflow boundary condition with the understanding that it
should be neutral wetting to all concentration values, should
not introduce gradients on the chemical potential, and any
effect on the morphology should be short ranged compared to
the simulation size. This is accomplished by simply bouncing
back the outflow density distribution after subtracting the
material advected out of the simulation:

f2(x = 0,y,t + 1) = f1(x = 0,y,t) − uxsφ(x = 0,y,t). (22)

For the purpose of calculating the Laplacian at the outflow
boundary we set off-lattice concentrations to be the same as
the boundary φ(−1,y) = φ(0,y). The effect of the outflow
boundary condition on the bulk of the simulation can be
ascertained by observing a normally stationary morphology
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(a)T = 82,
UT = 10.5

(b)T = 164,
UT = 20.9

(c)T = 966,
UT = 123.6

FIG. 1. (Color online) Simulation showing stripe formation in
the wake of a phase-separation front. For this simulation we choose
a front speed U = 0.128 and a symmetrically mixed 
 = 0 initial
material concentration. The starting location of the front is marked as
a vertical stripe. The rightmost image is the final structure observed
after the front has moved far into the material. A sample of the
final morphology, noted by the circled region, will be compared to
samples from other simulations performed with different parameter
values.

as it is advected out of the simulation. One choice is a single
large circular region of B-type material suspended in a bulk
which is otherwise entirely A type. Tests such as these (not
shown) verify that this boundary condition has a very small
effect, and is acceptable for this model. Further evidence can be
found by comparing phase-separation structures in Figs. 1(a)
and 2(b) which are nearly identical, as discussed later.

This fully describes our method which allows us to simulate
the dynamics of structure generation by phase-separation
fronts. As a final note, while simulations will show material
moving past a stationary front, in our discussion of these
simulation results we will always refer to the front as moving
and the bulk of the material as stationary.

IV. FIRST SURVEY

Using our lattice Boltzmann method we now investigate
how the phase-separation front will influence the formation of
structure. To do this we set up a medium-size simulation of
x = 512 by y = 1024 lattice points. We put the position of
the front at xf = 384 (in lattice units). The region from x = 0
to x = xf undergoes homogeneous phase separation. We use
the initial condition 
(r) = 
in + 0.01ξ , where ξ is random
noise uniformly distributed in the range [−1,1], as is typically
done for homogeneous phase-separation simulations. The
other simulation parameters are as follows: aM = 1, aS = −1,
bM = 0, bS = 1, cM = −φin, cS = 0, mM = mS = 1/2, and
κM = κS = 2, consistent with the choice of nondimensional
parameters made at the end of Sec. II. The time-scaling
parameter s = 0.026 is chosen as a maximum numerically
stable effective time step for these parameters [21].

Such a simulation for U = 0.128 is shown in Fig. 1. The
current position of the front at any time is easily visible as the

(a)T = 33,
UT = 8.4

(b)T = 82,
UT = 20.9

(c)T = 491,
UT = 125.7

FIG. 2. (Color online) Similar to Fig. 1, this sequence shows
a simulation resulting in stripe formation by a phase-separation
front moving with speed U = 0.256 into mixed material of initial
concentration 
 = 0. At this faster speed the stripes formed by the
front are oriented parallel to the front.

transition between the black-and-white phase-separated region
and the gray mixed region. In Fig. 1(a) the front has moved
only a short distance of x = 132 = 10.5 λsp (in units of the
spinodal wavelength). The position where the front started
is marked by a vertical stripe. The area to the left of the
initial location of the front has undergone normal spinodal
decomposition generating a phase-separation morphology
typical of homogeneous phase separation. As the front moves
on, new material phase separates, but we see immediately
that the structure of these newly formed domains is quite
different from the domains formed through homogeneous
phase separation. In the region between the initial front
position and the current front position we observe a different
kind of morphology: The domains are oriented orthogonally
to the front, and show a variety of widths. In Fig. 1(b) the front
has advanced a distance x = 263 = 20.9 λsp. The region of
homogeneous phase separation has noticeably coarsened and
the newly overtaken material continues to phase separate into
a striped morphology. The striped structure, however, is not
homogeneous. Particularly where the stripes are thin, defects
can be seen to traverse into the striped domains. In Fig. 1(c) the
front has traveled a distance x = 1553 = 123.6 λsp. Now all
the defects have been advected out of the system and the stripes
are taking on a uniform thickness. This is a stationary solution
that will persist indefinitely. Note that there is no evidence of
any further coarsening at the position of the front.

To examine the effect of front speed we now perform
a simulation for U = 0.256. The results of this simulation
are shown in Fig. 2. This time the morphology formation
at the front is qualitatively different. Again a regular striped
morphology is formed, but it is now oriented parallel to the
front in agreement with previous results [11,15]. In Fig. 2(a)
the front has traveled a short distance of x = 105 = 8.4 λsp. We
observe typical homogeneous phase-separation morphology
behind the original front location, however, where the front
has traversed there are stripes of somewhat regular widths
oriented roughly parallel to the front. While the stripe widths
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are fairly uniform, there are still a large number of bends in
these stripes. In Fig. 2(b) we see that as time progresses new
stripes form with fewer sharp bends, but the stripe widths do
not appreciably change.

