
PHYSICAL REVIEW E 85, 011306 (2012)

Analytical model for tracer dispersion in porous media
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In this work, we present a novel analytical model for tracer dispersion in laminar flow through porous media.
Based on a straightforward physical argument, it describes the generic behavior of dispersion over a wide
range of Péclet numbers (exceeding eight orders of magnitude). In particular, the model accurately captures
the intermediate scaling behavior of longitudinal dispersion, obviating the need to subdivide the dispersional
behavior into a number of disjunct regimes or using empirical power-law expressions. The analysis also suggests
the possible existence of a new material property, the critical Péclet number, reflecting the mesoscale geometric
properties of the microscopic pore structure.
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I. INTRODUCTION

Solute dispersion in porous media is of importance in many
fields of science, such as chemistry, groundwater hydrology,
and oil recovery. Tracers dissolved in a fluid flowing through
a porous material will experience dispersion in both the
longitudinal (downstream) and transverse directions due to
thermal or Fickian diffusion and the variability in both flow
velocity and direction in the pores. Tracers injected at one point
(e.g., a leaking tank polluting groundwater) will thus spread
out into a plume.

Over the past decades many models have been proposed
to model tracer transport. Most models relate the dispersion
coefficients to the flow velocity (v), a characteristic length
scale (the grain size or pore length G), and the molecular
diffusion coefficient (Dm) via the dimensionless Péclet number
Pe = vG/Dm. Due to the use of the microscale G, the
Péclet number is a microscopic property. The most basic
approach to computing the spatiotemporal evolution of the
concentration of tracers is provided by the advection-diffusion
equation (ADE) using separate values of DL and DT for
the dispersion coefficients in the longitudinal and transverse
directions, respectively. To explain the apparently anomalous
behavior of the dispersion coefficients observed in experiments
more sophisticated models have been developed (e.g., flow
through random capillaries [1]). The analysis of [2] provided
an initial approach to evaluate the macroscopic effects of mi-
croscopic pore geometry by means of an averaging procedure.
Percolation theory and continuous time random walks allowed
handling long-range correlations [3]. A range of numerical
methods have also been applied to the problem, such as
network models in which pore connectivity plays an essential
role (e.g., [4]). Finally, full microscopic modeling of incom-
pressible flow through porous materials has become feasible
thanks to modern computing, and considerable successes have
been obtained with this method (e.g., [5–7]).

In this paper we propose a new approach to understand the
first-order relationship between dispersion and flow velocity
(and hence the Péclet number). It is based on a straightforward
physical argument involving the competition of diffusion and
advection in the pore channels, and leads to an accurate
prediction of the observed behavior over the full relevant range
of Péclet numbers. The analysis also suggests the existence of

a new material property related to the cited competition and
the mesoscopic structure of pore geometry.

II. MODELING

A. Longitudinal dispersion

Consider the laminar flow of fluid through a regular or
random homogeneous porous material. The flow is produced
by a pressure difference (head) applied at opposite ends of the
sample of porous material. This pressure difference induces a
complex flow pattern inside the pores that can be computed
exactly using the appropriate equations for an incompressible
fluid, with appropriate boundary conditions (cf. [7]).

Due to the complexity of the pore structure, the flow lines
go apart and come together again as they traverse the material,
dictated by the pressure head and the pore structure, so that
the dispersion of the longitudinal distance 〈(�dL)2〉 among
different flow lines tends to grow linearly as a function of the
mean longitudinal distance 〈dL〉, taken in the direction of the
negative pressure gradient. Regardless of the complexity of
the flow pattern inside the porous material, the incompressible
flow at every point is linear in the applied pressure head, so the
geometry of this flow pattern does not vary as the head is varied.
This leads to what is known as “mechanical” dispersion, with
a diffusion coefficient given by

DL = 〈(�dL)2〉
�t

= 〈(�dL)2〉
〈dL〉/〈vL〉 = βL〈vL〉, (1)

where the mean longitudinal flow velocity 〈vL〉 = v has
been taken as a measure for the pressure head, and βL is
a geometric proportionality constant. Thus the longitudinal
dispersion DL is linear in the mean longitudinal flow velocity
v. A similar argument can also be applied to the transverse
dispersion that is likewise linear in the flow velocity, but
with a different (smaller) proportionality constant due to the
significant geometrical angle between the direction of the
mean pressure gradient and the direction of the transport
DT = 〈(�dT )2〉/�t = βT 〈vL〉.

