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Microstructure evolution during impact on granular matter
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We study the impact of an intruder on a dense granular material. The process of impact and interaction between
the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions.
In the first part of the paper we discuss how the intruder’s dynamics depends on (1) the intruder’s properties,
including its size, shape and composition, (2) the properties of the grains, including friction, polydispersity,
structural order, and elasticity, and (3) the properties of the system, including its size and gravitational field. It
is found that polydispersity and related structural order, and frictional properties of the granular particles, play
a crucial role in determining impact dynamics. In the second part of the paper we consider the response of the
granular system itself. We discuss the force networks that develop, including their topological evolution. The
influence of friction and structural order on force propagation, including the transition from hyperbolic-like to
elastic-like behavior is discussed, as well as the affine and nonaffine components of the grain dynamics. Several
broad observations include the following: tangential forces between granular particles are found to play a crucial
role in determining impact dynamics; both force networks and particle dynamics are correlated with the dynamics
of the intruder itself.
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I. INTRODUCTION

The problem of impact on a dense granular material has
been explored extensively due to its relevance to processes
that vary from asteroid impact, numerous technological ap-
plications, defense from high speed projectile impact, or to
simply walking on a sandy beach. While a large amount of
research has been done over hundreds of years, only during
the last few decades has significant progress been reached
in formulating relatively simple but realistic effective models
which characterize the basic features of the interaction between
an intruder and a granular material itself.

These effective models have allowed for much better
understanding of the dependence of the forces due to impact on
various parameters. A simple model due to Poncelet and dating
from the 19th century is based on the concept that the force
experienced by an intruder may be separated into independent
speed- and depth-dependent parts [1]. The speed-dependent
part is hydrodynamic-like, while the depth-dependent part is
considered to be due to forces of either hydrostatic or frictional
origin. While careful experiments [2–9] and simulations
[3,10–13] have improved our understanding of the physics
of impact considerably, they have also opened a new set of
questions. Some of these questions include scaling of the
penetration depth with the impact speed and intruder size,
for which a variety of sometimes contradictory results exist
(see, e.g., [7,8] and discussions therein). The dependence
of the granular force on the intruder speed is not always
clear [8], and the role of various effects which determine
the depth-dependent part of the force is also a subject of
discussion, with models that suggest either frictional [10] or
hydrostatic-like [13] forces. The picture which has evolved as
a result of recent work is that there are multiple regimes where
different aspects of the interaction between an intruder and
granular particles may be relevant, and it has become obvious

that it is necessary to look into the granular system itself in
order to understand the basic physical mechanisms responsible
for determining large scale dynamics of an intruder.

Therefore, in this work we take a different approach by
correlating the results for the dynamics of an intruder with the
evolution of the microstructure of the granular material itself.
In particular, we concentrate on the influence of frictional
properties of the granular particles, and on their polydispersity
and structural ordering. We show that these quantities may
strongly influence the response of the granular material, the
interaction between the granular particles and intruder, and,
consequently, the dynamics of the intruder itself.

The structure of this paper is as follows. After discussing the
simulation techniques in Sec. II, we present in Sec. III results
for the intruder dynamics for various parameters characterizing
the intruder and the granular system. We compare our results
with existing simulations and experiments, with a significant
part of this comparison in the Appendix. In the present work
we limit ourselves to the regime where the final penetration
depth is smaller then or comparable to the intruder size;
larger depths will be considered elsewhere. In Sec. IV we
then consider the granular material itself. In Sec. IV A we
explore properties of the force field, the influence of structural
order, polydispersity, and friction on force propagation, and
topological quantities describing structure of the force field.
In Sec. IV B we discuss affine and nonaffine components of the
dynamics of the granular particles. We conclude by discussing
the question of energy expenditure, and further elaborate on
the role of friction and structural order or granular packing.

II. TECHNIQUES

We consider a rectangular domain in two dimensions
with gravity. The particles are polydisperse disks, with
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their diameters varying randomly in a range ±r about the
mean. The particle-particle and particle-wall interactions are
modeled using the soft-sphere approach that includes friction
and rotational degrees of freedom. We solve the following
equations of motion for each particle:

mi

d2ri

dt2
= Fn

i,j + Ft
i,j + mig,

(1)

Ii

dωi

dt
= −1

2
din × Ft

i,j .