Note that the region of homogeneous phase separation
corresponds to the homogeneous phase separation in Fig. 2(a)
at the same nondimensional time. The initial noise on the
order parameter was identical for both simulations and
closer examination shows that the resulting phase-separation
morphologies are nearly identical. This shows that there is little
interaction between the regions of striped morphology and the
homogeneous region. It also shows that neither the outflow
boundary condition nor the advection speed significantly
influence the simulations. This indicates that the coarsening
of the region which separated under homogeneous conditions
only slightly affects the striped morphology.

The width of stripes oriented parallel to the front can be
understood by considering this as a quasi-one-dimensional
system. We analyzed this situation in an earlier paper [16] and
found that the wavelength of the parallel stripes follows from
the front speed as

L(U ) = 8 ln(2 − √
2/3) + 4

√
2/3 − 4

π2U
, (23)

for very slow fronts (U < 0.001) moving into material that has
vanishingly low diffusive mobility ahead of the front (M → 0).

For faster speeds this relation breaks down, and this theoretical
prediction is inappropriate for the front speed of U = 0.256 in
the example simulation shown in Fig. 2. However, the observed
wavelength of these quasi-one-dimensional stripes L‖2D =
1.39 with M = 1 compares favorably with the measured
stripe wavelength L1D = 1.36 from the M = 0 simulation
results in our earlier paper on phase-separation fronts in
one-dimensional systems [16].

These two qualitatively different morphologies were first
described by Furukawa [15]. They were later rediscovered by
Hantz and Biró [11] and appear also to be related to structures
formed from eutectic mixtures, although typically a phase-field
formalism is used to describe these structures.

The fact that simply changing the velocity leads to a
change in orientation of the domains raises the question
as to where this transition happens, and surprisingly there
appears to be no numerical value for the speed at which this
transition happens in the literature. In addition, if we change
the input composition, we will have to obtain stripes that
have different width depending on the composition. This more
systematic investigation constitutes the main contribution of
this paper. Next we obtain a state diagram from simulations
such as the simulations as shown above. We pick a sample
of the morphologies—shown as a circle in Fig. 1(c) and
Fig. 2(c)—and place these sample morphologies in a diagram
at a position corresponding to 
in and U . We then performed

Φin

U

0.001 0.01

0.1

0.1

0

0.2

0.3

0.4

0.5
10 λsp

FIG. 3. (Color online) Morphology phase diagram from simulations started with random initial conditions. Examples from this map are
shown in Figs. 1, 2, and 4. The bar in the upper left corner has length 10 and height 1 in nondimensional units. The lack of an apparent pattern
is due to the strong hysteresis of morphologies. Further explanation is given in Fig. 4 and the text.
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simulations for a set of different values of 
in and U , but
with all other parameters kept constant. We ran each of these
simulations until the front had moved approximately 1500
lattice sites, or about 4 times the distance from the outflow
boundary at x = 0 to the front position at xf = 384. We again
use a circular section near the front, as indicated in Fig. 1(c)
and Fig. 2(c), and put them in a 
in/U graph at the appropriate
position. This survey of resulting morphologies is shown
in Fig. 3.

The result of the survey is initially surprising: While there
is a clear transition from parallel to orthogonal stripes for

in = 0 at around U ≈ 0.2, orthogonal domains appear to be
an anomaly only observed for exactly symmetric domains.
However, there appears to be another transition between
orientations of asymmetric domains at around a hundredth
of this speed at U ≈ 0.003. The state diagram shows one
additional boundary between regions of stripes and droplets
for more off-critical mixtures. These droplet structures appear
to be preferred for larger speeds. For even larger speeds and
more off-critical mixtures we see only mixed material, visible
as gray disks. This means that the speed of a phase-separation
front moving with constant speed into the mixture is smaller
than the imposed speed of our front, and phase separation
is unable to keep up with our front. The transition to a free
front, to the accuracy of this survey, is unaffected by the initial
conditions. For the parallel stripes the free front speed is given
by [22]

Ufree(
in) = 1

27π

√
2(34 + 14

√
7)

(
3 − 9
2

in

)3
. (24)

Closer examination of this state diagram reveals more
unexpected results. There are three examples of orthogonal

(a)T = 164,
UT = 1.8

(b)T = 2619,
UT = 29.6

(c)T = 5565,
UT = 62.9

FIG. 4. (Color online) Simulation showing strong depletion
effects. The moving front suddenly appears in a mixed material with
volume fraction 
in = 0.35 containing small fluctuations. Shown in
(a), the region far behind the front undergoes spinodal decomposition
and droplet growth as in a homogeneous quench. Near the front the
formation of a depletion zone induces domains oriented parallel to
the front. By chance a defect in this domain facilitates a transition (b)
to the favored orthogonal stripe morphology shown in (c). The circle
in (c) shows the region sampled for use in Fig. 3. The front speed is
U = 0.0113 for this example.

