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Aspect-ratio-dependent phase transitions and concentration fluctuations in aqueous colloidal
dispersions of charged platelike particles
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Phase transitions of aqueous colloidal dispersions of charged platelike particles of niobate nanosheets were
investigated as a function of the aspect ratio (rasp) and particle volume concentration (φp) by means of small-angle
neutron scattering and small-angle x-ray scattering. The results elucidated the following three pieces of evidence:
(1) the macroscopic phase separation of the dispersions into an isotropic phase and a liquid crystalline (LC) phase
under the conditions of (a) varying rasp (1.3×10−4 � rasp � 2.5×10−3) at a constant φp = 0.01 and (b) varying
φp (0.01 � φp � 0.025) at a constant rasp = 2.5×10−3, a mechanism of which is proposed in the text, where
rasp ≡ d/L, with d and L being thickness and the average lateral size of the plates, respectively; (2) the rasp-induced
phase transition of the LC phase from a nematic phase to a highly periodic layered phase, the line shapes of the
scattering peaks of which were examined by Caillé’s analysis, upon increasing rasp under the condition (a); (3)
the LC phase having remarkable concentration fluctuations of the particles which are totally unexpected for the
conventional lyotropic molecular LC but which are anticipated to be general for the platelike colloidal particles.
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I. INTRODUCTION

This work was motivated by our previous work [1], which
elucidated the intriguing a mass-fractal-like concentration
fluctuations existing in the (macroscopically uniform) ly-
otropic liquid crystalline phase (LC) composed of aqueous
dispersions of exfoliated niobate nanosheets. The nanosheets,
as one of the charged platelike colloidal dispersions, had a
particle size characterized by d = 1.6 nm and L = 3.2 μm
and at a particular particle volume concentration φp = 0.032,
where d and L are the thickness and the average lateral size
(L) of the sheets, respectively. We aim to clarify universality
of the concentration fluctuations in the LC of the nanosheet
dispersions, which are totally unexpected whatsoever for
the conventional lyotropic molecular LC, by extending our
observations on the same nanosheets to a wider range of
the parameter space of aspect ratio (rasp ≡ d/L) and φp: (a)
1.3 × 10−4 � rasp � 2.5 × 10−3 at a constant φp = 0.01 and
(b) 0.01 � φp � 0.037 at a constant rasp = 2.5×10−3. We
report also the detail of the phase transitions found in the
systems: macroscopic phase separation into isotropic and LC
phases and the rasp-induced phase transition within the LC
phase.
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Formation of LC phases in aqueous dispersion of charged
colloidal particles having large shape anisotropies has been an
attractive issue over a century, since subtle changes in physical
and chemical properties of the constituent particles as well as
those in effective interactions of those particles with water have
a great influence on the thermodynamic stability of the phases,
such as nematic, smectic or lamellar, cholesteric, etc. [2,3].
Onsager’s seminal work on rodlike particles [4] successfully
predicted the nematic order by applying the method of the
virial expansion to the system having only the hard-core
potential between the particles. Since then various theoretical
and computational studies have contributed to formation of the
LC phases consisting of rodlike particles [5].

In comparison with the rodlike particles, much less the-
oretical and simulation studies have been conducted on the
LC phase behavior of platelike particles [6–9]. Nevertheless, a
systematic phase diagram of platelike particles, which includes
isotropic, nematic, columnar, cubic, and solid phases [10], was
constructed by Veerman and Frenkel [11]. Furthermore, Bates
and Frenkel [12,13] incorporated the influences of polydisper-
sity of size and shape of the plate into the nematic-isotropic
phase transition. Turning our attention to the experimental
studies, numbers of studies have been devoted to the LC phase
behavior of platelike particles [14–26]. In particular, in a recent
decade there have been important findings on the formation of
columnar [18–20,23,25] and lamellar [21,24,26] or smectic
[27] phases.

In this work, our aim is to explore isotropic, nematic,
and some kinds of layered phases (denoted as Lay hereafter)
related with the lamellar phase [28], formed in the aqueous
dispersions of the particular niobate nanosheets which have
an extremely larger shape anisotropy than the conventional
disk- or sheet-like molecular systems. For the sake of clarity,
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FIG. 1. (Color) Schematic illustrations of the phases investigated
in this study. (a) A platelike particle (a1) and its coarse-grained
structural entity (a2). The isotropic phase of platelike particles is
further classified into a dilute “gaslike state” (b) and a concentrated
“liquidlike state” (c). Two possible states may be considered for (c):
(c1) macroscopically random orientation of a with no orientation
correlation and (c2) the orientation correlated within small grains
but the grains themselves randomly oriented in space, giving rise
to a macroscopically random orientation of a. The LC phase with
a macroscopic orientation of a is classified into nematic (d), special
columnar nematic (SCN) (e), and lamellar (f) phases. Note that the
length L and D (the average spacing between the platelike particles
along a) are shortened and enlarged, respectively, for the sake of
convenience in the illustrations (c1), (c2), and (d) to (f).

the definition of each phase to be expected for such sheets is
schematically presented in Fig. 1. First, the platelike particle
is defined by its “normal vector” a, which is a unit vector
locating at the center of gravity of the particle and having
the direction normal to the plate surface, and sizes d and
L parallel and perpendicular to a, respectively, as shown
in part (a1) in Fig. 1. The platelike particle can be coarse
grained by an arrow shown in part (a2) with its orientation
and center of gravity specified by the vector a and by the one
end of the arrow, respectively. Then, the following isotropic
and LC phases are considered for assemblies of the plates,
as depicted in Figs. 1(b)–1(f), respectively. To simply capture
the characteristics of each phase, all the platelike particles are
supposed to exist in two-dimensional space with their a’s being
confined in the plane of the paper.

Provided that the isotropic phase is simply defined as a
state where the vector a is randomly oriented, the following
two states may be considered, depending on the positional and
orientation correlation of a, as shown in Figs. 1(b) and 1(c): (i)

When the particles are dilute enough to be isolated each other,
they are in a gaslike state having no positional and orientation
correlations [Fig. 1(b)], while (ii) when the concentration of
the particles becomes large, the particles have a liquidlike state
having a short-range positional and orientation correlations
[Fig. 1(c)]. The crossover from a gaslike state to a liquidlike
state should occur around the overlapping concentration, φp

∗,
where the platelike particles start to overlap each other and are
forbidden to make a free rotation due to the excluded volume
effect. Given a completely rigid platelike particle, φp

∗ is simply
estimated by the following equation, φ∗

p = (3/π
√

2)d/L in the
case of rasp � 1. Generally bendings of the particles occur at a
length scale larger than the persistent length lp. In this case, φp

∗

can be expressed as φ∗
p = (3/π

√
2)d/lp by replacing L with lp.

The nematic and lamellar phases, depicted in Figs. 1(d)
and 1(f), respectively, are the LC phases which we aim
to intensively investigate in this study. When the spatial
distribution of a’s are considered as the coarse-grained units
of the platelike particles, we can easily recognize the fact that
the LC phase of the platelike particles have characteristics
identical to the LC phase of the rodlike particles or molecules.
In the nematic phase (d), a’s have the orientation order with
respect to the director n, which specifies the direction of
an average orientation of a’s, but no positional order. In the
lamellar phase (f), a’s are arranged in layers so that in addition
to the orientation order, there exists a long-range positional
order too between the layers (average periodicity, D), though
there is only a short-range liquidlike positional order along the
layers in the direction perpendicular to a’s.

There is another possible state possessing a long-range
positional order of a’s along their axes a’s comparable to
lamellar phase but no coplanar structure along the direction
perpendicular to a’s as in the case of lamellar phase. This state
(e) corresponds to a special case of the so-called “columnar
nematic phase” [29–31] and is hereafter denoted as the “special
columnar nematic (SCN) phase.” The word “special” is used
to emphasize a special feature in the columnar nematic, which
arises from the long-range positional order along the columnar
axis. Therefore, SCN should be distinguished from both the
lamellar phase and the nematic phase.

In order to further clearly define the three states (d), (e), and
(f) in Fig. 1, the average interparticle distances in the directions
perpendicular to a (Dx and Dy) and in the direction parallel
to a (Dz, i.e., Dz ≡ D throughout this paper) are introduced,
as shown in Figs. 2(a) and 2(b). Figure 2(a) also shows the
average displacement tensor �D̃ = (�Dij ) (i,j = x, y, z),
which characterizes the standard deviations of the centers of
mass of the nearest-neighbor particle with respect to a given
particle at the origin O from the average spacing Di (i = x, y, z)
along j th direction (j = x, y, z). Then the degree of positional
order for the centers of mass of the sheets is characterized by
gD tensor defined by, g̃D ≡ (gij ) ≡ (�Dij/Di).

