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Dynamics in dense hard-sphere colloidal suspensions
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The dynamic behavior of a hard-sphere colloidal suspension was studied by x-ray photon correlation
spectroscopy and small-angle x-ray scattering over a wide range of particle volume fractions. The short-time
mobility of the particles was found to be smaller than that of free particles even at relatively low concentrations,
showing the importance of indirect hydrodynamic interactions. Hydrodynamic functions were derived from
the data, and for moderate particle volume fractions (� � 0.40) there is good agreement with earlier
many-body theory calculations by Beenakker and Mazur [Physica A 120, 349 (1984)]. Important discrepancies
appear at higher concentrations, above � ≈ 0.40, where the hydrodynamic effects are overestimated by the
Beenakker-Mazur theory, but predicted accurately by an accelerated Stokesian dynamics algorithm developed
by Banchio and Brady [J. Chem. Phys. 118, 10323 (2003)]. For the relaxation rates, good agreement was
also found between the experimental data and a scaling form predicted by the mode coupling theory. In the high
concentration range, with the fluid suspensions approaching the glass transition, the long-time diffusion coefficient
was compared with the short-time collective diffusion coefficient to verify a scaling relation previously proposed
by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)]. We discuss our results in view of previous experimental
attempts to validate this scaling law [L. Lurio et al., Phys. Rev. Lett. 84, 785 (2000)].
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I. INTRODUCTION

The dynamical behavior of colloidal suspensions is a very
rich area of research with connections to many fields of
fundamental research and important industrial applications.
High-density colloidal suspensions provide, for instance,
invaluable model systems for the study and understanding
of dynamics in atomic glasses. Prototypical model systems
consist in suspensions of spherical particles with low size
polydispersity. They are stabilized against aggregation due to
van der Waals attractive forces by coating the surface with a
short-chained polymer (steric stabilization) or with a charged
ionic layer (charge stabilization). The present study focuses
on the dynamics of sterically stabilized suspensions. For
such suspensions, the interparticle forces are well described
by a hard-sphere interaction potential with no detectable
long-range interactions and an infinite repulsion when two
particle centers are separated by one diameter.

The experimental study of dynamics in dense colloidal
suspensions was pioneered by Pusey, van Megen, and col-
laborators (see, e.g., [1–6]) using dynamic light scattering
(DLS). The phase behavior of a hard-sphere suspension
depends on a single parameter, namely the packing fraction,
or the particle volume fraction, �. In the low volume fraction
limit, with � on the order of a few percent or less, the
dynamics of individual particles is essentially Brownian. The
relaxation times measured by DLS yield a q-independent
diffusion coefficient D0 equal to that of free particles, i.e., the
Stokes-Einstein free diffusion coefficient. However, as soon
as the volume fraction is increased, the dynamics is slowed
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down by both direct interactions between the particles and by
indirect hydrodynamic interactions mediated by the solvent.
These interactions are highly dependent on the structural
properties of the system and thus on the scattering vector q. In
order to minimize effects introduced by multiple scattering
of light, the DLS studies use elaborate refraction index
matching procedures between the colloidal particles and the
solvent or complex scattering techniques such as two-color
DLS (TCDLS) [7]. The TCDLS work described in Ref. [5]
studies the dynamics of hard-sphere colloidal suspensions.
The q- and time-dependent short-time diffusion coefficient
DS(q,t) obtained from the intensity autocorrelation functions
could be related, via the static structure factor S(q), to the
hydrodynamic functions predicted by a many-body theory
derived by Beenakker and Mazur (BM) [8,9]. The study in
Ref. [5] showed an excellent agreement between TCDLS
measurements and the BM predictions in fluid suspensions
of relatively low (� � 0.35) volume fractions. In contrast,
at higher concentrations (� > 0.4) the TCDLS data deviated
significantly from the BM theory.

In the present study, we investigate these phenomena
further using a complementary experimental technique, i.e.,
x-ray photon correlation spectroscopy (XPCS) (for some
recent reviews, see [10–12] and references therein). XPCS
is the equivalent of DLS in the x-ray domain. It is not
affected by problems related to multiple scattering, and access
to larger momentum transfers q is possible thanks to the
shorter wavelength. An important consequence of the access
to higher q values is that the static structure factor can be
determined experimentally and modeled, e.g., by the Percus-
Yevick formalism. XPCS can only be performed at the latest
generation synchrotron radiation sources where the coherent
flux is large enough to perform scattering experiments and
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obtain a good signal-to-noise ratio of the correlation functions.
Damage to the sample induced by the x-ray beam can be a
nuisance, especially when studying soft-matter or biological
systems, and during an experiment one must carefully monitor
the state of the sample.