stripes formed in a sea of parallel stripes at (U,
in) values of
(0.045, 0.05), (0.045, 0.15), and (0.01, 0.35). These structures
appear to break the prevalent trend of their neighbors and
it is worthwhile to consider these simulations in some more
detail. We will focus here on the simulation for (U = 0.01,

in = 0.35). Three snapshots of this simulation are shown in
Fig. 4. The homogeneous spinodal morphology are droplets.
However at the front a depletion zone favoring white material
is formed.

The reason for this depletion layer is as follows: we
chose to set the C parameter in the mixing region such that
μ(
in) = 0 in the mixing region. After phase separation we
have μ(
 = ±1) = 0 in the separated region and there will be
no long-range chemical potential gradient leading to extended
diffusion of material into or out of the mixing region. Before
the initial phase separation in the separating region the order
parameter is nearly uniformly 
in and μ(
in) �= 0. Therefore
we get some diffusion into and out of the mixing region
leading, in this example, to a depletion of black material near
the front. Once the phase separation is complete, there is no
longer a difference in the chemical potential far away from the
front.

After the initial phase separation with the creation of the
depletion zone we then observe the nucleation of a first parallel
black domain, as can be seen in Fig. 4(a). So far this scenario
is generic, but this simulation is special in that the formation
of the first parallel stripe is not perfect, but a single defect was
created. This defect now has a profound effect on the further
evolution of the morphology formation. The next black domain
that is formed has two defects with an interspersed drop. The
following generation of parallel stripes has three drops, but
the middle drop now maintains contact with the front, forming
the first orthogonal stripe. The defect invades the formation of
parallel domains leading to a wedge of orthogonal stripes that
replace the parallel stripes. After a sufficiently long time we
are left with a purely orthogonal morphology.

This suggests that instead of our state diagram as shown in
Fig. 4 we should associate the orientation of the domains with
a probability, since the selection is apparently probabilistic,
depending on the details of the homogeneous phase separation,
which in turn depends on the initial noise. However, since the
appearance of a single defect can be sufficient to switch the
orientation (as shown in Fig. 4) we expect the probability of
finding a certain morphology to also depend on the system
size, since it is more likely to develop such a defect in a
larger system. In the limit of a macroscopic system, we would
expect that the probability of finding a defect would increase
significantly, so that it becomes more interesting to examine
which morphology is the preferred morphology.

V. SECOND SURVEY

To find out what is the preferred morphology we choose
an initial condition which contains stripes of both parallel
and orthogonal orientation and is consistent with the overall
composition 
in. Parallel stripes are generated through a
nucleation process and such a stripe selects its preferred length.
For the formation of orthogonal strips no nucleation occurs
and it is more difficult for such stripes to select a preferred
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(a)T = 0, UT = 0.0 (b)T = 573, UT = 12.9

(c)T = 2292, UT = 51.9 (d)T = 9739, UT = 220.4

FIG. 5. (Color online) Example simulation showing selection of
favored morphology for an imposed front speed U = 0.0226 and
initial concentration 
in = 0.35. These parameters have a favored
morphology of stationary stripes, but is close in parameter space
to the droplet morphology region. The initial phase-separation
configuration (a) allows for the selection of the favored morphology
without the strong depletion effects observed in Fig. 4(a) which
sometimes occur after spinodal decomposition near a front. The
stability of the periodic stripes is evident in (c). The final configuration
in (d) shows the stable stationary stripe morphology, and a circle
which outlines the region sampled for use in Fig. 6.

length scale. Here we design our initial condition with a range
of stripe widths to allow for easy selection of the preferred
width. We show this initial condition in Fig. 5(a).

We construct the initial conditions by selecting a square
region of the simulation with side length l that is half the
simulation height. Assuming this region has an origin in the
lower left, the concentration in the region is given by


(x,y) = sgn

[
sin

(
2πly

al − (a + b)y

)
+ sin

(
π
in

2

)]
, (25)

where a = λsp and b = 4 λsp are, respectively, the smallest
and largest stripe wavelengths initially generated. The region
described is the lower center of Fig. 5(a). The upper-center
region is constructed similarly, although with a π/2 rotation
to favor formation of parallel-oriented stripes. To avoid the
possibility of the outflow boundary condition interfering
with stripe selection dynamics, we disconnect the initially
phase-separated regions from the boundary with a region
of mixed material at the initial volume fraction contain-
ing small fluctuations similar to the region ahead of the
front.

In Fig. 5(b) we see that only one of these initial stripes is
selected to form the first orthogonal stripe. For this example
the orthogonal stripes are again the preferred morphology
[Fig. 5(b)] and the orthogonal stripes eventually replace the
parallel stripes [Fig. 5(c)]. Depending on the volume fraction
and the front speed either orthogonal stripes (as shown here),
parallel stripes, or droplets may turn out to be the preferred
morphologies.