Upon using gij , the definitions of the nematic, lamellar and
SCN phases become rather simple and more quantitative as
follows: For the nematic phase having no positional order, all
of gij components is sufficiently large so that no diffraction
maximum can be observed, satisfying the criterion of gij �
0.35 found by Hosemann and Bagchi [32]. Note that the
criterion of kgzz � 0.35 corresponds to the one where the
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FIG. 2. Schematic illustrations of the lamellar phase (b) and the
SCN phase (c). (a) Displacement tensor �D̃ = (�Dij ) (i,j = x, y,
z) for the nearest neighbour intersheet distance along the x, y, and
z directions from the average intersheet distances Dx , Dy , and Dz.
The lamellar phase (b) is characterized by a “coplanarity” of centers
of mass of the sheets in the x-y plane. The gray zone qualitatively
displays the probability distribution P (x, y, z) for centers of mass
of the sheets with respect to the given sheet at an origin O. The
coplanarity demands the spread of P along the z direction being
much smaller than that along the x and y direction. A possible order
for the SCN phase (c) is characterized by no positional correlation of
the sheets between neighboring columns, within which the sheets are
stacked with a high periodicity, that is, with a small �Dzz.

kth-order diffraction peak appears along the z direction and
that the criterion of kgzz � 0.35 corresponds to the one where
the kth-order peak disappears. However, the lamellar phase
[Fig. 2(b)], which must have a coplanarity of the platelike
particles in the x-y plane, induces a constraint of a small
giz ≡ �Diz/Di (giz < 0.35) (i = x, y, z), but a relatively large
gxj ≡ �Dxj/Dx (gxj � 0.35), gyj ≡ �Dyj/Dy (gyj � 0.35),
and gzj ≡ �Dzj/Dz (gzj � 0.35) (j = x, y). For the case of the
SCN phase [Fig. 2(c)], all gij (i,j = x,y,z) components, except
for gzz ≡ �Dzz/Dz (<0.35), have a large value (gij � 0.35),
due to the nematic correlations of the centers of mass of plates
in the neighboring columns. However, the centers of mass of

the platelike particles must be confined in the columns, giving
rise to (�Dzx and �Dzy) � Rcol. (radius of the column), and
gzz is small due to the special feature of SCN.

From the practical viewpoint, the scattering methods easily
distinguish the difference in the long-range positional order
or correlations of the particles along the direction parallel to
n; almost no periodicity in the nematic phase (d), but a clear
periodicity in the SCN phase (e) and in the lamellar phase (f).
However, the difference between the lamellar phase (f) and the
SCN phase (e) is hardly distinguished by the scattering meth-
ods employed in this study, simply because the length scale
covered is not sufficiently large so as to characterize existence
of the coplanarity of the sheets. Hence, in this paper, we do not
distinguish the lamellar and SCN phases and generally refer
to both of the lamellar and SCN phases as “layered phase” or
“Lay” for the sake of brevity. We would like to stress here that
Lay has a common feature of the lamellar and SCN phases in
forming a periodic structure of sheets along a, but that Lay is
distinctly different from the nematic and isotropic phases.

As for the concentrated liquidlike state shown in Fig. 1(c),
we may be able to visualize two possible states (c1) and
(c2) which have the same short-range liquidlike positional
correlation but different orientation correlations. Note that (c1)
and (c2) have schematically the same spatial distribution of the
centers of gravity of the particles. The state (c1) essentially has
a random “orientation correlation (OC)”, while the state (c2)
has a nonrandom OC. The nonrandom OC means that the cor-
relations of the two a’s at a displacement vector r apart depends
not only on r but also on the polar angle between r and one
of a from which the OC is to be considered, while the random
OC means that the OC is independent of the polar angle [33].
The state (c2) comprises small grains within which a’s have
OC, but a’s belonging to different grains do not have the OCs.
The positional and OCs within the small grains are essentially
equal to those shown in part (d) for the oriented nematic phase.
The small grains are characterized by the director nG but nG

is randomly oriented macroscopically in part (c2).
Although the state (c2) is classified as the isotropic phase

in Fig. 1, the state may be characterized by a nematic phase
composed of randomly oriented grains also, which are created
through a spatial distribution of defects of the so-called
disclination lines. a’s in the grain can have an orientational
order parameter with respect to nG, which is close to the
orientational order parameter in part (d). Upon increasing the
density of the disclination lines, the grain becomes small,
the free energy of the system increases, and the state (c2)
eventually approaches to the state (c1) in the limiting case. If
the grains are sufficiently large, the state (c2) can be reasonably
assigned to the nematic phase with a macroscopically random
orientation of nG’s. However, it is a problem at the present
stage that the critical size of the grains, above which the state
(c2) can be regarded as the nematic phase with the random
orientation of nG’s, is not well defined.

To make a systematic discussion for the phase behavior
of the platelike particles in the parameter space of φp and L,
it is convenient to introduce rasp. The main achievement of a
systematic simulation study [11] can be briefly summarized as
follows; a sequential transition involving isotropic-nematic,
nematic-columnar, and columnar-solid transitions takes
place with increasing φp for rasp � 0.14, whereas a simple
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isotropic-solid transition with missing the nematic and
columnar phases appears for rasp � 0.24. The experimental
verification of the computational prediction seems quite
crucial. However, up to now a clear piece of experimental
evidence for the phase transition in the LC phase induced by
changing rasp has not been reported yet, probably because of
a variety of practical difficulties in the experiments.

For instance, the clear-cut pieces of evidence for isotropic-
nematic [20,34–39], isotropic-lamellar [21,40], and a se-
quential transition involving isotropic-nematic and nematic-
lamellar transitions [26] with increasing φp at a particular
rasp (in the range satisfying 1.1 × 10−3 � rasp � 7.1 × 10−2)
have already been obtained by using the scattering method.
However, due to the difficulty in preparing a wide variety
of size-controlled particles, the experimental studies attempt-
ing to elucidate systematically the rasp dependence of the
phase behavior are rather minor [22,23,34–38]. Among these,
Ref. [23] employed the particles with a fixed size but the
controlled “effective” rasp (rasp,eff), indirectly through the
variation of Debye screening length κ−1. Upon increasing κ−1,
rasp,eff ∼ (d + κ−1)/(L + κ−1) also is increased. As κ−1 is in
inversely proportional to the ionic strength (n), the increasing
of rasp,eff was attained by decreasing n. Based on this method
van der Beek et al. [23] succeeded in finding the fact that
the transition involved by increasing φp depends on rasp,eff :
isotropic-nematic for rasp,eff � 0.14 and isotropic-columnar for
rasp,eff � 0.14.

On the other hand, Michot and co-workers [34–38] sys-
tematically investigated the phase transitions occurred on
the various platelike clay particles induced by increasing
φp for a given range of rasp and n. Michot et al. [34] and
[35] employed nontronite clay particles in the range of rasp

satisfying 1.5×10−3 � rasp � 4.5 × 10−3 and found only
isotropic-nematic transition with increasing φp. Note here
that the rasp is taken as the ratio of the (average) thickness
to the (average) length of the longer lateral edge, since the
nontronite clay particles possess a lath shape. Succeedingly,
Paineau et al. [36] aimed at the phase transitions occurred on
a disk-shaped beidellite clay particle in a relatively narrow
range of 3.0×10−3 � rasp � 3.4×10−3 and clarified the nature
of fist-order isotropic-LC transition. It is worth mentioning
that the LC phase had a strikingly high periodicity close to the
Lay phase discussed in this work, although the authors regard
and describe the observed LC phase as a nematic phase.

Very recently, Paineau et al. summarized a general feature
of isotropic-LC as well as sol-gel transitions observed on
various platelike clay particle systems in the parameter space
of rasp and n, where n is in mol/L within the limits of 2.4×10−3

� rasp � 1.6 × 10−2 and 10−5 � n � 10−3 [37,38]. Michot and
co-workers intensively investigated the positional order among
the platelike particles in the LC phase as a function of rasp,
n [34–37] and the type of clay as well [37]. As a consequence,
they claimed that the positional order was disrupted with
decreasing rasp (or increasing average particle size) [35,37].
However, the classification of the LC phase into the nematic
phase and the Lay phase was out of their aim in the whole
series of their study [34–38].