Here we report the results of XPCS experiments on fluid
suspensions of sterically stabilized spherical particles with
volume fractions up to � ≈ 0.49. Previous XPCS experiments
on hydrodynamic effects in colloidal suspensions have focused
on charge-stabilized particles [13–17].

II. EXPERIMENTAL DETAILS

The XPCS experiments were performed using partially
coherent x rays at the ID10A beamline (Troı̈ka) of the
European Synchrotron Radiation Facility (ESRF) in Grenoble,
France. A single bounce Si(111) crystal monochromator was
used to select 8 keV x rays, having a relative bandwidth of
�λ/λ ≈ 10−4. Higher-order light was suppressed by a Si
mirror placed in the monochromatic beam. A transversely
partially coherent beam was defined using a set of high heat-
load secondary slits placed 33 m from the undulator source, a
beryllium compound refractive lens (CRL) unit placed 34 m
from the source, thereby focusing the beam near the sample
location at 46 m, and a set of high precision pinhole slits with
highly polished cylindrical edges placed just upstream of the
sample at 45.5 m (see Fig. 1). The final beam size selected
by the beam-defining pinhole slits was 10 × 10 μm2. The
parasitic scattering from the slits was suppressed by a guard
slit placed a few centimeters upstream of the sample. Under
these conditions, the partial coherent flux on the sample was
∼1010 ph/s.

The static scattering from the colloidal suspensions was
recorded by a charge-coupled device (CCD) with 22 μm pixels
located 2.2 m downstream of the sample. The dynamic infor-
mation was obtained with a scintillation detector (Cyberstar)
connected to a multiple-tau FLEX01-08D hardware correlator
[18]. The detection area was limited to a size corresponding
to a few speckles by precision slits placed in front of the point
detector. Typical detector slit settings during these experiments
were between 50 × 50 and 100 × 100 μm2.

The colloidal suspension was prepared by A. Schofield
of the University of Edinburgh and consisted in poly(methyl
methacrylate) (PMMA) spherical particles coated with a thin
layer of poly-12-hydroxy steric acid, suspended in decalin. A
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FIG. 1. (Color online) Sketch of the experimental setup for XPCS.

net electric charge on the colloidal particles can typically be
produced in low polarity solvents by the addition of surfactants
or charge-control additives [19]. However, as prepared, the
particles suspended in decalin are expected to show no de-
tectable traces of residual charges (see, e.g., [20]) and interact
as almost perfect hard spheres. This assumption is supported by
the XPCS measurements presented below, which are in good
agreement with theories assuming a hard-sphere interaction
potential. The batch solution had a measured volume fraction
of �= 0.327. Higher concentration suspensions were obtained
using a centrifugation process, while lower concentration were
prepared by adding more decalin solvent.

The sample cell consisted of a 1.5-mm-diam Kapton tube
with a wall thickness of ≈80 μm. A syringe pump purchased
from Harvard Apparatus connected through Teflon tubing
and leak tight fittings purchased from Upchurch Scientific
were used to fill the Kapton tube. This experimental setup
has the advantage of allowing measurements under contin-
uous flow, as explored previously [21]. However, all the
measurements reported here were performed on stationary,
nonflowing samples. Our results on the dynamics under
continuous flow will be described in a subsequent publication.
The flow option was only used to periodically renew the
sample by bringing fresh particles into the beam. Through
many repeated measurements, it was found that flowing the
samples introduces new time scales in the measured correlation
functions [22,23] that, in particular, can affect the long-time
decays, even for a long time after the flow was stopped. As
a consequence, a stabilization time was always allowed after
renewing the samples or filling the flow cell.