With this new initial condition we may now calculate
a new state diagram. The simulations used in this survey
use the same nondimensional parameters as the first survey.
Here the simulation size has been changed to x = 768 by
y = 1024, widened to accommodate the new initial conditions.
To compensate for the increased computational cost of a
larger simulation we chose to use a smaller value for the
interfacial free energy cost κ = 1, which increases the effective
simulation speed by allowing a larger effective time step
s = 0.079 [20]. This new state diagram is shown in Fig. 6.
As expected we find that for the preferred morphologies
there is now a much larger range of parameter values for
which we find orthogonal stripes. For symmetric mixtures
the transition between orthogonal and parallel stripes appears
unchanged up to the accuracy of this survey. As we change the

in from symmetrical (
in = 0) to asymmetrical (
in �= 0)
compositions we now observe a continuous transition in
morphologies. This is because we start with a phase-separated
morphology in the separating region, and we no longer form
a depletion layer. Thus parallel or orthogonal stripes are not
a priori favored. We see that increasing the volume fraction
still lowers the speed for which we see a transition between
orthogonal and parallel stripes, albeit in a much less drastic
fashion.

We also find a larger parameter range for which we
find droplet arrays, particularly for larger speeds and more
symmetrical volume fractions. We can now write a schematic
state diagram for the preferred morphologies. This is shown in
Fig. 7. The region labeled “free front (periodic)” is where
phase separation lags behind the control parameter front.
The “free front (single domain)” regions are where initially
undifferentiated material will not spontaneously demix with-
out fluctuations to induce nucleation. Without fluctuations,
instead of new domain formation, any existing domains of
phase-separated material will slowly grow into the mixed
material. How structures which may form in these regions are
affected by the passage of a control parameter front is beyond
the scope of this paper. The regions under the solid curve are
based on observations of the preferred morphology evidenced
in Figs. 3 and 6. Apart from the free front region we also
show the regions where we observe parallel stripes, orthogonal
stripes, and droplet arrays. The former two we have covered
in previous sections, but the latter requires more discussion.
The droplet structure is observed to initially form near the
front with little long-range order. As the front progresses,
the position of the newly forming droplets is influenced by the
depletion of material caused by the formation of the previous
drops. The larger the drop formed, the more it depletes the
surrounding region, and the further away the next droplets
will form. This mechanism causes reordering and elimination
of small droplets in favor of larger droplets. A nucleation
condition imposes a maximum droplet size for a given front
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Φin

U

0.001 0.01

0.1

0.1

0

0.2

0.3
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0.5
10 λsp

FIG. 6. (Color online) Morphology phase diagram from simulations started with initial conditions containing a variety of morphologies.
The initial morphologies include long stripes oriented both parallel and orthogonal to the front with stripe wavelengths that range from one to
10 spinodal wavelengths, and a region of mixed material with small fluctuations near the outflow boundary. An example of the initial condition
and final morphology selection is shown in Fig. 5.

speed and mixed material concentration. The result is a droplet
structure which converges toward a highly ordered array of
homogeneous size droplets. Whether the droplet array has a
preferred orientation, or if it is periodic in the reference frame
of the front, are open questions.

VI. ANALYSIS OF RESULTS FOR CRITICAL
CONCENTRATIONS

We have observed in the surveys that a phase-separation
front moving into material that is at the critical concentration

in = 0 will form a striped morphology that is oriented either
parallel or orthogonal to the front. The parallel stripes are
an essentially one-dimensional morphology, and have been
discussed in our previous paper [16]. As mentioned in Sec. IV,
the key property of parallel stripes is that for a given set
of parameters there is a unique stripe wavelength, and the
wavelength scales L‖ ∝ 1/

√
U . By contrast, orthogonally

oriented stripes may form with a wide range of wavelengths for
a given parameter set. In this section we analytically determine
the stable wavelengths for orthogonal stripes as a function of
the enslaved front speed. We accomplish this in two stages.
We first determine the maximum wavelength of a stripe before
a new stripe nucleates in its center, splitting it. We next find
that there is a metastable minimum stripe width, below which

coarsening dynamics can result in stripes which disappear into
the front. The result is a region of stability for the orthogonal
stripe morphology, outside of which we predict the favored
morphology is parallel stripes or droplets.

U

0.001

0.01

0.1

1

Φin

−1 − 1/3 0 1/3 1

orthogonal stripes

parallel stripes
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FIG. 7. Morphology state diagram of front-induced phase-
separation generated structures in two dimensions. See text at the end
of Sec. V for a detailed description of the regions and boundaries.
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A. Maximum orthogonal stripe size

The mechanism responsible for limiting the maximum
stripe wavelength is the nucleation of an opposite-type stripe
at its center. This can occur, even without fluctuations, due to
the buildup of a nucleation kernel ahead of the enslaved front,
similar to what happens in the one-dimensional case [16].