Miyamoto and Nakato [22] elucidated a lot of features on
the phase behavior with φp for the same material used in this
study at a wide range of rasp, 2.3 × 10−4 � rasp � 1.2 × 10−2.

However, the identification of the types of LC phase was
impossible, owing to the naked-eye observation.

This study demonstrates a clear piece of experimental
evidence concerning a sharp transition from the nematic to
Lay phase being simply brought about by increasing rasp or
reducing L at a constant d and at a constant φp [41]. For
the observation of this transition the small-angle scattering
technique played a crucial role. Our experimental results
are summarized as follows: At a constant φp = 0.01, the
dispersion underwent a transition from a isotropic/nematic
coexisting state to a isotropic/Lay coexisting state with
increasing rasp above the critical value of 2 × 10−3 (L =
0.8 μm). Note that φp = 0.01 satisfies the condition of φp �
φp

∗ for all the examined rasp in this study, ranging 1.3 × 10−4

� rasp � 2.5 × 10−3 [42]. We carefully investigate also the
universality of the concentration fluctuations of the platelike
particles in the LC phase.

II. EXPERIMENTAL METHODS

The platelike particles employed in this study were
[Nb6O17]4− bilayer units exfoliated from K4Nb6O17 layered
single crystals [22,43,44]. The particles were quadrilateral
discs with a constant thickness of d = 1.6 nm, whereas L varied
from dozens of microns to submicrons. The particles possess
extremely small rasp and look like sheets rather than discs
and hence we designate them as “nanosheets.” The process
for obtaining the nanosheets has been well established in
the literature [22,43–45] and is composed of three steps: (i)
a high-temperature solid-state synthesis of K4Nb6O17 single
crystals, (ii) the exchange of potassium cations (K+) in the
crystals partly by propylammonium ion (C3H7NH3

+) in an
aqueous solution of propylamine hydrochloride to bring about
the exfoliation of [Nb6O17]4− unit composed of bilayers, and
(iii) a thorough dialysis of the resultant nanosheets with pure
water to remove excess counterions (i.e., K+, C3H7NH3

+).
We prepared three kinds of the nanosheet specimens having

different L as shown in Fig. 3. Other parameters, such as pH
(∼10) and n (at the order of 10−4 mol/L) in the aqueous
suspensions, were set in common. To change L, we followed
the method described in the previous report [22]: The original
nanosheet particles having L = 12.2 μm [Fig. 3(a)] were
chopped into smaller pieces by holding the suspension under
ultrasonic vibration. L can be controlled by the duration of
sonication, while the polydispersity of L (gL) did not show
distinct change, where gL is defined as gL = σL/L and σL

denotes the standard deviation of L with respect to L. Each
specimen is hereafter denoted by its L value in μm, that is,
12.2, 0.98, and 0.65, and possesses its own gL of 82%, 55%,
and 53%, respectively [see Figs. 3(a)–3(c)].

The nanosheet suspensions were placed into quartz cells
having an internal cross section of 1 mm (thickness) × 8 mm
(width) and a height of 40 mm. The suspensions were aged
in the cell, held upright as shown in Fig. 4(a), for a period of
up to more than 1 year to attain the equilibrium state as much
as possible, and observed between the crossed polarizers after
the aging periods of 1 month and 1 year. To investigate the
mesoscopic scale structure of those nanosheet suspensions, we
employed a combined small-angle scattering method which
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FIG. 3. Nanosheet specimens having different mean lateral size (L): (a) 12.2 μm, (b) 0.98 μm, and (c) 0.65 μm. Typical TEM images and
histograms of the lateral size are shown on the top and bottom panels, respectively. The gray curves in the bottom panels represent log-normal
distribution function having the arithmetic mean of L and arithmetic standard deviation of σL.

utilizes in concert both small-angle neutron (SANS) and
x-ray scattering (SAXS) methods. SANS measurements were
performed on the SANS-J-II spectrometer at the research
reactor JRR-3 (Tokai, Japan) [46] having the accessible q

range from 0.03 to 1 nm−1. Hereafter, q denotes magnitude
of scattering vector defined by q = [4π sin (θ/2)]/λ, where
θ and λ are the scattering angle and wavelength of incident
beam, respectively. As the incident neutron beam was passed
through a set of 8-mm pinholes in front of the specimen, we
observed the averaged microstructure of the specimen within
the irradiated area of ∼50 mm2 and the irradiated volume
∼50 mm2 × 1 mm.

SAXS measurements were performed at the beamline
BL40XU at the SPring-8 synchrotron radiation facility
(Hyogo, Japan) [47]. The sample cells employed for the SAXS
measurements were both capillary tubes of 0.6 mm diameter
and quartz cells of 1 mm (thickness) × 8 mm (width), as
described above. With the quartz cells, the specimens having
different L’s were measured (cf. Fig. 4), while the capillary
tubes were used to examine φp dependence of SANS and
SAXS profiles (related to Fig. 6). The suspensions placed in
the capillary tubes were aged also by holding the tubes upright
for 3 weeks before the measurements. In contrast to SANS
measurement, we could obtain a scattering signal from quite a
narrow area of ∼30 μm2 of the specimen with the SAXS ex-
periment, in which the incident x-ray beam was passed through
a 5-μm pinhole [48], though the size of the irradiated volume
along the propagation direction of the beam is not particularly
small but a conventional value (0.6 or 1 mm). The accessible
q range in the SAXS experiment is from 0.1 to 2 nm−1.

III. RESULTS AND DISCUSSION

The phase behavior of the nanosheet suspensions was
studied as a function of two parameters L and φp; (1) L (or
rasp) dependence was investigated at a constant φp of 0.01, and

(2) φp dependence was examined on the specimens having
the smallest L ( = 0.65) or the largest rasp = 2.5×10−3. The
previous study [22] has already elucidated the general trend of
phase behavior of the nanosheet suspensions: With increasing
φp at given values of L ranging from 0.15 to 7.8 μm, the
nanosheet suspensions transformed from the isotropic phase
to the LC phase through the coexistence phase intervening
between the isotropic phase and the LC phase, though the type
of the LC phase was not identified at all. Thus, we should define
two transition points φI and φLC with respect to φp, where φI

denotes the critical concentration for the transition from the
isotropic phase to the isotropic/LC coexisting phase, and φLC

denotes that from the coexisting phase to the LC phase.

A. L (or rasp) dependence at fixed φp = 0.01

Some typical results on L dependence of the dispersions
at a given φp = 0.01 are shown for L = 12.2, 0.98, and 0.65
(rasp = 1.3 × 10−4, 1.6 × 10−3, and 2.5 × 10−3) in Fig. 4, where
panels (a), (b), and (c) present the macroscopic appearance of
the dispersion under crossed polarizers, SAXS patterns, and
the radial SAXS and SANS profiles, respectively. In Fig. 4(a)
the dispersions shown in parts (α), (β), and (γ ) are those with
L = 12.2, 0.98, and 0.65 observed after 1 year aging, while
those in parts (α′), (β ′), and (γ ′) are the respective dispersions
observed after one month aging. The dispersions (α), (β),
and (γ ) clearly show two phases with a macroscopic interface
highlighted by the bright arrow: the upper dark (or transparent)
phase and the lower bright phase, where the darkness or the
brightness is expected to be due to strength of the depolarized
light scattered intensity in each phase. The upper and lower
phases were further designated as (i) and (ii) for L = 12.2
(α), (iii) and (iv) for L = 0.98 (β), and (v) and (iv) for L =
0.65 (γ ), respectively. These indices (i)–(vi) are commonly
used for parts (b) and (c) to specify the phases, from which the
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FIG. 4. (Color) The influence of L upon the near-equilibrium state of the nanosheet suspensions at φp = 0.01. (a) Naked-eye observations
of the specimen between the crossed polarizers at the aging period of 1 year [(α)-(γ )] and 1 month [(α′)-(γ ′)], respectively. (b) Typical 2D
SAXS patterns from the upper phase and lower phase of each specimen taken after 1 year aging. (c) Radial profiles of the SAXS patterns shown
in (b) and SANS profiles. The symbols in black and gray color denote the data of SANS and SAXS, respectively. For curve (v), two SANS
profiles taken at different aging period (open circle, 1 day; solid circle, 18 months) demonstrate an influence of the aging time. The indices
(i)–(vi) in part (a) are utilized in common to indicate the specimens in the corresponding parts (b) and (c).

scattering patterns in part (b) and the profiles in part (c) are
obtained.