In the high-dilution limit, hydrodynamic or direct inter-
actions between the particles are negligible and the colloids
undergo Brownian motion with a diffusion coefficient D0

described by the Stokes-Einstein diffusion relationship

D0 = kBT

6πηaH

, (1)

where η is the viscosity and aH is the hydrodynamic radius. D0

was measured by DLS on samples with � < 1%. It should
be mentioned that with this sample concentration, it is
impossible to perform XPCS measurements due to the weak
scattering of x rays. The DLS measurements were performed
at several scattering angles and wavelengths of λ = 532
and 633 nm. The time constants τ were obtained by fitting
the correlation functions with simple exponentials, and the
momentum transfer q was calculated from the scattering angle
2θ using

q = 4πn

λ
sin

2θ

2
. (2)

Here n = 1.48 is the index of refraction of the solvent, decalin,
a mixture of 50/50 cis- and trans-decalin as determined
using the viscosity measurements described below [24,25].
According to Fick’s law, the mean-square displacement of
Brownian particles from their position at t = 0 is 〈�x2〉 =
6D0t , with D0 being the diffusion coefficient. In reciprocal
space, this corresponds to a q−2 dependence of the correlation
time τ and a diffusion coefficient D0 = 1/(τq2). As seen in
Fig. 2, this quantity is independent of the scattering angle,
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FIG. 2. Measurement of D0 = 1/τq2 by dynamic light scattering.
The squares show the (q-independent) data points obtained with the
sample (dispersed in decalin) that was used in the XPCS experiments.
For comparison, data taken from an identical sample suspended in
cis-decalin (see text) are also shown.

leading to a diffusion coefficient for the PMMA particles in
decalin of D0 = 9 × 107 Å2/s.

As a cross-check, D0 was measured also for a second
sample, consisting of the same PMMA particles suspended
in pure cis-decalin, which has a nominal viscosity of 3.06 cP
(at 24 ◦C [24]). The results of the DLS measurements are
summarized in Table I. The viscosity of the dilute suspensions
was directly measured for both samples using a U-tube
viscometer, hence allowing us to determine aH from Eq. (1).
The hydrodynamic radii aH measured in the two different
solvents are equal within the error bars.

III. RESULTS

A. Static properties

Small-angle x-ray scattering (SAXS) measurements, per-
formed at the ID10A beamlines (ESRF), were corrected for
background scattering contributions from the solvent, the
Kapton tubes of the sample environment, etc. The static
data were fitted using the Percus-Yevick (PY) closure [26]
for the structure factor S(q) and a form factor P (q) for

TABLE I. Measured D0 (DLS) and viscosity η (U tube viscome-
ter) for low concentration suspensions of PMMA particles in decalin
and cis-decalin (at 24 ◦C), and the hydrodynamic radius aH calculated
from the Stokes-Einstein relationship.

Solvent η (cP) D0 (Å
2
/s) aH (Å)

decalin 2.6 ± 0.1 (9.0 ± 0.2) × 107 931 ± 59
cis-decalin 3.2 ± 0.1 (7.35 ± 0.07) × 107 925 ± 38

I(q) data
HS model

 0  5  10  15
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qa
I(
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FIG. 3. (Color online) Example fit for the static scattering from
the � = 18.5% sample. The SAXS signal [plotted here as I (q)q4 to
emphasize the agreement with Porod’s law] was obtained by circular
averaging the 2D CCD images (inset). The continuous line shows a fit
with a model assuming a polydisperse suspension of uniform spheres
interacting via a hard-sphere repulsive potential, as described in the
text.

spherical particles obtained from the fits on the lower con-
centration suspensions. The expressions for S(q) and P (q) are
calculated assuming a particle size polydispersity described
by the Schultz distribution function [27]. In addition, the
resulting form for the scattered intensity I (q) ∝ P (q)S(q)
was convoluted with a Gaussian function describing the
instrumental resolution. An example of the resulting fits for
I (q) is shown in Fig. 3 for the � = 18.5% sample. The same
procedure was applied for all samples. The fitting parameters
are the particle radius a = 890 ± 12 Å with a size distribution
standard deviation σa = 89 ± 11 Å, the volume fraction � of
each individual suspension, and an overall multiplicative factor
measuring the scattering cross section of each sample, which
is not discussed here. On a subset of the samples, additional
SAXS measurements were performed on the SAXS beamline
ID02 at ESRF. The data measured on the two different
instruments (ID10 and ID02) are in excellent agreement.