Formation of stable orthogonal stripes by a moving front
results in a chemical potential profile that is stationary in the
reference frame of the font. We analytically determine this
profile directly from the stationary solution (∂T 
 → 0) to the
equation of motion:

0 = 1

2π2
∇2

Rμ − ∇R · (
U) . (26)

The morphology under consideration is an array of highly
ordered orthogonal stripes of wavelength L⊥ with an A-type
stripe centered on the X axis and the phase-separation front
on the Y axis. The front velocity U = (U,0) is entirely in

the X direction and constant, simplifying the gradient term
to a derivative of the concentration 
 in the X direction
which is highly dominated by the concentration gradient at the
front. We approximated this term as an abrupt step which we
expect to become exact in the limit of large stripes and slow
fronts. We focus on critical mixtures here, since additional
complications occur for off-critical situations, as mentioned
below. For critical mixtures, the gradient term then simplifies
to

∇R · (U
) = U
d

dX

 ≈ Uδ(X) sqr(Y/L⊥), (27)

where sqr(x) ≡ sgn[cos(2πx)] is the square-wave function.
This is the only approximation made in our calculation.

An alternate form of the square-wave function is as an
infinite series of delta function convolutions. To make the
series converge faster, each term of the series is centered
on a crest and extends to include half of each adjacent
trough:

Sq(x) =
∞∑

n=−∞

(
2
∫ n+1/4

n−1/4
δ(̃x − x) dx̃ −

∫ n+1/2

n−1/2
δ(̃x − x) dx̃

)
. (28)

Combined with the delta function property δ(x/α) = |α| δ(x) and the n-dimensional vector delta function identity δn(r) ≡
δ(x1)δ(x2) · · · δ(xn), this alternate form allows Eq. (26) to be rewritten,

∇2
Rμ = 2π2UL⊥

∞∑
n=−∞

(
2
∫ n+1/4

n−1/4
δ2(L⊥Ỹ eY − R) dỸ , −

∫ n+1/2

n−1/2
δ2(L⊥Ỹ eY − R) dỸ

)
, (29)

where eY is the Y -axis unit vector. The boundary condition for this morphology is a vanishing chemical potential far ahead
and behind the front: μ(X → ±∞) = 0. The Poisson equation ∇2f (r,r0) = δ2(r0 − r) has the fundamental solution f (r,r0) =

1
2π

ln |r0 − r|. This can be directly applied to the above equation to arrive at an infinite series integral solution for the chemical
potential profile:

μ(L⊥R) = πUL⊥
∞∑

n=−∞

(
2
∫ n+1/4

n−1/4
ln

√
X2 + (Ỹ − Y )2 dỸ −

∫ n+1/2

n−1/2
ln

√
X2 + (Ỹ − Y )2 dỸ

)
. (30)

It is easily seen that, by symmetry, this solution satisfies the chemical potential boundary condition. The integrals are
straightforward, however, the result is somewhat lengthy:

μ(L⊥R) = πUL⊥
∞∑

n=−∞

{
(n − Y )

[
2 arctanh

(
(n − Y )/2

X2 + (n − Y )2 + 1/16

)
− arctanh

(
n − Y

X2 + (n − Y )2 + 1/4

) ]

+X

[
2arccot

(
X

n + 1/4 − Y

)
− 2arccot

(
X

n − 1/4 − Y

)
− arccot

(
X

n + 1/2 − Y

)
+ arccot

(
X

n − 1/4 − Y

)]

+1

2
ln

(
[X2 + (n + 1/4 − Y )2][X2 + (n − 1/4 − Y )2]

16[X2 + (n + 1/2 − Y )2][X2 + (n − 1/2 − Y )2]

)}
. (31)

We verify the analytical chemical potential in Eq. (31) by
comparison to the chemical potential measured from an LBM
simulation of a stripe pair with a large stripe wavelength
L⊥ = 70 and slow front speed U = 0.00235. The result
of this comparison is shown in Fig. 8, and demonstrates
excellent agreement for large stripes and slow fronts. The
assumption of Eq. (27) is invalid for fast fronts, and the

X/L⊥ profile becomes asymmetric (depressed on the leading
edge, and bulging on the trailing edge) and both profiles show
an overall suppression of the chemical potential from the
analytical prediction. These additional profiles are not shown
here.

However, to predict the values of L and U where nucleation
occurs we only need the extremum value of the chemical
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1

FIG. 8. (Color online) Comparison of the analytical chemical
potential profile of Eq. (31) (line) with LBM simulation results
(circles) for large stripes L⊥ = 70 formed by a slow U = 0.00235
front. The left figure shows μ along the centerline of a stripe of
B-type material. The right figure shows μ at the position of the front
ahead of two adjacent stripes. The profile in each figure intersect at
X/L⊥ = Y/L⊥ = 0.

potential. This occurs in the center of a stripe at the front
and is given by

μ(R = 0) = πUL⊥
∞∑

n=−∞

[
1

2
ln

(
16n2 − 1

16n2 − 4

)
(32)

+ n ln

(
32n3 − 6n − 1

32n3 − 6n + 1

)]
= −2UL⊥C = μpeak.