Though the physical origin of the two-phase coexistence
was not discussed in detail, the previous report [22] assigned
the upper and lower phases to the isotropic phase and the LC
phase, respectively. In this work internal structures in these two
phases were characterized by SANS and SAXS, as described
below. The physical origin of the two-phase coexistence also
will be discussed in Sec. III B.

The radial SAXS and SANS profiles [Fig. 4(c)] were ob-
tained by a sector or circular averaging of the two-dimensional
(2D) patterns, as shown in Fig. 4(b) for SAXS. The sector
averaging was carried out on the oriented patterns [Fig. 4(b),
(ii), (iv), and (vi)], while the circular averaging was done on
the circular ones [Fig. 4(b), (iii) and (v)]. Although the SANS
patterns were taken over a larger irradiated volume than the
SAXS patterns, they also gave the similar oriented patterns
for the lower phases [(ii), (iv), and (vi) in Fig. 4(a)] and the
circular one for the upper phases of (iii) and (v).

Each upper phase of specimens (α) to (γ ), exhibits a circular
2D scattering pattern [(iii) and (v) in Fig. 4(b)] or hardly any
scattering [(i) in Fig. 4(b)], which is consistent with the fact
that no macroscopic birefringence can be discerned in the
upper phases in Fig. 4(a). Further, the comparison of the radial
profiles (iii) and (v) in Fig. 4(c) revealed the fact that the

positional correlation among the nanosheets in (v) are more
enhanced, giving rise to the broad scattering maxima, than that
in (iii), where the scattering intensity monotonically decreases
with q according to the power law of I (q) ∼ q−2, reflecting the
scattering from isolated nanosheets as illustrated by the model
shown in Fig. 1(b). Generally, the maxima in the profile (v)
as well as those in profiles (ii), (iv), and (vi) from the lower
phases, shown in Fig. 4(c), reflect the positional order of the
sheets along a.

The interparticle correlation of the nanosheets for (v) seems
anomalously enhanced relatively to that for (iii), despite the
fact that SAXS patterns (iii) and (v) commonly show macro-
scopically random orientation of the sheets. The comparison
of the radial profiles (iii) to (v) reveals that the profile (v) is not
comparable to the profile (iii) but is comparable to the profile
(iv) in the light of the fact that two broad scattering maxima
labeled �1 and �2 can be distinguished at nearly the same q

values in both of the profiles (iv) and (v). This suggests that
the local positional order of the nanosheets in the upper phase
(v) is nearly equivalent to that in the lower phase (iv) which
shows an extremely anisotropic scattering pattern and hence is
reasonably classified as the nematic phase. Then a question is
raised as to whether the phase (v) belongs to the nematic phase
or the isotropic phase. The situation of the phase (v) that the
positional order of the nanosheets is sufficiently developed but
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does not end up with the macroscopic orientation may be close
to the state (c2) shown in Fig. 1. The broad scattering maxima
in profile (v) possibly arise also from either state like (c1)
or (c2), where a’s take macroscopically random orientation.
If the maxima reflect the state (c1) the phase (v) is surely
classified into the isotropic phase. If the maxima reflect the
state (c2), the phase (v) is classified either the nematic phase
(when the grains are large) or the isotropic phase (when the
grains are small). Since the irradiated area by x ray ∼30 μm2,
we anticipate the average grain size of the phase (v) is of order
of

√
30 (∼=5.5) μm at maximum [49]. Since the grain size is

not large, we assign the phase (v) to the isotropic phase in this
paper.

As for the lower anisotropic phase in Fig. 4(b), which
commonly shows an extremely high orientational order inde-
pendent of L, the degree of the positional order of the L = 0.65
specimen is clearly different from those of the L = 0.98 and
12.2 specimens [cf. (ii), (iv), and (vi) of Figs. 4(b) and 4(c)].
The profiles (ii) and (iv) for the L = 12.2 and 0.98 specimens
possess only the two broad scattering maxima marked by �1
and �2 , hence suggesting the nematic phase, while the profile
(vi) for L = 0.65 has several distinct higher-order peaks and
deserves to be defined as the Lay phase.

The difference between the nematic phase and the Lay
phase can be described with respect to g factor for the
intersheet spacing (D ≡ Dz), gD = σD/D ≡ �Dzz/Dz, where
σD ≡ �Dzz is the standard deviation of D. The nematic phase
having two scattering peaks is equivalent to 0.12 < gD <

0.18. On the contrary, the Lay phase having more than four
scattering peaks means that gD � 0.09 [32].

B. Physical origin of two-phase coexistence

Here we discuss two possible origins for the two-phase
coexistence: sedimentation and phase separation. Let us first
discuss the sedimentation effect.

1. Effects of sedimentation

Since mass density (ρ) of nanosheet (ρ[Nb6O17]4− = 3.16 ×
103 kg/m3) is larger than that of water (ρH2O = 1.0 ×
103 kg/m3), it is natural to consider that the number density
of the nanosheet particles is larger in the lower part of the
cell than that in the upper part. This difference brings about
the difference in the depolarized light scattering intensity (HV

or VH) and hence the transmitted light intensity under the
cross-polarizers, denoted hereafter “brightness” for brevity,
between the upper and lower parts of the cell. The dilute upper
part is expected to have a smaller OC and smaller HV scattering
intensity than the concentrated lower part, which has a larger
OC and HV scattering intensity [33].

Let us introduce the gravitational length (lg), which is given
by lg = kBT /(g�ρdL2) with �ρ ≡ ρ[Nb6O17]4− − ρH2O for the
individual nanosheets and which defines the decay constant of
the local concentration variation of particles (η) with height
(h) from the bottom, η(h) = η0 exp(−h/lg) [50,51], where kB

is the Boltzmann constant, T is the absolute temperature, g is
the gravitational acceleration, and η0 is the concentration of
the nanosheets at h = 0 (the bottom). Since �ρ = 2.16 ×
103 kg/m3 is known, lg depends solely on L at the constant d

( = 1.6 nm): lg = 8×10−4, 0.13, and 0.29 mm for L =

12.2, 098, and 0.65 μm, respectively. This trend of lg with
L contradicts the observed volume fraction of the two phases
with L as shown in Fig. 4(a): If the particle distribution
followed the decay constant lg , the fraction of the lower
bright part would decrease with increasing L; however, the
experimental results show the completely opposite trend.
Consequently, we can conclude that the sedimentation of
individual nanosheet particles is essentially irrelevant to the
coexistence of the upper and lower parts.

2. Effects of phase separation

Instead, let us consider that each aqueous suspension of
the particles at φp = 0.01 inherently has the thermodynamic
instability or metastability to form the single phase and thereby
undergoes the phase separation into a dilute phase and a con-
centrated phase. If this is the case, the phase separation devel-
ops domains rich and poor in the particles, and these domains
are coarsened with time, t . Here it is important to note that the
nanosheet suspensions belong to one of typical systems having
dynamic asymmetry in which constituent components have a
large difference in mobilities [52–55]: The nanosheets have
an extremely small mobility compared with water molecules.
The phase separation of the dynamically asymmetric systems
involves stress diffusion coupling [52,53]. Here the viscoelas-
ticity plays a significant role on phase-separation processes and
phase-separated structures. It brings about special characteris-
tics of the so-called viscoelastic phase separation [54–63]. In
the viscoelastic phase separation process, the slow component
(the nanosheets) tends to form domains rich in the slow compo-
nent, via the solvent-squeezing mechanism [53–55], which are
percolated in 3D space, in the matrix poor in the slow compo-
nent, even in the case when the slow component has only very
small volume fraction, e.g., φp = 0.001 [54] and φp = 0.07 [58].