The normal force is given by

Fn
i,j = [knx − γnm̄vi,j ]n,

where ri,j = |ri,j |, ri,j = ri − rj , and the normal direction is
defined by n = ri,j /ri,j . The compression is defined by x =
dav − ri,j , where dav = (di + dj )/2, di and dj are the diameters
of the particles i and j ; vn

i,j is the relative normal velocity.
The nondimensional force constant kn is related to the

dimensional one k by k = knmg/d, where m is the average
particle mass, d is the average particle diameter, and g is
Earth’s gravity. All quantities are expressed using d as the
length scale, the binary collision time

τc = π

√
d

2gkn

as the time scale, and m as the mass scale. Then, m̄ is
the reduced mass and γn is the damping coefficient related
to the coefficient of restitution en by γn = −2 ln en/τc (see,
e.g., [14]). We take en constant and ignore its possible
velocity dependence [15]. For definitiveness we typically use
the physical parameters that are appropriate for photoelastic
disks [16], in particular d = 4 mm, kn = 4 × 103, en = 0.5,
although we also consider different values of kn and en. The
parameters entering the force model can be connected to the
physical properties of the material (Young modulus, Poisson
ratio) using the method described, for example, in [14].

Before proceeding with the discussion of the tangential
forces, it is appropriate to comment on the presence of two
time scales in the problem: one is the fast time scale τc,
defined above, which is relevant for the processes involving
particle collisions, and the other slow penetration time scale
is ts = √

Di/g, where Di is the intruder’s diameter. Here ts
is proportional to the time for an intruder to travel a distance
equal to its own diameter, starting from rest in a gravitational
field. In this work we will concentrate chiefly on the granular
dynamics, and therefore τc is the most appropriate time scale,
and d/τc is the most appropriate (fast) velocity scale. The two
time scales are related by τc/ts = π/

√
2Dikn � 1.

The tangential force is specified by two different models,
which can be conveniently described within the same frame-
work. The basic approach is based on a Cundall-Strack type
of model [17], where a tangential spring of zero length is
introduced when a new contact between two particles forms
at t = t0. Due to relative motion of the particles, the spring
length ξ evolves as

ξ =
∫ t

t0

vt
i,j (t ′)dt ′,

where vt
i,j = vi,j − vn

i,j . For long lasting contacts, ξ may not
remain parallel to the current tangential direction defined
by t = vt

i,j/|vt
i,j| (see, e.g,. [18,19]); we therefore define a

corrected ξ ′ = ξ − n(n · ξ ) and introduce the test force

Ft∗ = −ktξ
′ − γtvt

i,j ,

where γt is the coefficient of viscous damping in the tangential
direction (we use γt = γn/2). To keep the magnitudes of
tangential forces smaller than the Coulomb threshold, specified
by μFt , where μ is the coefficient of static friction, we define
the tangential force by

Ft = min(μ|Fn|,|Ft∗|) Ft∗

|Ft∗| . (2)

In addition, ξ ′ is reduced to the length corresponding to the
value of |Ft | as needed. This is a commonly used model for
static friction, for nonzero kt . To be able to isolate the effect
of static friction, we also consider a commonly used kinetic
friction model based on viscous damping, which is obtained
simply by putting kt = 0. Therefore, depending on whether
static friction effects are considered or not, we use either model
1: kt = 0.8kn (the value suggested in [20]), or model 2: kt =
0.0 (kinetic friction only). The exact value of kt does not seem
to be of relevance in the present context as long as kt �= 0.
The particles making up the walls are made very inelastic and
frictional, with μ = 0.9 and en = 0.1.

Figure 1 shows the system setup. Here W and L are the
width (depth) and the length of the granular bed, respectively.
Periodic boundary conditions are implemented on the left
and right boundaries. From below and above, the domain is
bounded by rigid horizontal walls made up from monodisperse
particles, with the properties as specified above. The role

FIG. 1. (Color online) System setup. For illustration we show
implementations of both circular and elliptic intruders. In the
simulations, one of these shapes is incident on the middle of the
upper surface of the granular system. Particles are colored according
to the total normal force experienced (here only due to gravity) with
dark color showing large force. The intruders’ color is for illustration
only.
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of the top wall is essentially to contain those few particles
which would be ejected during particularly violent impacts.
However, the upper boundary is positioned sufficiently high
that collisions with this wall are very rare.