The PY SAXS analysis procedure described above provides
a fitted form factor for the PMMA particles and a fitted
structure factor for each of the suspensions. An “experimental
structure” factor is not directly accessible from the data, but,
assuming that the decoupling approximation works well for
the relatively monodisperse suspension of spherical particles
studied here [28], a good estimate for it can be obtained by
dividing the experimental scattered intensity I (q) with the
fitted form factor,

S(q) ∝ I (q)/P (q). (3)

The structure factors S(q) for several samples with different
concentrations can be seen in Fig. 4, where the fitted S(q)
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FIG. 4. (Color online) Structure factor S(q) for various samples.
Data points are calculated, as described in the text, from the measured
scattered intensity and the polydisperse particle form factor resulting
from the SAXS fits. Error bars are estimated to be smaller than the
symbols. The solid lines show the fitted structure factor with the PY
model for a polydisperse suspension.

(continuous lines) are shown together with the ones calculated
from the experimental data points using Eq. (3). The fitted
volume fraction is indicated on the graph for each of the
individual samples. The agreement is very good for all
concentrations and over the whole q range. We attribute
the small discrepancies that appear in some of the fits to
experimental artifacts such as parasitic scattering.

B. Dynamic behavior

The intensity fluctuation autocorrelation functions

g(2)(q,t) = 〈I (q,t0)I (q,t0 + t)〉t0
〈I (q,t0)〉2

t0

(4)

were measured for wave vectors q around the main peak in the
structure factor S(q) in a range of 1.5 � qa � 6.

Assuming a Gaussian distribution of the temporal fluctua-
tions at a fixed q, the normalized dynamic structure factor, or
intermediate scattering function (ISF),

g(1)(q,t) =
∣∣
∣∣
S(q,t)

S(q,0)

∣∣
∣∣ , (5)

is related to the intensity autocorrelation functions via the
Siegert relationship,

g(2)(q,t) = 1 + β[g(1)(q,t)]2. (6)

Here, β is the optical contrast, which depends on the transverse
coherence lengths of the x-ray source and the sample, and
on geometrical parameters such as the pinhole size and the
detector slit opening. In the experiments described here, the
contrast β was around 2%–5%.

In low concentration samples, the ISF measured at a wave
vector q is a simple exponential decay, with the relaxation rate
depending on the single-particle diffusion coefficient D0 and
q,

g(1)(q,t) = exp[−D0q
2t]. (7)

For higher concentration suspensions, both direct interac-
tions (DI’s) acting via the hard-sphere interparticle potential
and hydrodynamic interactions (HI’s) between colloids me-
diated by the solvent start playing an increasingly important
role, slowing down the diffusive dynamics of the particles.
While the quasi-instantaneous HI’s between particles are
related to the structure factor S(q), they do not, themselves,
determine the equilibrium static structure, nor do they shift
the glass-transition concentration (see, e.g., [29]). However,
the effects of the HI are very important, even at relatively low
volume fraction, as they slow down considerably the short-time
relaxations. Our XPCS results on this complex many-body
process are shown in the following sections.

1. Short-time dynamics and hydrodynamic interactions

An important time scale arising in dense colloidal suspen-
sions is the short-time limit τS . This is usually associated with
the random motion of individual particles in cages formed
by neighboring particles. For t > τS , the diffusive motion is
slowed down by both HI’s and DI’s between the particles. At
t < τS , the motion is still diffusive but faster, as it is slowed
down only by HI’s and not yet by DI. This effect can be clearly
seen in Fig. 5. The ISF’s are plotted here for three different
values of q and two different samples: a low-concentration
one, � = 12.5%, and a high concentration one, � = 48.5%.

While the low concentration sample shows single expo-
nential decays, in the high concentration samples two distinct
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FIG. 5. (Color online) Intermediate scattering function g(1)(q,t)
measured at � � 12.5% and at � � 48.5% for several q values
around the structure peak. Solid lines show fits with Eq. (7) for the low
concentration sample and fits for the initial decay of the correlation
functions measured from the high concentration suspension using
Eq. (10), as described in the text.
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relaxation rates are observed. On the semilogarithmic scale
used in Fig. 5, the exponential ISF’s g(1)(q,t) appear as straight
lines, with the relaxation rates measured by their slopes. A
short time of τS ≈ 2 ms can be estimated from the change
in slope obvious with the high concentration sample (but
absent in the low concentration one). A physical interpretation
of this time scale emerging in high-density suspensions was
given by Segrè, Behrend, and Pusey [5]. There, τS is the time
required for a particle to diffuse away from the position at
t = 0 to a distance equal to its radius. With our experimental
parameters, this leads to τS = a2/D0 ≈ 9 ms. While this is
within the same order of magnitude as the value observed
experimentally, the agreement is clearly not very good. An
obvious problem associated with this estimate for τS is
associated with the fact that the free diffusion coefficient D0