Into this flow tracers are injected. These tracers are not
merely advected with the flow, but in addition are subject to
random (thermal) Brownian motion. At zero or very small flow,
pure thermal diffusion will result, with diffusion coefficient
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D = D0. At large flow velocity, but still in the laminar flow
regime, the thermal motion of the tracers can be neglected
with respect to the advection, and nearly pure “mechanical”
dispersion will result, D = DL or DT .

We expect there to be an intermediate or transitional
regime in which global tracer dispersion should lie somewhere
between the thermal and mechanical diffusion limits, but a
priori it is not clear how exactly this dispersion scales with
flow velocity.

Following a tracer path through the pore channels of the
porous material, there will be channels oriented at a small
angle to the driving force, in which the mechanical dispersion
will tend to dominate over thermal diffusion. Other channels
will be oriented nearly at right angles to the driving force, and
there thermal diffusion will tend to dominate over mechanical
diffusion. Thus, we propose modeling the mixed behavior in
this intermediate regime by assuming that transport in each of
the successive pore channels traversed by a tracer is dominated
by one of the two mechanisms. In other words, we assume
that a tracer alternately experiences thermal and mechanical
diffusion. Thus, the tracer experiences thermal diffusion for
a fraction of time t0, with thermal diffusion coefficient D0.
Alternating with these phases of thermal diffusion, the tracer
is advected by the flow for a fraction of time tL during which
it experiences a mechanical dispersion DL (proportional to v).
Therefore the total dispersion of the longitudinal distance is
the weighted sum of these two

〈(�dL)2〉 = D0t0 + DLtL,

so the net or total longitudinal diffusion is

Dt
L = 〈(�dL)2〉

t0 + tL
= D0t0 + DLtL

t0 + tL
= D0 + DL(tL/t0)

1 + tL/t0
.

Now, as the net longitudinal flow velocity v increases, we make
the essential assumption that the time fraction tL becomes
progressively longer with respect to t0 as v increases. This is
motivated as follows. As the drive is increased, transport in
ever more pore channels becomes dominated by mechanical
dispersion. So the time fraction ratio of mechanical to thermal
dispersion a tracer experiences will be an increasing function
of the velocity

tL

t0
= f

(
v

vc

)
,

where f (x) is a monotonically increasing function of x such
that f (0) = 0 and f (1) = 1, and vc is a critical velocity
(the velocity where mechanical diffusion starts to dominate
globally over thermal diffusion). In the limit v = 0, one has
tL/t0 = 0 and Dt

L = D0. In the limit v → ∞, one has tL/t0 →
∞, and Dt

L = DL. Both these limits agree with expectation.
In the following, we will set f (x) = x for simplicity, but
leave open the possibility that future studies may reveal more
complex functional dependencies. To better understand the
intermediate regime, we insert DL = βLv, and find

Dt
L = D0 + βLvf (v/vc)

1 + f (v/vc)
= D0 + βLv(v/vc)

1 + v/vc

, (2)

which is recognized as a Padé approximation.
Equation (2) has triple asymptotic behavior. For v ↓ 0, one

has Dt
L � D0. For v → ∞, one has Dt

L � βLv. But there

is also an intermediate regime where Dt
L � βLv2/vc. This

regime occurs for v/vc � 1 and βLv2/vc 	 D0. In summary,

Dt
L �

⎧⎪⎪⎨
⎪⎪⎩

D0 when v
vc

�
√

D0
βLvc

,

βLv2/vc when
√

D0
βLvc

� v
vc

� 1,

βLv when v
vc

	 1.

The intermediate asymptote only appears in full when the
two corresponding limits are sufficiently far apart (i.e., when
D0/βLvc � 1).

Physically, the left and right asymptotes correspond to the
limits in which one of the transport mechanisms (thermal diffu-
sion and mechanical dispersion, respectively) dominates. The
intermediate regime arises when the strength of the mechanical
dispersion increases simultaneously with the fraction of time
tL/t0 that the tracer is experiencing mechanical dispersion as
compared to thermal diffusion.