We consider both circular and elliptical intruders. An
elliptical form is one way to represent an ogival shape. The
initial height of the intruder is fixed so that the lowest part
of the intruder is 5d above the granular surface; we then
vary the initial intruder’s velocity. The implementation of a
circular intruder is straightforward. It is still considered to
be a single large particle, with is own set of parameters, for
example, stiffness, and friction. We model elliptical and ogival
intruders as a cluster of 360 granular particles with a mass
appropriate to the intruder. This cluster forms a rigid shell on
the surface of an ellipse; that is, the particles in the cluster
are rigidly attached to each other. In the simulations, the total
force on the cluster is computed, and then the positions of
all cluster particles are updated by applying Eqs. (1) to the
cluster as a whole. We have confirmed that implementing a
circular intruder as either a single particle or as a cluster does
not influence the results, as discussed below. Although we
position the cluster particles on the surface only, we typically
consider solid intruders by choosing the cluster moment of
inertia appropriately. More precisely, the moment of inertia is
given by I = mi(a2 + b2)/4, where a and b are the semiaxes
of an ogival intruder, and mi is its mass.

The speed of sound c in the system will be needed below
in order to put the results in perspective. We estimate this
property by the time needed for information to propagate
across the domain. Specifically, we apply a point force at
the top of the granular bed and measure the time needed for the
force information to reach the bottom. When using the kinetic
friction model we find (in dimensionless units) c ≈ 2, while for
the static friction model we find slightly larger c ≈ 2.4.
In our simulations we concentrate on the subsonic regime,
and consider intruder speeds up to 1 in our dimensionless
units.

In order to examine the effect of the granular microstructure
on the impact, we model two types of packings. One is an
exact hexagonal lattice with particles of identical size, and
the other is a randomly packed system with r = 0.0, 0.1,
0.2, 0.3, and 0.4. The hexagonal lattice is prepared by simply
positioning the particles so that they initially touch each other,
and letting them equilibrate under gravity. The random systems
are prepared by positioning the particles on a square lattice,
giving them random initial velocities, letting them settle under
gravity until the total kinetic energy decays below a given
threshold (10−10mgdav), and then smoothing the irregular top
surface roughness, if there is any. To consider reproducibility
and the influence of a particular configuration on the results, we
modify the initial random velocities assigned to the particles,
and repeat the simulation.

The simulations are typically carried out using 6000
particles, with the size of the domain in units of the mean
particle diameter given by L = 100 in the horizontal direction,
and the initial height of the granular bed given by W = 60, see
Fig. 1. After settling, the particles form a system of height ∼56
for random polydisperse systems. This system size is at least
moderately large. However, to test for system size dependence,
we have also carried out simulations in much larger domains

containing up to 90 000 particles. The influence of system size
on the results is discussed in Sec. III B.

The volume fraction ρ occupied by the grains is difficult
to compute precisely due to the presence of a rough (on
the grain scale) upper surface. Furthermore, some variations
of ρ may also result due to different initial configurations.
These variations are less than about 0.01, with typical ρ

being in the range 0.85–0.86 for the random polydisperse
systems. The influence of the change of simulation parameters,
such as polydispersity, force constant, or gravity, leads to
modifications of ρ on the same scale as different initial
conditions. As we will discuss in the next section, the influence
of different initial conditions on large-scale features of the
results, such as the final penetration depth, is minor, and
therefore we may expect that the influence of slight variations
of ρ reported above is not significant. The only case where
there is a appreciable difference is the hexagonally ordered
system; here ρ ≈ 0.91, as expected for a lattice compressed
under its own weight.

No additional compaction of the granular bed is used; we
have experimented with shaking of the bed to increase ρ,
however only very minor additional compaction was achieved,
and we were not able to quantify its influence on the result that
follow. It will be of interest to consider the effect of additional
compaction on the intruder’s dynamics, perhaps by applying
an external load. Another issue which is left for future work
is considering the influence of interstitial air on the impact
dynamics—in the present work we do not consider this effect.