was used while the diffusion is known to be slowed down by
HI’s. Replacing D0 with a slower diffusion coefficient [e.g.,
DS(q); see the discussion below] makes the disagreement
between the experimentally observed τS and the calculated
one even stronger. This is, however, not surprising, because
the length scale over which the particles can move before
being affected by DI’s should be dependent on the volume
fraction, and is not necessarily equal to the particle radius.
A different estimate of the short time τS can be achieved
using an expression for the frequency of collisions derived
from a theory by Smoluchowsky that is usually used to
describe coagulation kinetics (although here we assume that
coagulation is prevented by the steric stabilization of the
particles). For a suspension of N colloidal particles in a solvent
of dynamics viscosity η and a total volume V , the rate of
collisions is given by (see, e.g., [30,31] and references therein)

k = 8kBT

η

N

V
. (8)

With a particle radius a and volume fraction �, this results in
a time between collisions, identified here with τS of

τS = 1

k
= πηa3

H

6kBT �
. (9)

For � = 48.5%, and using the values of aH and η from Table I,
Eq. (9) leads to a short time of τs ≈ 0.5 ms. Since even on these
short-time scales the dynamics is considerably slowed down
by HI’s, the actual time is expected to be slower. Considering
a factor of ≈10 for this slowing down, in agreement with data
shown further below for the 48.5% sample, a time scale of
τS ≈ 5 ms can be estimated, which is in better agreement with
the data in Fig. 5.

In the short-time limit, the ISF’s can be described in terms
of a q-dependent diffusion coefficient [4],

g(1)(q,t) = exp[−DS(q)q2t], (10)

with the (short-time) diffusion coefficient given by

DS(q) = D0
H (q)

S(q)
. (11)

Here, the hydrodynamic function H (q) describes the HI’s. In
the high dilution limit, S(q) = 1 and H (q) = 1, leading to
DS(q) = D0. A nonunitary hydrodynamic function, H (q) 	=
1, is a hallmark of HI’s. The short-time diffusion coefficients

were determined by a first cumulant analysis [32] in which
the initial decay of the correlation function was fitted to an
exponential form. The fits were performed in two stages. First,
the correlation functions are fitted over the entire time range
with a stretched exponential form,

g(2)(q,t) = β exp[−2(�t)γ ] + g∞, (12)

to obtain accurate values for the experimental contrast β and
baseline g∞ (with g∞ ≈ 1 for all the correlation functions).
Subsequently, these parameters are being fixed in a second
fit, performed only for the initial decays t < ts , with a simple
exponential form,

g(2)(q,t) = β exp[−2Ds(q)q2t] + g∞, (13)

where the q-dependent short-time diffusion coefficient Ds(q)
is the only free parameter. In these ergodic systems where the
intensity fluctuations are well described by Gaussian statistics,
Eqs. (13) and (10) are equivalent.

The δ-γ expansion proposed by the BM theory [9] provides
one of the most successful tools to date describing HI’s in
dense but fluid colloidal suspensions. The only input parameter
required is the static structure factor S(q). The BM theory
predictions were verified by XPCS in several different charge-
stabilized suspensions with screened electrostatic interactions
[15,17]. In the case of sterically stabilized suspensions, inter-
acting via a hard-sphere potential, the predictions of BM theory
were verified by the two-color DLS experiments described in
[5]. One problem associated with using light scattering is that
in general it is impossible to reach high enough values of the
scattering vector q to obtain accurate structural information,
hence calculated values for S(q) (using the PY closure) are
usually taken as input. In x-ray scattering experiments, access
to S(q) down to a fraction of the colloidal length scale is
straightforward, so here the hydrodynamic functions H (q)
were calculated from Eq. (11) using measured static and
dynamic data. One of the problems encountered in XPCS
experiments is that accurate dynamic data can only be obtained
in a relatively small q range (e.g., compared to DLS) because
the signal-to-noise ratio is often limited by the decreasing
scattering cross section at high q (or, equivalently, by a limited
intensity of the coherent x-ray beam). The results for H (q) can
be seen in Fig. 6 for a wide range of volume concentrations and
a range of q covering 2.14 × 10−3 � q � 6.44 × 10−3 Å−1