Experimental data are commonly expressed in terms of
Dt/Dm versus Pe, where Dm is the molecular diffusion
coefficient and Pe is the dimensionless Péclet number. The
above expressions can be recast in this dimensionless form by
substituting Dt → Dt/Dm and {v,vc} → {Pe,Pec}. Thus, the
dimensionless form of Eq. (2) is

Dt
L

Dm

= D0/Dm + β ′
LPe(Pe/Pec)

1 + Pe/Pec

. (3)

To test the validity of Eq. (3) we have fitted our expression
to the numerical simulation data of [6] and [7] [based on
microcomputer tomography (CT) scans of porous sandstone].
Due to the very low noise level of the numerical simulation,
this test is probably more stringent than testing the model
against data from laboratory experiments. The fits, shown in
Fig. 1, are a very good match to the simulated data. Note, in
particular, that the intermediate region (with logarithmic slope
>1) is reproduced in full detail.
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FIG. 1. (Color online) Numerical simulations of longitudinal
dispersion in three-dimensional micro-CT scans of sandstone sam-
ples, and model curves. Top curve: Data from Sample A of [7]
(blue circles); line: fit using Eq. (3) with D0/Dm = 0.46 ± 0.13,
Pec = 8.0 ± 0.2, and β ′

L = 3.7 ± 0.5. Bottom curve: Data from [6]
(green triangles); line: fit using Eq. (3) with D0/Dm = 0.34 ± 0.05,
Pec = 2.4 ± 0.3, and β ′

L = 0.84 ± 0.09. The vertical dashed lines
indicate Pec for each curve.
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B. Transverse dispersion

Transverse dispersion is different from longitudinal disper-
sion in that the drive is not very efficient in the transverse
direction. Therefore, the transverse mechanical dispersion
is not able to compete with thermal diffusion, and thermal
diffusion cannot be neglected along any part of the tracer
trajectory. The drive, however, is only effective in pore
channels directed at angles less than 90◦ with respect to the
mean flow vector during a fraction of time tL. Thus we get

〈(�dT )2〉 = D0(t0 + tL) + DT tL,

which expresses that thermal diffusion is always operative in
the transverse direction, while mechanical dispersion (with
characteristic diffusion coefficient DT ) is operative only in
specific channels (i.e., for a fraction of the total time). Due to
the relative inefficiency of the drive, this approach is expected
to yield less precise results than Eq. (2), and minor corrections
to this expression may be needed [8]. This is left to future
work.

Following the same reasoning as before, we immediately
find

Dt
T = 〈(�dT )2〉

t0 + tL
= D0+DT

tL/t0

1 + tL/t0
= D0 + βT v

v/vc

1 + v/vc

.

(4)

We have assumed that tL (or vc) has the same value here as
with longitudinal dispersion based on the assumption that the
geometrical flow pattern is one and the same for longitudinal
and transverse dispersion, although this is only strictly true in
the limit of small thermal diffusion.

The transverse dispersion has two extreme asymptotes that
are equivalent to those of longitudinal dispersion, namely, for
v ↓ 0 one has Dt

T � D0, and for v → ∞ one has Dt
T � βT v.

However, here there is no “intermediate asymptote,” but only
a very gradual transition from one asymptote to the other,
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FIG. 2. (Color online) Longitudinal (circles) and transverse (tri-
angles) dispersion. Data from experiments in a wide range of granular
porous media from [9] and references therein. The longitudinal
dispersion dataset was fitted using Eq. (3), yielding D0/Dm = 0.8 ±
0.2, Pec = 3.4 ± 0.2, and β ′

L = 1.4 ± 0.1. The transverse dispersion
dataset was fitted using Eq. (5) while keeping D0/Dm and Pec fixed,
yielding β ′

T = 0.064 ± 0.006. The vertical dashed line indicates Pec.

FIG. 3. (Color online) Longitudinal dispersion in a packed bed
of glass beads. Diamonds: Data from [11] at Sc = 754. Circles: Data
from [12] at Sc = 424. Closed symbols: DL/Dm. Open symbols: The
same data represented as PeL ≡ PeDm/DL. The continuous curves
correspond to the fit of the data to Eq. (3), yielding D0/Dm = 0.86 ±
0.05, Pec = 13.5 ± 1, and β ′

L = 2.13 ± 0.05. The vertical dashed line
indicates Pec.

specified via the factor containing v/vc in Eq. (4). The
transition between asymptotes occurs around v � vc.