III. RESULTS FOR THE PENETRATION DEPTH

In this section we discuss results for the penetration depth,
and its dependence on parameters characterizing the granular
system and of the intruder. We also briefly compare our results
to the existing data, with more detailed comparison given in the
Appendix. In Sec. IV we discuss the properties of the force field
in the system, its dynamics, and its influence on the penetration
depth D(t) defined as the distance between the position of the
bottom part of the intruder and the initial upper boundary of
the granular bed at the point of impact. For the penetration
depth measurements, we also calculate the “final” penetration
depth D by averaging D(t) at long times. Fluctuations in D(t)
are typically much smaller than the average particle size.

We start by considering a randomly packed system with
particles characterized by polydispersity r = 0.2, Coulomb
friction μ = 0.5, coefficient of restitution en = 0.5, and with
kinetic friction only kt = 0.0. The intruder is a disk, with
diameter of Di = 10 in units of the average particle diameter,
and otherwise possessing the same material properties as the
granular particles. Figure 2 shows the time evolution of the
penetration depths of an intruder impacting the granular bed
with one of seven different speeds, ranging from 0.05 to 1.

The main properties of the results presented in Fig. 2 are as
follows. As expected, slower intruders create shallow craters;
specifically, the penetration depth is less than the intruder’s
own diameter. By contrast, intruders of higher speeds are
entirely submerged in the granular bed. For the larger impact
velocities we find an overshoot in the penetration depth, that
is, the intruder rebounds toward the surface of granular layer,
as also observed experimentally [8,21]. The “stopping time”
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FIG. 2. (Color online) Penetration depth of Di = 10 intruder
impacting with different speed. Here we use r = 0.2, kn = 4 × 103,
kt = 0.0, en = 0.5, μ = 0.5. Material properties of the intruder are
the same as of the granular particles. The arrow shows the direction
of increasing impact speed.

at which the intruder essentially stops is somewhat ambiguous
for smaller impact velocities, for which there is no overshoot,
and this time might be considered to be either approximately
constant, as in [3], or a decreasing function of the impact
velocity, as in [7].

The origin of the small oscillations seen in plots of the
intruder depth versus time for longer times in Fig. 2 will be
discussed later. Here we proceed to analyze the influence of
the properties of the intruder and of the granular system itself
on the penetration depth.

A. Intruder properties

Effect of shape: Realistic intruders are often not circular,
and therefore it is relevant to explore the influence of the
intruder shape on the interaction with granular matter. This
issue was considered experimentally [22], and it was found that
as expected, more pointed objects penetrated deeper, although
only in the case of shallow penetration. To be specific, we
consider here a particular shape, an elliptic ogive (an ellipse in
2D), and examine how the aspect ratio affects the penetration
depth. To avoid complications with ogival intruders “falling”
sideways as may happen particularly for impacts with low
speeds, we prevent them from rotating simply by switching
off the rotations of the intruder throughout the simulation.
This is done for ogival intruders only and we have verified that
for high speed impact (where the intruders do not fall sideways
with or without rotations), there is no influence of exclusion
of rotations on the final penetration depth.

As explained in Sec. II, we simulate elliptic intruders
by preparing a “composite” intruder made up from rigidly
attached particles. To isolate the effect of the intruder’s shape,
we fix the intruder masses to that of a disk with Di = 2a

by changing the intruders’ density. Figure 3 show the final
(long time) penetration depth of the intruders characterized
by different a, b, and impact velocities. We find that for
the intruder sizes and aspect ratios considered here, the final
penetration depth increases approximately linearly with the
aspect ratio b.

FIG. 3. (Color online) Total (long time) penetration depth D̄ for
intruders characterized by different elliptical ogives and different
sizes; we show the results for (i) a = 5 and v = 0.1 (red squares),
v = 0.4 (green triangles), v = 0.7 (blue diamonds), and for (ii) a =
10, v = 0.7 (red circles). The domain size was increased in (ii) to
H = 100, W = 100. The other parameters are as in Fig. 2.