(or 2 � qa � 6). Experimental data measured at different
concentrations are shown by the different symbols specified
in the legend. Continuous lines show predictions of the
δ-γ expansion with no adjustable parameters other than the
corresponding volume fractions resulting from the S(q) fits.
The agreement between theory and experiment is excellent for
solutions with � � 0.4, which is well in line with the earlier
observations in Ref. [5]. The δ-γ expansion employed in the
calculation is expected to break down for suspensions at high
volume fractions [9]. This is indeed confirmed by our data,
which show a clear overestimate of H (q) at � = 48.5%.

Figure 7 shows the value of the hydrodynamic function
near the structure factor maximum H (qm) as a function of the
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FIG. 6. (Color online) Hydrodynamic functions H (q) vs qa.
The data points are extracted from the fitted short-time diffusion
coefficient Ds(q) and the static structure factors S(q), using Eq. (11).
The volume fractions for the different suspensions are indicated on
the graph. The solid lines are theoretical predictions of the δ-γ
expansion [8,9].

volume fraction. Within the δ-γ expansion, the � dependence
of the peak value of H (qm) for hard spheres with PY input for
S(q) and � � 0.45 is well parametrized by a quadratic form,

H (qm) = 1 − 2.03� + 1.74�2, (14)

represented by the continuous solid line in Fig. 7. The results
are also compared with predictions of numerical calculations
using the accelerated Stokesian dynamics (ASD) algorithm
by Banchio et al. [33,34] for the HI’s of hard spheres. Their
numerical results predict a linear dependence of H (qm) as a
function of � well approximated by

H (qm) = 1 − 1.35�, (15)

which is represented by the dashed straight line in Fig. 7.
As can be seen, the ASD numerical simulations provide
good predictions over the entire range of concentrations
and excellent predictions above � � 0.4, where the δ-γ
theory fails. This is in agreement with the results reported in
[17] for charge-stabilized particles with screened electrostatic
interactions.

The dynamics of fluctuations in suspensions with increasing
volume fraction is also expected to be well described by the
mode-coupling theory (MCT) of the glass transition in hard-
sphere colloids [35,36]. In its lowest order in the separation
parameter

∣∣�g − �
∣∣, the MCT predicts the existence of two

divergent time scales describing the dynamics in different
windows of time: the β relaxation at fast time scales and the
α relaxation at slower time scales. The short-time diffusion

1 − 1.35 Φ (SD)

1 − 2.03 Φ + 1.74 Φ2 (δ−γ)

0.0 0.2 0.4 0.6
0.0

0.5

1.0

Φ

H
(q

m
)

FIG. 7. Comparison between H (qm) and polynomial analytic
forms that fit the theoretical predictions by the δ-γ theory (continuous
solid line) and the Stokesian dynamics numerical algorithm by
Banchio et al. (dashed straight line).

coefficient Ds(qm) corresponding to the fast β relaxation
measured near q = qm follows a power scaling law,

Ds(qm) ∝ ∣∣�g − �
∣∣1.66

. (16)

This form is valid both in the liquid state, � < �g (the
systems probed here), and in the glass state, � > �g [35].
The fundamentally different α process, which is completely
frozen in the glassy state, restores ergodicity in the high
concentration liquid phase with a characteristic long-time
diffusion coefficient Dl(q) following

Dl(qm) ∝ ∣∣�g − �
∣∣2.58

. (17)

The slow relaxation process in the high-density fluids de-
scribed here is analyzed in more detail in the following
section. Here we investigate the scaling forms proposed by
the MCT, Eqs. (16) and (17), for the diverging short-time and
long-time relaxations. The results can be seen in Fig. 8. For the
low-density suspensions, the diffusion coefficients obtained
from single exponential fits are shown by the open black
squares. The short-time diffusion coefficients obtained from
the high-density suspensions using the first-cumulant analysis
described above are shown by the solid black squares. We also
show additional data (solid black triangles) for the short-time
diffusion coefficient previously obtained by Zontone et al. [37]
in a very similar system, namely PMMA hard-sphere particles
suspended in cis-decalin. All the data follow well the scaling
law predicted by the MCT and are represented by the black
continuous line in Fig. 8 with �g = 0.585.