In dimensionless form, Eq. (4) becomes

Dt
T

Dm

= D0

Dm

+ β ′
T Pe

Pe/Pec

1 + Pe/Pec

. (5)

A fit of the analytic expressions to an ample collection
of measurement data is shown in Fig. 2. The figure contains
data from 18 different experiments on longitudinal dispersion
and 15 on transverse dispersion, spanning an ample range of
the Schmidt number, 500 < Sc < 2000 [9]. The parameters
D0/Dm, Pec and β ′

L were determined from a least-squares
fit to the longitudinal dataset. For the transverse dataset, the
parameters D0/Dm and Pec were held fixed at these values,
while only β ′

T was varied. By making a joint fit to all data, the
obtained parameters represent mean values over the various
individual datasets. This procedure illustrates the generic
dispersional behavior, covering a range of different materials.
But much better results, with less scatter, are to be expected
for fits to an individual dataset.

To illustrate the preceding remark, Fig. 3 shows an example
of a fit to an individual longitudinal dispersion dataset. The fit
is rather satisfactory.

III. DISCUSSION

In previous work [3,9] the available experimental data
were analyzed by subdividing the range of Pe numbers into
individual regimes and describing the dispersional behavior
in each of these sections heuristically (using, e.g., power-law
expressions [10]).

In Fig. 4 we show (top) the typical shape of the analytical
curves, Eqs. (3) and (5), with parameters similar to those used
in the examples above (D0/Dm = 0.8, Pec = 3, β ′

L = 1.4,
β ′

T = 0.06). The bottom panel in this figure shows the local
power-law exponent, computed as

αL,T = Pe

Dt
L,T

∂Dt
L,T

∂Pe
. (6)
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FIG. 4. (Color online) The two analytical curves for longitudinal
and transverse dispersions, Dt

L(Pe) and Dt
T (Pe), and their local power-

law exponent given by Eq. (6).

The evolution of the local power-law exponent with Pe
number displays roughly the same behavior as the successive
regimes described in [3,9]. The intermediate regime does
not develop fully as the condition (D0/Dm)/β ′

LPec � 1 is
only marginally fulfilled. Thus, the intermediate power-law
exponent for longitudinal dispersion only reaches a value of
about 1.2, instead of the maximum of 2 predicted by the model.
This value (1.2) is consistent with the value cited in literature
for the corresponding range of Pe numbers [9,13].

IV. CONCLUSION

In this work, we present a unified model for longitudinal and
transverse tracer dispersion in laminar flow in porous media.
Based on a straightforward physical argument, an analytical
expression is obtained that describes the observed behavior
over the full available range of laminar flow velocities or Péclet
numbers.

In the literature, it has been customary to use power-law
scalings to describe the behavior of Dt

L,T (Pe), each of which
being valid only in a limited range of Pe values [3,9]. The
generic appearance of power-law scalings seemed to indicate
that tracer dispersion in porous media was an anomalous
transport process, characterized by fractional exponents [3].
However, in view of the present work, it seems that no
anomalous transport mechanisms need be invoked to explain

the observed behavior. This is a very satisfactory situation,
at least for sandbox or glass bead experiments, in which the
structure of the medium is not patently fractal.

The present work has revealed the existence of two numbers
that determine the dispersion curves: the critical velocity or
Péclet number (vc or Pec) and D0/βLPec. Pec is interpreted
as a material property that depends on the pore geometry
so that different materials should have different Pec values.
The exploration of the dependence of Pec on other material
properties may provide further insight into its significance.
It is of interest to note that we generally find that Pec > 1,
rather than equal to one, as one might expect for the transition
from dominant diffusive to dominant advective transport [4].
This indicates that the scale at which this transition occurs
is larger (by a factor Pec) than the grain or pore scale G.
Also note that the family of three-parameter curves given by
D0,Pec, and βL may explain a significant part of the observed
data spread mentioned in [9]. Finally, the intermediate region
and the maximum value of the local longitudinal power-law
exponent depend exclusively on D0/βLPec.

The analysis we present is consistent with the idea,
proposed also by other authors [14], that the main effects
of porosity on dispersion can be modeled using a single
characteristic mesoscopic length scale (PecG), and that the
details of the microscopic pore geometry and inertial effects
only lead to corrections to this generic behavior. The present
modeling approach allows determining this mesoscale from
the dispersion data. The present work does not pretend
to provide the same modeling precision as the empirical
scalings provided in the ample literature, but merely to provide
improved insight into the generic behavior of tracer dispersion
in driven laminar flow through porous media.
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