Effect of composition and stiffness: The equations of motion
determining the intruder’s dynamics are also influenced by
the moment of inertia. To consider the influence of this
quantity, we consider hollow intruders, consisting of only a
shell of thickness d. In order to ensure that the composite
intruders behave identically to a single particle, we model
solid intruders using both approaches. All three configurations
(single-particle solid, composite solid, and composite hollow)
yield essentially identical results, showing that (i) modeling
of an intruder either as a composite or as a single particle
produces indistinguishable results, and (ii) the influence of
moment of inertia of an intruder, at least with the present
choice of parameters, and for an intruder which is forced to
remain straight as discussed before, is minimal. We have also
considered briefly the influence of the projectile’s stiffness on
penetration, and simulated infinitely stiff intruders (limit of
infinite spring constant kn in our force model) interacting with
soft granular particles. We find that the penetration depth for
these stiff intruders is only slightly smaller compared to the
finite-kn ones. This result suggests that direct interaction of
an intruder with granular particles plays only a minor role
in determining final presentation depth, while particle-particle
interactions are more relevant. This interaction is discussed
next.

B. System properties

Effect of particle stiffness and the coefficient of restitu-
tion: Particle stiffness, modeled by the spring constant kn,
defines the collisional time scale in the problem τc ∝ 1/

√
kn.

Conceivably, one might expect that as kn varies at constant
(nondimensional) impact speed, the results would not change.
That is, dynamics expressed in units of τc might be independent
of dimensional properties such as kn. However, this invariance
is broken by the presence of gravity. While the role of gravity
is explicitly considered later, we can already see its influence
on the dynamics in the results of Fig. 4. This figure shows
that as kn (of both granular particles and intruder) increases at
fixed dimensionless impact speed, the impact depth becomes
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FIG. 4. (Color online) Penetration depth of an intruder in systems
with varying stiffness (both intruder’s and granular particles’ stiffness
is modified consistently). Here the force constant is given the follow-
ing values: kn = 4.0 × 105 (red dash-dotted line), kn = 4.0 × 104

(blue dashed line), kn = 4.0 × 103 (black solid line). The impact
speed is v = 0.7. The fixed value of τc used for nondimensionalization
of all results is obtained using kn = 4.0 × 103. The other parameters
are as in Fig. 2.

significantly larger. This result can be understood by realizing
that the energy of impact is much larger in the case of larger kn

since impact velocity (in physical units) scales as
√

kn. Note
that larger stiffness is one of the reasons for significantly larger
penetration depths in recent simulations [13], where stiffer
particles were considered. An additional effect, the change
of volume fraction due to modified interactions between the
particles is weak, as noted in Sec. II. We have also considered
impacts where the impact velocity is kept fixed (in physical
units), and the stiffness changed. In this case we find at
least for the parameters considered, the influence of particle
(and intruder) stiffness on the penetration depth is minimal.
The only visible influence of stiffness is modification of the
initial overshoot which is less pronounced for stiffer particles.
This effect can be explained by stronger resistance of stiffer
particles during the initial stage of (relatively) high-speed
impact. For the impacts characterized by low speed, we do
not see any influence of stiffness.

Figure 5 shows the influence of elasticity of the granular
particles, measured by the coefficient of restitution en. A
large coefficient of restitution leads to a significantly deeper
penetration, as would be expected since the energy loss is
reduced relative to a lower restitution coefficient. Interestingly,
while a decrease of en reduces the depth of penetration, it does
not remove the overshoot of the D(t) curve. We will see below
that a different behavior results when the frictional properties
of granular particles are modified. Later in this section we will
also discuss the influence of en on the long-time oscillations
of the projectile depth D(t); for the purpose of this later
discussion we use a larger domain size for the simulations
shown in Fig. 5.

Effect of friction: The influence of friction between the
granular particles on the penetration depth in particular, and on
the response of the granular material to an intruder in general
is not immediately obvious. For example, in considering the
response of a system to a point force, it has been found that
friction plays a role in determining how forces and stresses

FIG. 5. (Color online) Penetration depth of an intruder in systems
with varying coefficient of restitution, en = 0.9,0.5,0.1 shown by red
(solid), dashed (green), and blue (dash-dotted) lines, respectively.
Here v = 0.7, the system size is W = 200, L = 200; the other
parameters are as in Fig. 2.

propagate through the system [20]. Of course, a response
to an intruder is expected to be more complicated since it
leads to a large scale rearrangement of granular particles,
which is not expected in a response to a localized (small)
point force. Indeed, it has been suggested that friction is not
necessarily crucial in understanding this response [13]. Here
we illustrate the influence of friction on the penetration depth
for a particular system. We discuss more generally the manner
in which friction influences the dynamics of an intruder in
the Appendix, and the corresponding behavior of the granular
material of different frictional properties in Sec. IV.