The characteristic length �(t) of the percolated domain
and its cross-sectional area A(t) increase with time during
the coarsening process in order to reduce the interfacial free
energy (or the interfacial tension σ ) between the domain and
the matrix. As the domain grows, �(t) increases, and as a
consequence the gravitational force on the domains (but not on
the sheets themselves) (∼4π

3 �(t)3�ρg) becomes increasingly
important against the interfacial tension ∼2π�(t)σ . This is
because domain rich in the sheets is heavier than the matrix
phase poor in the sheets by a factor of �ρ. At a critical time,
tc,grav, �(t = tc,grav) increases to �grav so that the two forces
are balanced, �grav ∼ [3σ/2(g�ρ)]1/2. When t > tc,grav and
�(t) > �grav, the gravitational force outweighs the interfacial
tension and breaks the percolated domain. The broken domains
are forced to the lower phase (the concentrated phase rich in the
sheets), while the matrix phase is forced to the upper phase (the
dilute phase poor in the sheets), resulting in a gravitational-
force-induced macroscopic phase separation [64].

Indeed, before reaching the macroscopic two-phase coex-
istence, we can observe a kind of incubation period, where
the dispersions appeared to be macroscopically homogeneous
but to show turbidity as a signature of local heterogeneities
developed by the phase separation, as shown in parts (α′) and
(γ ′) in Fig. 4(a). The period was considerably different among
those three specimens. As for the L = 0.98 specimen, the
period is relatively short, and apparently it completed within
1 month, as shown in part (β ′) in Fig. 4(a) (or even within 1 day,
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though the evidence is not shown here). On the other hand, for
both L = 12.2 and 0.65 specimens it took 3 months to observe
the macroscopic phase separation into the upper and lower
phases. This may infer the following: The thermodynamic
driving force for the phase separation increases in the order
of L = 0.65, 0.98, and 12.2, but the mobility of the sheets
decreases in the same order; the two opposing physical factors
may explain the smallest tc,grav for the L = 0.98 specimen.
The transient existence of the macroscopically single phase
as described above also assures the fact that the observed
separation into the upper and lower phases is attributed not
to the sedimentation but to the phase separation.

An additional remark on the phase-separation behavior of
those three φp = 0.01 specimens is that not only L itself but also
gL may generally play an important role on the phase behavior
in conjunction with the effects of fractionation of nanosheets.
A significant effect of the fractionation in the particle size
on the phase behavior was thoroughly discussed on the
“boardlike” goethite (α-FeOOH) colloidal system [65]. The
rodlike system showing coexistence of isotropic and smectic
phases was found to exhibit the following characteristics:
The polydispersity of the particle length in the two phases is
nearly the same, while the mean particle length in the isotropic
phase is slightly smaller than that in the smectic phase. Such
a situation may hold in this study, though its confirmation
deserves a future work.

3. Sedimentation effects as revealed in the upper isotropic phase
and lower LC phase

Recently, van der Beek et al. applied the effect of sed-
imentation to a model platelike colloidal system consisting
of gibbsite [Al(OH)3] particles and successfully derived the
equilibrium coexistence of more than two phases [23,66].
This phenomenon has been further intensively investigated and
established by the research group of Van’t Hoff Laboratory at
Utrecht University [25,27,65,67]. Contrary to those observa-
tions, the present system showed only two-phase coexistence
between the upper isotropic and the lower LC phase, which
is driven by the phase separation as discussed in the previous
section and which is stable for at least a prolonged aging
period up to 1 year, and hence no additional phase induced by
the sedimentation effect.

The issue remaining to be clarified for the present system
is how the sedimentation possibly influences the structure of
the upper and lower phases of nanosheet suspensions. The
observed effects of the sedimentation on each phase of the
nanosheets specimens are summarized in Fig. 5. For the lower
phase of the L = 12.2 specimen aged for 1 year, the circular-
averaged SAXS intensity tends to increase with lowering the
height position of the sample cell from position 3 to 1 with
respect to the fixed incident beam position [Fig. 5(a)]. This
indicates that the number density of nanosheets increases with
lowering the height position, due to the sedimentation effect.
The same tendency was observed on the upper phase of the
L = 12.2 specimen as well as on the both the upper and the
lower phases of the L = 0.98 specimen, though the scattering
data are not shown here. This feature can be discerned also by
the naked-eye observation through the crossed polarizers. For
instance, in the upper phase of the L = 0.98 specimen [part (iii)
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FIG. 5. (Color) Comparison of the circular-averaged scattering
profiles taken at different height positions for the specimen of (a)
L = 12.2 and φp = 0.01, and (b) L = 0.65 and φp = 0.017. Each
scattering profile [labeled 1 to 3 in (a) and 1 to 4 in (b)] was obtained
at the corresponding height position shown in the inset to (a) and (b).
For the sake of clarity, in (b) the solid and open arrows designate
the positions of the first-order scattering maximum on the profiles of
the LC phase and the isotropic phase, respectively. The inset to (b)
highlights the profile around the first-order maximum for the isotropic
phase.

of Fig. 4(a) (β)], the bottom area, which is in the vicinity of the
phase boundary marked by the arrow, is obviously brighter than
the top area, which is indicative of the sedimentation effect.

Figure 5(b) shows the circular-averaged scattering profiles
of the L = 0.65 specimen taken at positions 3 and 4 in the
upper phase and at positions 1 and 2 in the lower phase. Here
the following points are worth noting; (1) The peak position
of the isotropic phase shown by the open arrow and that of
LC phase shown by solid arrows are nearly independent of the
height position, although (2) the scattering intensity obviously
increases with lowering the height position. (3) The peak
position of the LC phase is smaller than that of the isotropic
phase. This fact (1) suggests that the sedimentation within
each phase does not influence the characteristic spacing of the
nanosheets, in a clear contrast to the sedimentation effect on
the colloidal dispersion consisting of gibbsite particles [25]
where an obvious decrement in the intercolumnar spacing by
ca. 8 nm was observed upon lowering the height position of the
sample by 5 mm (cf. Fig. 4 in Ref. [25]). The fact (2) suggests
that the sedimentation effect influences number of the sheets
in the stack formed by the sheets; the lower the height position
is, the higher is the number. The fact (3) suggests that the lower
LC phase has a larger φp than the upper isotropic phase. This
fact is considered to reflect the phase separation into the phase
having the larger φp and the phase having the smaller φp.

Although it is beyond the scope of this study to elucidate
the origin of the above discrepancies in the structures of the
colloidal suspensions between nanosheets and gibbsite parti-
cles with respect to the fact (1) described above, we can point
out that there are a variety of differences in the experimental
conditions between the reported works [23,25,27,65–67] and
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the present work. For instance, the differences in (i) φp, (ii) the
particle shape and size, and (iii) the effective charge density or
κ−1 are likely the factors which brought about the differences
in the sedimentation effects and phase separation behavior. To
clarify the effect of each factor deserves a future work.

C. Concentration dependence at fixed L = 0.65: Remarkable
concentration fluctuations of the nanosheets in the LC phase

1. Concentration dependence of dispersions

The circular-averaged SAXS scattered intensity I (q), 2D
patterns, and structure factors, S(q), taken at various φp in the
range of 0.01 to 0.037 for the L = 0.65 specimen were shown
in Figs. 6(a)–6(e). In Fig. 6(c), typical 2D scattering patterns
obtained from each suspension are placed from top to bottom
in order of increasing φp. Furthermore, for the specimens in
the coexisting phase, the scattering patterns from upper phase
and lower phase are placed at the left side and the right side, re-
spectively. Judging from a common feature of a circular pattern
found for patterns (1) to (5) in Fig. 6(c) as well as a few broad
maxima on S(q)’s in Fig. 6(e) obtained from patterns (1) to (5)
in Fig. 6(c), which suggests a liquidlike order of nanosheets,
the phases numbered (1)–(5) were identified as the isotropic
phase. On the other hand, due to another common feature of a
preferential orientation, patterns (6) to (10) in Fig. 6(c) as well
as the sharp higher-order peaks on S(q)’s in Fig. 6(d) obtained
from patterns (6) to (10), the phases corresponding to (6)–(10)
should be classified to the same Lay phase.