Here C = 0.9159 . . . is a constant known as Catalan’s constant.
Nucleation of a new stripe will occur when the chemical
potential peak reaches the nucleation chemical potential
μpeak = μnucl.

Due to the symmetry at the center of the stripe, the
nucleation chemical potential for a two-dimensional stripe
is the same as the one-dimensional switching condition. In
a previous paper [16] we presented an analytical expression
for the switching concentration for the special case M = 0
where there is negligible diffusive mobility ahead of the
front. In that case an analytical expression for the switching
chemical potential can be found. However, a nonzero M

induces earlier switching due to the presence of a nucleation
kernel ahead of the front [16]. With the same method we used to
verify the switching condition in our previous paper, we have
measured the one-dimensional switching chemical potential
μnucl ≈ 0.24 for the nondimensional parameters used in this
two-dimensional system. Thus we find that the maximum
orthogonal stripe wavelength as a function of front speed is

Lmax
⊥ ≈ 0.24

2CU
≈ 0.131

U
. (33)

It is interesting to note that the analytical composition
profile ahead of a solidification front for lamellar morphologies
of eutectic mixtures presented by Jackson and Hunt is also a
solution to the full chemical potential profile, although in a very
different form [5], Eq. (3). By using the substitutions C → μ,

Sα = Sβ → L⊥/4, Cα
0 = C

β

0 → 1/2, v → U , d → 1/2π2,
x → Y , and z → |X|, their solution can be written

μ(L⊥R) = 2UL⊥
∞∑

n=1

1

n2
sin

(nπ

2

)
cos (2nπY ) e−2nπ |X|,

(34)

which is, at least in a preliminary numerical evaluation,
equivalent to our solution, although we have not yet shown this
analytically. For off-critical situations a complication occurs:
The inflow material induces a non-neutral wetting condition
for the orthogonal stripes. This can be clearly seen in Fig. 4.
This situation requires additional considerations that will be
discussed elsewhere.

B. Minimum orthogonal stripe size

The minimum stripe width is limited by the width of stripes
which, if a defect occurs, coarsen more quickly toward the
front than the front moves away. A simple qualitative argument
for the defect speed can be obtained from the dynamical
scaling laws [23]. This law describes the time evolution of
a morphology by stating that at later times the structure is
statistically similar to that of earlier times when scaled with
the typical length scale,

LC = CT 1/3. (35)

The constant C is expected to depend on the parameters of the
system and the details of the morphology. From Eq. (35) we
can define a coarsening speed which provides an estimate of
how quickly the end of a finger of wavelength LC will recede:

UC = d

dT
LC = 1

3
CT −2/3 = 1

3
C3L−2

C . (36)

If a finger protrudes from the front into the phase-separating
region, it will coarsen in the same direction as the front. If
the coarsening speed is faster than the front UC > U , the
finger will eventually coarsen away completely into the mixed
material domain. According to Eq. (36) smaller fingers coarsen
at a greater speed, and this sets a minimum wavelength for
orthogonal stripes generated by a moving front:

Lmin
⊥ � LC(U ) = 2

√
C3

3U
. (37)

Unfortunately, numerical values of C for different situations
are hard to come by in the literature. However, it is easy
to obtain C by measurement during phase ordering of a
homogeneous quench. We did this for a symmetric system
[i.e., 
(T = 0) ≈ 0] and obtained a value of C ≈ 0.555; for
details please refer to Fig. 9.

We expect this coarsening speed to be on the order of,
but not exactly equal to, the speed with which a single finger
coarsens. To obtain a better estimate of the coarsening speed
of a finger we can measure the speed in a simulation. To do that
we set up a proto-stripe similar to what is shown in Fig. 10.
We then measure the position of the tip of the finger as the first
zero crossing of φ at the original y position of the center of
the finger. We then vary the front speed slowly (once every 4lx
iterations) to stabilize the position of the finger tip. Once the
velocity has reached a stationary state (determined by the tip
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LC = 0.555T 1/3

FIG. 9. (Color online) Measurement of the dynamical scaling
constant C in Eq. (35) using LBM simulations. Simulation size is
40962 lattice sites except for κ = 2.0 which is 10242. The numerical
method is similar to that which is outlined in Sec. III for ux = 0,
except with fully periodic boundaries and no front. Characteristic
length scale was measured by dividing the system area by the length
of the 
 = 0 interface, then nondimensionalized by multiplication
with a scaling factor (2.27/λsp) such that LC = 1 is the length scale
of spinodal decomposition.