To date, there are fewer points available for the long-time
diffusion coefficients. These are shown in Fig. 8 by the gray
solid circles, which are also in good agreement with the MCT
scaling form (gray dashed power law). The slow diffusion
coefficients were obtained from the fits shown in Fig. 9, and
are described in the following section.

The experiments presented in this section provide further
evidence for two important results on the dynamics in
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Dl, high Φ
Zontone, Moussaïd et al. [30]
Ds, high Φ
D, low Φ (single exp)

0.1 2.020.0 5.050.0

0.01

0.1

1.0

Ds/D0~|Φg − Φ|1.66

Dl/D0~|Φg − Φ|2.58

Φg−Φ

D
/D

0

FIG. 8. Normalized short- and long-time diffusion coefficients
Ds(qm)/D0, Dl(qm)/D0 measured at the peak of S(q) (q = qm) vs the
separation parameter |� − �g|. The continuous and dashed straight
lines are mode-coupling theory predictions as described in the text.

high-density colloidal suspensions interacting with a hard-
sphere potential:

(i) At moderate concentrations � � �g (i.e., � � 40%),
the short-time diffusion coefficients and HI’s are well de-
scribed quantitatively by the BM theory. At higher concen-
trations, only the ASD numerical results by Banchio et al.
provide accurate results.

(ii) The MCT of the colloidal glass transition provides
correct accurate quantitative predictions for both the short-
time and the long-time diffusion coefficients in colloidal
suspensions of higher concentrations (� � �g).

2. Long-time and short-time behavior

In this section, we take advantage of the fact that both
the short-time and long-time diffusion coefficients are readily
available from the XPCS data, to test an approximate scaling
law first proposed by Segrè and Pusey [38]. By using
the aforementioned TCDLS technique, they evidenced a
proportionality between the short- and long-time diffusion
coefficients measured in concentrated suspensions with � ≈
0.46 and higher, over a broad range of q values (excluding
the smallest q’s). This proportionality results in a collapse
on a single master curve of the entire intermediate scattering
functions measured at different q values when scaled by their
short-time decays. This finding suggests that the structural
relaxations of particles or “cages of particles” are both related
to self-diffusion, which contradicts a MCT picture where the
α and β relaxations have different physical origins. However,
subsequent MCT results [29] provided a semiquantitative
argument for the approximate collapse of the ISF’s on a
single master curve at high enough values of q and low
enough values of time, where the nondiffusive character of

0.000 0.005 0.010

1.0

0.2

0.5

qa = 5.80

qa = 3.64

qa = 3.15

qa = 2.65

qa = 2.15

qa = 1.66

t(s)

g(1
) (

q,
t)

(a) Φ = 41.3 %

0.000 0.005 0.010

1.0

0.2

0.5

qa = 4.97

qa = 4.47

qa = 3.64

qa = 3.15

qa = 2.65

qa = 2.15

qa = 1.66

t(s)

g(1
) (

q,
t)

(b) Φ = 48.5 %

FIG. 9. (Color online) Intermediate scattering function g(1)(q,t)
measured at � � 41.3% (a) and 48.5% (b) for several q values around
the structure peak and fits with double exponential decays (continuous
lines).

the α relaxations is not very pronounced and the two modes
hence follow similar decays. The MCT results also point
to the fact that this scaling form is not expected to be
valid in charge-stabilized suspensions due to the long-range
repulsive nature of the potential. This was indeed observed
experimentally in previous XPCS experiments by Lurio et al.
[13,14]. Interestingly, a recent study by Martinez et al. [39]
using XPCS and DLS did not manage to unambiguously detect
the long-time dynamics away from the peak of S(q) in high
concentration suspensions of PMMA particles, and hence
could not validate the Segrè-Pusey scaling. However, their
study, together with an earlier experiment by Riese et al. [16],
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FIG. 10. (Color online) Intermediate scattering functions for all
values of q measured (same data as in figure 9) scaled by the
corresponding short-time relaxation rates �s = Dsq

2 at � = 41.3%
(a) and 48.5% (b). The insets show the ratio between the fitted
short-time and long-time diffusion constants vs qa. For both samples
this ratio is, within our experimental accuracy, a q-independent
constant.

provide clear experimental proof of the equivalence between
XPCS and DLS measurements.