According to the results shown in Fig. 4, the L = 0.65
suspensions having φp � 0.01 are expected to form the
isotropic/Lay coexisting phase or an anisotropic Lay single
phase. However, as shown in scattering patterns (1) and (2)
in Fig. 6(c), only the isotropic single phase was observed for
the φp = 0.01 and 0.0125 suspensions. This discrepancy can
be attributed to a shortage of the aging period (3 weeks) for
the specimens used to obtain the data in Fig. 6. The L = 0.65
specimen used in Fig. 4 also kept a single phase, when its
aging period is shorter than 3 months, as demonstrated in part
(γ ′) in Fig. 4(a). In any case, once an anisotropic scattering
pattern appeared in the L = 0.65 suspensions (φp � 0.017)
either in the lower phase [patterns (6)–(8) in Fig. 6(c)] or in
the monophase [patterns (9) and (10) in Fig. 6(c)], it exhibits
multiple order scattering peaks [cf. (6)–(10) in Figs. 6(b) and
6(d)], indicative of an extremely high positional order, so that
the phase can be identified as the Lay phase. As there is no
experimental evidence about the positional order along the
lateral direction of the sheets at the moment, it is impossible
to further identify whether the Lay phase of the L = 0.65
specimen belongs to the lamellar phase or the SCN phase.

2. Concentration fluctuations of the nanosheets in the LC phase

Another structural datum obtained from the scattering
profile is the spacing D, which is determined by D = 2π/qm.
Here qm denotes the q value at the first-order peak. In Fig. 7,
D for the L = 0.65 suspensions is plotted as a function of
φp in the double logarithmic scale. To estimate the D value
correctly as much as possible, the influence of gravity as well
as that of aging period on the qm value was taken into account
as follows. Concerning the gravity effect, the dependence of

FIG. 6. (Color) φp dependence of the L = 0.65 specimen at the
aging period of 3 weeks; the radial profiles shown in parts (a) and (b)
are obtained after circular averaging the 2D SAXS patterns shown
in Fig. 6(c). (c) 2D SAXS patterns obtained from the specimens of
various φp from 0.01 to 0.037. The specimens of φp = 0.01 and 0.0125
exhibited only the isotropic single phase, and those of φp = 0.03
and 0.037 showed only the oriented Lay single phase, while those of
φp = 0.017, 0.02, and 0.025 presented the coexistence of the isotropic
and oriented Lay phases. (d) and (e) are structure factors, S(q) =
q2 I (q), obtained from the radial profiles shown in Figs. 6(b) and
6(a), respectively. Throughout Figs. 6(a)–6(e) the running numbers
(1)–(10) are utilized in common to indicate the correspondence of the
patterns and the profiles.
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FIG. 7. φp dependence of D for the nanosheet specimens of L =
0.65. The D values were estimated based on the data of Fig. 6(c),
except for D for the lower phase at the φp = 0.01 specimen; the D

value for the lower phase at φp = 0.01 was estimated from the pattern
(vi) in Fig. 4(b). The variation of D with the height position as well
as the aging period of the specimen is included within the error bars
(see the text). The open circles with thin error bars are the data of the
upper isotropic phase and the solid circles with thick error bars are
the data of the lower Lay phase. The solid line represents a calculated
D value (see the text).

D value on the height position of the cell was inspected by
scanning over several millimeters at every 100 μm height with
the SAXS measurements. The results revealed that the range
of the fluctuations in D with height within both the isotropic
phase (<∼5 nm) and the Lay phase (<∼5 nm) is much smaller
than the change in D itself (68–31 nm) with φp (0.01–0.037),
as partially demonstrated in Fig. 5(b). Hence, the gravity
effect was proved insignificant. The repeated measurements
at different aging periods ranging from 1 day to more than 1
year [cf. profiles (v) with open and solid circles in Fig. 4(c)]
revealed that the major change in D occurred within 1 day,
and D kept constant within the fluctuations of a few nm after
1 day. Those experimental pieces of evidence indicate that
thermal equilibrium in the length scale of D can be practically
attained within the time scale of a day, though phase equilibria
in a macroscale can be reached only after an extremely long
period [cf. Fig. 4(a)].

Then the following trends are deduced from Fig. 7: (a) D

generally decreases with increasing φp and this tendency holds
even in the isotropic/Lay coexistence region (0.01 � φp �
0.025); (b) In the isotropic/Lay coexisting phase, the D value
of each phase at a given φp is nearly identical, that is, Disotropic

∼ DLay; (c) the φp dependence of D is different between the
isotropic/Lay coexistence region (i.e., 0.01 � φp � 0.025) and
Lay single phase region (φp > 0.025). In the latter case, DLay

∼ φ−1
p , and this φp dependence can be derived from a simple

assumption as described below. Trends (a) and (b) described
above are intuitively against the normal lever rule applicable
to an ordinary coexisting two phases, in which the following
behaviors are anticipated for D: (1) Disotropic > DLay; (2)
Disotropic ∼ φp

0 and DLay ∼ φp
0, independent of φp, though

the volume fraction of those two phases is varied with φp.
Another remarkable trend in Fig. 7 is that (d) the measured

D value is much smaller than the calculated one, Dcal = d /φp

derived on the basis of the assumption of a uniform 1D swelling
of nanosheet particles with water, as shown by the solid line in
Fig. 7. Consequently the spatial concentration fluctuations of
nanosheets is crucial to account for the discrepancy between
the observed and calculated results. That is, in both the
upper isotropic and the lower Lay phases, as well as in the
Lay single phase, the obtained D value from the scattering
profile may reflect only the local concentration in grains,
where the nanosheets are self-assembled more densely than
the bulk (average) concentration, and these grains coexist with
the nanosheet-poor matrix. It is important to note that this
finding further verifies firmly our previous observation of the
intriguing concentration fluctuations of the sheets observed in
the Lay single phase [1]. It is noteworthy that the grain or
cluster formation of the colloidal particles has been directly
observed by optical microscopy in some other systems too
[54,55,68–71]. The following argument can be deduced for the
amplitude of the concentration fluctuations. As for the average
(or bulk) concentration of nanosheets, φp isotropic < φp Lay is
expected, since the isotropic phase locates the upper part of the
cell. While trend (b) assures that the local concentration of the
sheets within the grains rich-in the sheets in the isotropic phase,
φp isotropic,local, is almost equivalent to that in the Lay phase,
φp Lay,local. Consequently, the following relation is given for the
amplitude of local concentration fluctuations of the sheets in
the j th phase (j = isotropic or Lay), �φpj ≡ φpj,local - φpj (φpj

being the bulk concentration of the sheets in the j th phase);
�φp isotropic > �φp Lay. This conclusion is consistent with the
thermodynamic principle that the osmotic compressibility is
decreased with increasing φp. Furthermore, the suppression
of the difference between Dcal and measured D value with
increasing φp is rationalized by the same principle.

It is worth noting that trend (b) was observed only for the
L = 0.65 specimens, for which the upper phase is depicted
by Fig. 1(c) and the lower phase is depicted by 1(e) or 1(f).
However, for the L = 0.98 and 12.2 (φp = 0.01) specimens the
phase separation occurred between the phases corresponding
to Figs. 1(b) and 1(d), and hence Disotropic for the gaslike upper
phase was not determined from the scattering experiment. On
the other hand, the D values of the lower phase (Dnematic) were
measured to be ∼78.5nm (qm ∼ 0.08 nm−1) and ∼97 nm( qm ∼
0.065 nm−1) for the L = 0.98 and 12.2 (φp = 0.01) specimens,
respectively. The obtained Dnematic seems still smaller than
Dcal. For instance, in the case of L = 12.2 (φp = 0.01), Dcal =
d/φp nematic ∼ 1.6

0.01/(9/10) = 145 nm [72], and thus Dnematic/Dcal

= 97/145 ∼ 0.7, suggesting that nearly 30% of water inside of
the nematic phase does not take part in the uniform swelling
of the sheets but contributes to produce the local concentration
fluctuations of the sheets.