φ-1 1

μ
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Chemical
Potential (μ),
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FIG. 10. (Color online) An example of a proto-stripe stabilized
by regulation of front speed. For the color version of this plot the
range of values are shaded—in the additive RGB color model—red
= (μ − μmin)/(μmax − μmin), green = (φ − φmin)/(φmax − φmin), and
blue=red×green. A legend is shown at the right of the figure,
and the extracted red and green color channels are shown below.
Equi-chemical potential lines are superimposed. The front speed
is increased when the stripe shrinks and decreased when the stripe
grows until a stationary system is found; see text for methodology.
Initial conditions are similar to the final state (shown), with an initial
front speed U = (0.2L⊥)2 although the final U was found to be
insensitive to the initial value. The result of several such simulations
with varying initial L⊥ are shown in Fig. 11. Each simulation used
κ = π 2/8 ≈ 1.23 (so that ux = U ) as the interfacial free energy
parameter, though system size varies as a function of L⊥. The
parameters for this simulation were lx = 312, ly = 104 (L = 5.2687),
and xf = 260. The final front speed was U = 0.00113 giving a
scaling constant C = 0.17746.

0.0001

L⊥

1

10

U
0.001 0.01

Simulation Result
L⊥ = 0.18U−1/2

FIG. 11. (Color online) Measurement of the scaling constant
C for the finger morphology shown in Fig. 10. A proto-stripe
morphology of wavelength L⊥ is stabilized in an LBM simulation
by adjusting the front speed U until a stationary profile is achieved.
The fitted line gives an estimate of the minimum orthogonal stripe
wavelength Lmin

⊥ for a given front speed U .

speed and the average of the last 100 tip speed measurements
being less than U/106) we find the coarsening speed of the
finger. The results of those measurements are shown in Fig. 11
and, as expected, the stripe speed is well approximated by
U = 4C3/3L2

⊥, with C = 0.29. This is approximately a factor
of 2 smaller than the dynamical scaling constant found in
Fig. 9.

C. Region of stability

We now have a theoretical prediction for the minimum
and maximum orthogonal stripe wavelength as a function of
front speed. These boundaries describe a region of stability
for orthogonal stripes. Fronts moving faster than the speed at
which the minimum and maximum stripes intersect Umax

⊥ =
0.52 will not form orthogonal stripes, although orthogonal
stripes may be formed by other influences after the front
passes: for example, the presence of external walls, etc., as
in [9].

We observe that the orthogonal stripes formed by a front
in the simulation results shown so far fall in the region of
stability, however, we can test the bounds of the region more
systematically. We do this by testing points in the L⊥ versus
U parameter space for the formation of a stable stripe from
the initial proto-stripe configuration shown in Fig. 12(a). If the
point is inside the region of stability, the proto-stripe grows as
shown in the time-lapse overlay image in Fig. 12(b). If the point
is below or above the region, the proto-stripe will respectively
merge or split, examples of which are shown in (c) and (d) of
Fig. 12. If the point is to the right of the region, splitting and
merging is followed by addition morphology changes until the
stripes can reorient to become parallel to the front, however,
the simulation is classified and halted at the first morphology
change. The final results of this series of simulations is
shown in Fig. 13. These simulations confirm the predicted
region of stability for orthogonal stripes for symmetrically
mixed (
in = 0) initial concentration. Since our analytical
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(a)Initial configuration (b)Stable stripe

(c)Merged via coarsening (d)Split via nucleation

FIG. 12. Examples of simulations performed to determine the
stability of orthogonal stripes of a given size formed by a front
moving at a prescribed speed in order to map the region of stable
stripe formation in Fig. 13. The initial configuration (a) is similar to
the one used to predict the lower bound of the stability region (see
Fig. 10), and those observed in Figs. 1, 4, and 5. The simulation
is run until the number of A- to B-type interfaces intersecting the
front and the outflow boundary changes; then the simulation is halted
and classified. If the number of interfaces at the front decreases, the
simulation is classified as having merged (c) and the point in Fig. 13
gets a � symbol. If this number increases the simulation is classified
as split (d) and gets a � symbol. If the number of interfaces at the
outflow boundary becomes 4 the simulation is classified stable (b) and
the symbol is a circle with the radius proportional to the extremum
value of the chemical potential at the front.

predictions did not take into account the finite interface width
we expect there will be deviation at small stripe widths and
fast fronts. We see that the prediction for Umax

⊥ = 0.52 is close
to the maximum front speed capable of forming orthogonal
stripes observed as U obv

⊥ ≈ 0.3 in Fig. 13 or U obv
⊥ ≈ 0.2 in

Fig. 6. The predicted allowed stripe widths for slow-moving
fronts agree very well with simulation results. However, a
careful observer will notice that there is a slight discrepancy
and our proto-stripe seems to allow for slightly smaller front
speeds. We attribute this detail to the shape of the persistent