The results presented here are obtained on a system very
similar to that used by Segrè and Pusey, or more recently
by Martinez et al. [39], namely sterically stabilized PMMA
uniform spheres (albeit about half the size), and by use of
XPCS. As pointed out before, with the smaller particles, the
higher concentration suspensions show clearly two different
relaxation time scales within the time and length scales
accessible in the XPCS experiments. In order to extract them

from the experimental data, the ISF’s are fitted with double
exponential decays,

g(1)(q,t) = A exp(−�1t) + (1 − A) exp(−�2t). (18)

The fits for the two high concentration suspensions studied
here with � = 41.3% and 48.5% can be seen in Fig. 9. From
this procedure, both Ds(q) and Dl(q), the short-time and long-
time diffusion coefficients, associated with the MCT β and α

relaxations, respectively, are readily available.
In order to test the Segrè-Pusey scaling relationship between

Ds and Dl , ln
[
g(1)(q,t)/(Dsq

2)
]

are plotted in Fig. 10 as a
function of time as in Ref. [38]. These are exactly the same
correlation functions as shown in Fig. 9, except that the above
scaling has been performed and a log-lin scale is used. As
can be seen, the correlation functions measured over more
than two decades in time collapse on a single master curve,
in agreement with the scaling proposed by Segrè and Pusey.
The insets in Fig. 10 show the ratios between the short- and
long-time diffusion coefficients (Ds/Dl) at several values of
q. As expected, according to the putative scaling behavior this
ratio is a q-independent constant within the experimental error
bars.

We conclude that the Segrè-Pusey scaling behavior is
validated within the combination of length and time scales
accessed here, for dense colloidal suspensions with � ≈ 40%–
50% interacting via a hard-sphere potential.

IV. CONCLUSIONS

In summary, we have used a combination of XPCS,
SAXS, and DLS data to measure the q-dependent short-time
diffusion coefficients Ds(q) and the hydrodynamics interaction
functions H (q) in dense colloidal suspensions with a hard-
sphere interaction potential. Our results show good agreement
with the BM analytical theory at moderate volume fractions
(� < 0.4). The XPCS data show good agreement with the
ASD numerical scheme proposed by Banchio et al. over the
entire concentration range, and in particular above � ≈ 40%,
where the BM theory is less accurate.

The short-time diffusion coefficients measured at different
volume fractions scale with the separation parameter � − �g

as predicted by the mode-coupling theory.
Finally, the XPCS results for the short-time and long-time

dynamics in high-density suspensions are in good agreement
with the scaling relationship proposed by Segrè and Pusey.
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and G. Nägele, Phys. Rev. Lett. 96, 138303 (2006).

[18] See [http://correlator.com].
[19] R. Kemp, R. Sanchez, K. J. Mutch, and P. Bartlett, Langmuir

26, 6967 (2010).
[20] R. Besseling, L. Isa, E. R. Weeks, and W. C. K. Poon, Adv.

Colloid Interface Sci. 146, 1 (2009).
[21] A. Fluerasu, P. Kwasniewski, C. Caronna, F. Destremaut, J.-B.

Salmon, and A. Madsen, New J. Phys. 12, 035023 (2010).
[22] A. Fluerasu, A. Moussaid, P. Falus, H. Gleyzolle, and A. Madsen,

J. Synch. Radiat. 15, 378 (2008).
[23] S. Busch, T. Jensen, Y. Chushkin, and A. Fluerasu, Eur. Phys. J.

E 26, 55 (2008).
[24] W. Seyer and J. Leslie, J. Am. Chem. Soc. 64, 1912 (1942).
[25] W. F. Seyer and R. D. Walker, J. Am. Chem. Soc. 60, 2125

(1938).
[26] W. L. Griffith, R. Triolo, and A. L. Compere, Phys. Rev. A 33,

2197 (1986).
[27] M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461

(1983).
[28] J. Skov Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).
[29] M. Fuchs and M. R. Mayr, Phys. Rev. E 60, 5742 (1999).
[30] H. Holthoff, S. U. Egelhaaf, M. Borkovec, P. Schurtenberger,

and H. Sticher, Langmuir 12, 5541 (1996).
[31] M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. Klein, R. C. Ball, and

P. Meakin, J. Phys. Condens. Matter 2, 3093 (1990).
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