A crucial question remaining in conjunction with Fig. 7 is
how the equilibrium D in the grains rich in nanosheets is pre-
dicted in the isotropic phase and in the Lay phase. To predict the
LC phase, the shape anisotropy of the particles is crucial, and
the hard-core potential is still acceptable [4,73,74], while to
predict a spacing, the notion of the potential minimum should
be significant. In this context, the “secondary minimum,”
which appeared in the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory [75,76], can be applicable to the current
system, though recent progress in theories has proposed
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some modifications to take into account Coulombic attractive
interactions between like-charged colloidal particles [77–80].
Below, we attempt to explain our experimental results in the
context of the DLVO theory, where the term of van der Waals
interactions is arisen from a set of charged thin plates oriented
parallel to each other in water medium [81]. The pairwise
free energy potential (hereafter denoted as FDLVO) per two
parallel plates is a function of valence of the counterions (z),
dielectric constant of the medium (ε), Hamaker constant (A),
electric potential at the surface of the plate (ψ0), n, T , and
the particle size (L and d). FDLVO is calculated for relatively
low n values (1.6–3.2×10−4 mol/L), with fixing the other
parameters as follows: z = +1, ε = 78ε0 F/m (i.e., assuming
water), where ε0 is vacuum permittivity, A = 1.81×10−19 J,
ψ0 = −40 mV, T = 300 K, L = 0.65 μm, and d = 1.6 nm.
As the results, the potential minimum of FDLVO is located at
64 (with FDLVO = −0.26 kBT ), 46 (FDLVO = −0.83 kBT ), and
32 nm (FDLVO = −2.90 kBT ) for n = 1.6 × 10−4, 2.3×10−4

and 3.2×10−4 mol/L, respectively. Those calculation results
indicate that a slight increase in n brings a considerable
decrease in equilibrium D, and each value of 64, 46, and
32 nm is close to the measured D value on the φp = 0.01
(Disotropic = 67.7 nm; DLay = 62.6 nm), 0.02 (Disotropic = 47.1
nm; DLay = 44.6 nm), and 0.037 (DLay = 31.6 nm) specimens,
respectively. Thus, the message from the above calculations is
that the classical DLVO theory can rationalize a general D

behavior shown in Fig. 7, provided an effective increase in n

(consisting of both K+ and C3H7NH3
+) from 1.6 × 10−4 to

3.2 × 10−4 mol/L is produced with increasing of φp from 0.01
to 0.037.

3. Caillé’s line shape analysis

Caillé’s line shape analysis has been applied to analyze the
dynamics of the lamellar phase [82–90]. We believe that the
analysis can be applied to the Lay phase also. However, it is
important to note the following limitations in the line shape
analysis of this phase based on the SAXS. The length scale cov-
ered by SAXS (�100 nm) is much less than the average lateral
size of the sheet L, for example, 650 nm in the case of the L =
0.65 specimen. As a consequence, the analysis is limited to the
undulation modes within the sheets themselves and the modes
relevant to �Dzz in the direction perpendicular and parallel to
a, respectively. We are not able to analyze large-length scale
intersheet undulation modes involving the length scale larger
than L (or generally Dx and Dy) in the x-y plane (Fig. 2).

Experimentally, with a careful observation on the SAXS
patterns of the Lay phase at different φp, as shown in patterns
(6)–(10) in Fig. 6(c), we can categorize those patterns into
two types: One is common to patterns (6) and (7), both of
which arise from the Lay phase coexisting with the isotropic
phase, exhibiting several diffraction spots having nearly a
circular shape; the other is common to patterns (9) and (10),
both of which arise from the Lay single phase, exhibiting
the diffraction spots elongated along the qx direction, the
direction of which is defined in patterns (6) and (9). The
results obtained from Caillé’s analysis for these two kinds of
the typical scattering patterns [pattern (6) and (9) for φp =
0.017 and 0.03, respectively] will be useful to clarify the
dynamics of the nanosheets in the Lay phase.
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FIG. 8. (Color) Line shape analysis for two L = 0.65 specimens
(φp = 0.017 and 0.03) in the Lay phase. (a) Comparison of the
experimental scattering function Isect.(qx = 0; qz) (solid triangles)
with the Caillé’s function (thick gray line) (|qz − qzm,1|−P with
P = 2 − ηC) for the specimen with φp = 0.03. (b) Ssect.(qx = 0; qz)
for the experimental scattering profiles (triangles) were compared
with the theoretical ones [Scalc.(qx = 0; qz); see the text]. For the φp =
0.03 specimen Scalc.(qx = 0; qz) was carried out for two ηC values,
0.09 (solid red line) and 0.8 (broken line).

The line shape of the first-order peak of Isect.(qx = 0; qz),
which is obtained by sector-averaging scattering pattern (9)
in Fig. 6(c) over 5◦ from −2.5◦ to +2.5◦ with respect to the
direction of the preferential orientation of the pattern (desig-
nated by qz), is compared with the Caillé’s theoretical function
given by the power law, I (qx = 0; qz) ∝ |qz − qzm,1|−P , with
P = 2 − ηC [82] in Fig. 8(a). Here qzm,1 denotes the qz value
at the first-order peak and the parameter ηC is related to the

elastic moduli of the phase given by ηC = q2
zm,1kBT

8π
√

BK
with B and

K being the compression modulus and the curvature modulus,
respectively, of the layered structure.

Since the experimentally obtained Isect.(qx = 0; qz) shown
by triangles in Fig. 8(a) is smeared by the resolution function of
the SAXS apparatus, the theoretical function of |qz − qzm,1|−P

also was smeared with the same resolution function for a fair
comparison between theoretical I (qx = 0; qz) and experimen-
tal Isect.(qx = 0; qz). The best fit of the smeared theoretical
function (thick solid line) with the experimental function was
conducted only for the specimen with φp = 0.03. The reason
why the same analysis was not conducted for the specimen with
φp = 0.017 is discussed later in conjunction with Fig. 9(a). The
result gives ηC = 0.8, where the qz range used for the fitting
was indicated by the vertical solid lines, drawn at qz = qz,l and
qz,u, on the basis of the following criteria. (1) The theoretical
scattering function diverges to infinity at qz = qzm,1, while
the experimental scattering function does not; hence, the two
functions naturally do not agree at qz close to qzm,1, that is,
|qz − qzm,1| < qz,l . (2) The experimental first-order scattering
peak seems to be accompanied by a broad scattering maximum
or shoulder or a background scattering as illustrated by the
broken line for only a visual guide in Fig. 8(a) and hence
it deviates from the theoretical function at |qz − qzm,1| > qz,u.
The scattering functions were further examined by the analysis
involving a whole shape of the experimentally obtained profile,
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FIG. 9. (Color) Line shapes of the first- and second-order peaks were examined with Isect.(qx = 0; qz − qzm,i) and I (qx ; qz = qzm,i) profiles
for the φp = 0.017 specimen in parts (a) and (b), respectively, and the φp = 0.03 specimen in parts (c) and (d), respectively. In Figs. 9(a)–9(d),
the solid and dotted black lines are the smeared Caillé’s functions of |qx |−P ′

and |qz − qzm,i |−P with the relation of P ′ = 2P and P = 2 − i2ηC .
The red and blue circles with broken lines represent the profiles of the measured direct beam along the qx and qz directions, while the green
thick solid line represents the estimation of the rocking curve of the direct beam (or the instrumental resolution function). The base of the
logarithm is 10.

concerning not only of the first-order maximum but also the
higher-order maxima, with the theoretical function presented
by Nallet et al. [88].

Experimentally obtained Ssect.(qx = 0; qz) for both φp =
0.017 and φp = 0.03 specimens, which are the structure factors
Isect.(qx = 0; qz)qz

2, over the q range of nearly one decade
(open and solid triangles for the φp = 0.017 and φp = 0.03 spec-
imens, respectively) are compared with the calculated structure
factors [Scalc.(qx = 0; qz), the red solid line] in Fig. 8(b). Here
a model of finite number of the stacked layers (N ) possessing
Gaussian variables of correlation function is assumed:

Scalc.(qx = 0; qz) = 1 + 2
∑N−1

1

(
1 − i

N

)
cos(iqzD)

× exp

[
−q2

z

2
〈(ui − u0)2〉

]

where 〈(ui − u0)2〉 is given by Caillé’s formula, 〈(ui − u0)2〉 =
ηC

2π2 [ln(πi) + γ ]D
2
, and γ is Euler’s constant. This Scalc.(qx =

0; qz) function is further convoluted with the resolution
function of the apparatus and compared with Ssect.(qx = 0; qz).
In the calculation of Scalc.(qx = 0; qz), N was calculated to be
108 and 147 for the specimens of φp = 0.017 and φp = 0.03,
respectively, by assuming that the product of ND will be com-
parable to the diameter of irradiated x-ray beam (∼5.5 μm),
where D was measured to be 51 nm for φp = 0.017 and 37.5 nm
for φp = 0.03 by SAXS. Hence, the adjustable parameter to fit
Scalc.(qx = 0; qz) with Ssect.(qx = 0; qz) is only ηC. Note here
for the φp = 0.017 specimen that the fitting was conducted by

weighting of only the second- and higher-order peaks, because
the first-order peak should be ignored due to the problem to
be discussed later in conjunction with Fig. 9(a). A reasonable
agreement between Ssect.(qx = 0; qz) and Scalc.(qx = 0; qz) was
obtained for ηC = 0.05 for the φp = 0.017 specimen and ηC =
0.09 for the φp = 0.03 specimen. The ηC values thus obtained
by the two types of the analyses in Figs. 8(a) and 8(b) for the
φp = 0.03 specimen did not agree. In the case of the φp =
0.03 specimen, Scalc.(qx = 0; qz) obtained by assuming ηC =
0.8 is given by the thick dotted line. The Scalc.(qx = 0; qz) for
ηC = 0.8 does not fit at all with Ssect.(qz), implying that the
analysis in Fig. 8(a) for φp = 0.03 based on Caillé’s analysis
overestimated ηC for the reason to be discussed below.