U
0.001 0.01 0.1

1

1

L⊥

10

Stable: r ∝ μ
Merged: L⊥ < Lmin

⊥
Split: L⊥ > Lmax

⊥
Lmax

⊥ = 0.13U−1

Lmin
⊥ = 0.18U−1/2

FIG. 13. Verification of minimum and maximum orthogonal
stripe widths as a function of front speed for φin = 0. Solid circles
are at points where simulations demonstrated stable stripe formation.
Triangles are at points where stripe formation was unstable in the
simulation. See Fig. 12 for a description of how the simulation results
were obtained. The predicted stable region is above the minimum
(dashed) and below the maximum (solid) lines, and corresponds well
with the field of solid circles. See text for further discussion.

stripe, which is different for both kinds of simulations (see
Figs. 10 and 12). The curvature in Fig. 10 will allow for a
slightly faster coarsening of the stripe tip.

We have now determined the characteristics of the ordered
two-dimensional morphologies observed to be formed by
phase-separation fronts moving into mixtures of critical
concentration: the orthogonal stripe morphology just pre-
sented, and the parallel stripe morphology—an essentially
one-dimensional structure which we described and analyzed
in the previous work [14,16]. The other ordered morphol-
ogy we observed was an ordered droplet structure which
was not observed to occur for fronts moving into critical
mixtures.

VII. OUTLOOK

In this paper we presented a survey of the morphologies
formed in the wake of a sharp phase-separation front. The
resulting morphologies could be characterized as lamella in
a parallel orientation with respect to the front, lamella in an
orthogonal orientation, and droplet arrays. We found that the
selected morphology depended on the front speed, the volume
fraction of the overtaken material, but also on the history of
the system. If the front emerges from a homogeneous quench
a depletion layer is typically formed and this will lead to the
preferred formation of lamella oriented parallel to the front.
However, we saw that sometimes defects will form, and a
system under the same conditions—where the only difference
lies in the random initial concentration fluctuations—can
instead for orthogonal lamella. By providing an unbiased
initial condition we were able to determine the “preferred”
(i.e., most stable morphology). Using these results we were
then able to present a state diagram as a function of the front
speed and the volume fraction. We then examined in detail
the formation of the orthogonal lamella for fronts moving into
critical mixtures. We determined the range of allowed lamella
sizes for a given front speed by analytically predicting the
minimum and maximum lamella which can be stably formed.
This gave a prediction for the transition between orthogonal
and parallel lamella for critical mixtures which was within a
factor of 3 of the observed transition point.

The next step in this analysis will be to determine the
allowed stripe widths for fronts moving into mixtures with
a minority and a majority phase in an effort to predict the
boundary of the “orthogonal stripes” region in Fig. 7—now
marked with an observed dashed line. This will require
additional research, such as the following: (1) determining
how dynamical coarsening of stripe morphologies is changed
by having off-critical mixtures. This subject is not well studied
as dynamical scaling is typically studied in the context of
homogeneous quench, which for off-critical mixtures results
in droplet morphologies that coarsen due to Ostwald ripening
[23]; (2) determining what effect off-critical mixtures ahead
of the front will have on the nucleation of new stripe domains;
(3) determining how the stripe morphology itself is altered by
having an off-critical mixture. This last point may seem trivial
at first glance, as conservation of the order parameter requires
for stable stripes to form; the final width of the minority and
majority stripes are a simple function of the mixed material
concentration. We observe this to be true in our simulations
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for some distance away from the front, but this is not the
case directly at the front where the dynamics of morphology
selection occur. As shown most readily in Fig. 4, but also
elsewhere in this paper, there is a pinching off of the minority
phase due to the presence of a preferred contact angle induced
by the control parameter front. These considerations will be
published in future work.

This paper raises a number of interesting issues. Firstly, can
one predict a priori, which morphology is most stable, and
thereby provide analytical predictions for the state diagram?
Secondly, what are the limits of metastability, that is, what
is the fastest orthogonal lamella structure that can be formed
and what is the slowest parallel lamella morphology that can
be formed and how far can either encroach on the droplet
states and vice versa? Thirdly, what is the region of stability
for orthogonal lamella formed in off-critical mixtures, and by
determining this region can we predict the boundary between
orthogonal lemella droplet morphologies? Additionally, it
would be very useful to more accurately determine where in the
parameter space of this, and perhaps other similar models, is
the transition from parallel to orthogonal stripe morphologies.
This transition has been noted several times, but a systematic
study has not been done.

So far we have been able to successfully analytically predict
the size of parallel lamella structures. In future work we will
refine our prediction for the extent of the orthogonal stripe
region in the morphology diagram by considering the effect of
the non-neutral wetting condition at the front for off-critical
volume fractions. Another natural extension is to consider the
system in three dimensions. In a future paper we will present an
analogous study which shows a slightly richer state diagram
which includes cylinder arrays as well as three-dimensional
droplet lattices. Lastly this paper only considered diffusive
dynamics. For many practical applications it is important
to include hydrodynamics effects, which can alter domain
formation considerably.
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