The origin of overestimation of ηC value on the analysis of
Fig. 8(a) may be due to the broadening of the experimental
first-order scattering maximum shown in Fig. 8(a) which
is attributed to the following two reasons as described in
the preceding paragraph. (1) the finite number of N , which
broadens the peak in the qz range satisfying |qz − qzm,1| < qz,l ,
and (2) the background scattering, which broadens the peak
in the qz range satisfying |qz − qzm,1| > qz,l . The Caillé’s
theory does not account for the physical factors (1) and (2),
while the theory by Nallet et al. accounts for factor (1). The
physical factor (2) may be due to the remarkable concentration
fluctuations of nanosheets, which has been already discussed
in Sec. III C2. The nanosheet dispersions contain the grains in
which the nanosheets are more densely and regularly packed
than the matrix phase in which the nanosheets are less densely
and less regularly packed. The grains and the matrix give
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rise to the sharp scattering maxima and the broad background
scattering (as illustrated by the broken line), respectively.
Taking those physical factors into account, the formula of
Nallet et al. [88], which takes into account the finite N , is
more suitable than Caillé’s analysis [82] in order to deduce a
reliable ηC value from the scattering profile of the nanosheet
specimens.

The ηC value ∼0.09 for the φp = 0.03 specimen is very
small compared with those obtained from the lamellar phase
composed of rodlike octyloxy-cyanobiphenyl molecules (ηC in
the range of 0.17–0.38) [83] or surfactant/solvent membranes
(ηC � 0.13) [85,86,88]. This is indicative of a fairly rigid
property of nanosheet layers in comparison to the lamellar
phase composed of small molecules as described above.
The high rigidity of the nanosheets seems reasonable in
light of (i) the nanosheet being built up by the covalently
bonded atoms and in light of (ii) those charged layers
interacting with each other under the condition of the low ionic
strength (n).

Some additional aspects on the line shape anisotropy with
respect to the qx and qz directions are worth mentioning, since
only a limited number of previous SAXS studies [87,91] went
into the detailed discussion on this issue. On the theoretical
side, the Caillé’s formula predicts the asymptotic q behav-
ior, I (qx ; qz = qzm,1) ∼ |qx |−P ′

(P ′ = 4 − 2ηC = 2P ), for the
first-order peak appearing in the direction qx perpendicular
to the layer stacking or parallel to the layer surfaces, the
direction of which is defined by the black arrow in Fig. 6(c)
(6) and (9). The anisotropic decay is further generalized for
the ith-order scattering peak I (qx ; qz = qzm,i) ∼ |qx |−P ′

and
Isect.(qx = 0; qz − qzm,i) ∼ |qz − qzm,i |−P , with the relation of
P ′ = 2P and P = 2 − i2ηC , where qzm,i denotes the qz value
at the ith-order peak [84].

The line shape observed on the Isect.(qx = 0; qz − qzm,1)
and I (qx ; qz = qzm,1) for the first-order peak of the φp = 0.017
specimen in Fig. 9(a) are nearly the same, which is thought to
be due to the fact that the scattering peak possibly reflects the
shape of direct beam profile itself. The measured direct beam,
whose profiles along the qx and qz directions are shown by
red and blue circles with dotted lines, respectively, possesses a
sufficiently narrow width as compared with those of scattering
peaks from specimens. However, after taking the effects of the
divergence of the wavelength of incident x-ray (∼2%) and the
spatial resolution of the detector into account, the net apparatus
resolution function is broadened to the thick solid green curve.
Hence, it was proven in the case of the first-order peak of the
φp = 0.017 specimen that the real Isect.(qx = 0; qz − qzm,1) and
I (qx ; qz = qzm,1) profiles are certainly hidden by the apparatus
resolution function. This is the reason why the first-order peak
was not applied to the line shape analysis for the specimen
with φp = 0.017 in Figs. 8(a) and 8(b).

The anisotropic decay of the peak intensity with qx (>0)
and qz - qzm,i (>0) (i = 1 or 2) was actually observed on the
second-order peak of the φp = 0.017 specimen [Fig. 9(b)],
as well as on the first- and second-order peaks of the φp =
0.03 specimen shown in Figs. 9(c) and 9(d), respectively.
Among those profiles the power exponent P ′ observed on
the profile I (qx ; qz = qzm,i) with qx is certainly larger than
that P observed on the profile Isect.(qx = 0; qz − qzm,i) with
|qz − qzm,i | by a factor of 2, in accordance with the prediction

by Caillé (P ′ = 2P ), although the ηC values estimated from
the power exponents were too large, ηC = 0.26 for φp = 0.017
and 0.8 (the first-order peak) or 0.35 (the second-order peak)
for φp = 0.03, mainly due to neglect of the effect of the finite
N , as already pointed out.

Thus, the anisotropic decay of the scattering function with
the scattering vector q as characterized by P ′ ∼ 2P is inferred,
concerning the line shape inherent in the Lay phase of the L =
0.65 specimens, commonly for the two kinds of the scattering
patterns. Thus, it turns out that the apparent difference in the
shape anisotropy of the diffraction spots for the two kinds
of the patterns simply reflects the difference in the values
of P ′ = 2P : A small increase of P with φp gives rise to a
large increase of P ′, hence accounting for the larger shape
anisotropy of the diffraction spots in the φp = 0.03 specimen
than in the φp = 0.017 specimen. However, the origin of
the increment of the peak width or the value ηC with φp in
I (qx ; qz = qzm,i) is not clarified here and hence is left for a
future work.

IV. SUMMARY

This study has elucidated the following three intriguing
behaviors in the lyotropic LC system composed of charged
sheetlike particles having a very large shape anisotropy. The
first one is that the observed LC phase sharply changed from
the nematic phase to the layered phase with reducing the
average lateral size (L) of the particles below 1 μm at the
constant concentration of the particles φp = 0.01, keeping
the two-phase (isotopic and LC phases) coexistence. What
is surprising on this change should be further stressed as
follows: The difference between the specimens forming
nematic and layered phases (defined as Lay phase) involves
only the slight change in L, though both specimens have a
considerable polydispersity in their lateral size. Nevertheless,
in the Lay phase, the regularity of the interparticle spacing
(D) is high enough to show the gD factor, which represents
the normalized standard deviation of D (σD/D), being gD <

0.09, while in the nematic phase 0.12 < gD < 0.18.
The second one is related to the average D values (D) in the

Lay-isotropic phase coexisting specimens: At a given φp, the
D in the Lay phase was almost identical to that in the isotropic
phase. This implies a larger concentration of fluctuations in
the isotropic phase than in the Lay phase. The concentration
fluctuations are brought about by formation of grains rich in the
particles in the matrix poor in the particles. The φp dependence
of D was different between the φp range for the two-phase
coexisting phase (D ∼ φ

−1/3
p ) and that for the single Lay phase

(D ∼ φ−1
p ). The observed D in both φp ranges were smaller

than the predicted D values calculated by the uniform 1D
swelling of the particles in water. These findings also indicate
that the large concentration fluctuations in the isotropic and
Lay phases and that the concentration fluctuations are different
for the two φp ranges. The concentration fluctuations found in
the Lay phase firmly supports our previous finding [1] that the
domains poor in the particles are spatially distributed with a
mass fractal structure.

The third one is the physical origin of the two-phase
coexistence. We found that the two-phase structures arise from
phase separation of the charged particles from water which
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were nondeliberately brought about in the thermodynamic
metastable or unstable state in our experimental condition.
We propose that the macroscopic phase separation is assisted
by the gravitational force which effectively acts on the phase-
separated domains exceeding the critical size, �grav, as detailed
in the text.
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