To illustrate the influence of friction we consider two
effects: first, the effect of the friction model, and second of
Coulomb threshold. Figure 6 shows the corresponding results.
We find that having a model with static friction leads to a
significantly smaller penetration depth (blue dash-dotted curve
in Fig. 6) than a model without static friction, particularly for
a large Coulomb threshold. For a smaller Coulomb threshold,
the influence of static friction is weaker, and the response

FIG. 6. (Color online) Penetration depth for different friction
models and Coulomb thresholds; here we show the results as follows
(top to bottom): μ = 0 (red dashed line); μ = 0.1,kt = 0.0 (green
dotted line); μ = 0.1,kt = 0.8 (pink dash-dot-dotted line), μ = 0.5,

kt = 0.0 (black solid line); μ = 0.5,kt = 0.8 (blue dash-dotted line).
Here v = 0.7, the other parameters are as in Fig. 2.
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of the system in that case turns out to be similar to the one
obtained using kinetic friction only (compare green dotted
and pink dash-dot-dotted curves in Fig. 6). Furthermore,
an “overshoot” in the intruder depth may be removed in
the case of (strong) static friction. This is one significant
difference between the influence of friction and inelasticity on
the intruder’s dynamics: in the case of increased inelasticity
(smaller coefficient of restitution) we still find an overshoot,
see Fig. 5.

Effect of polydispersity: One of the focal points of this
work is the influence of granular microstructure on impact.
Microstructure is strongly influenced by the polydispersity
and related structural ordering of granular particles. To
analyze the influence of these parameters, we have carried out
simulations where we have varied the parameter r determining
polydispersity between 0.0 and 0.4. We have also carried out
simulations using a perfect hexagonal lattice of particles as
the initial configuration. We typically find that the results for
a system with r = 0.0, prepared as described in Sec. II, are
similar to the ones obtained using a hexagonal lattice. This is
not surprising since monodisperse particles tend to crystallize,
as confirmed by considering the pair correlation function,
which shows only small differences between monodisperse
“random” and hexagonal lattices. (These results are not shown
here for brevity.) Therefore we show the results obtained using
a hexagonal lattice in place of an r = 0.0 system prepared
using our usual protocol.

Figure 7 shows the intruder depth as a function of time
for an impact on a hexagonal lattice. We immediately note
very different properties of the D(t) curves compared to an
impact on a polydisperse system, see Fig. 2. For the impact
velocities considered here, the intruder very quickly reaches
a depth at which its velocity reverses, and then the intruder
actually rebounds outside of the granular layer, falls again
under gravity, and then settles at the final depth. This final depth
does not depend in any obvious manner on the impact velocity,
presumably because the impact is not strong enough to initially
penetrate through the lattice structure of the material, and
by the time of the secondary impact (after rebound), the
information about the initial velocity has been lost. The initial
velocity essentially influences only the initial depth which

FIG. 7. (Color online) Penetration depth for an impact on a
hexagonal lattice; here r = 0.0 and the other parameters and line
patterns are as in Fig. 2. Note the different range on the vertical axis
compared to the one typically used.

(a)penetration depth as a function of
r for different v’s.

(b)penetration depth as a function of
v for different r’s.

FIG. 8. (Color online) Final (long time) penetration depth for
the systems characterized by different polydispersities r; the other
parameters are as in Fig. 2.

the intruder reaches (before rebound), and the length of the
interval after impact which the intruder spends outside of the
granular layer (this interval being longer for larger impact
velocities). Finally, by comparing the final penetration depth
between an impact on a hexagonal lattice, shown in Fig. 7,
and on a disordered granular system, such as the one shown in
Fig. 2, we note that the final penetration depth in the former
case is much smaller. We will discuss the reasons for this
difference later in Sec. IV.

Figure 8 shows in more detail how the final penetration
depth depends on the polydispersity. To help interpretation of
the results we show both the final depth as a function of r

for fixed v [Fig. 8(a)] and the final depth as a function of v

for fixed r [Fig. 8(b)]. Clearly the penetration is deeper in
polydisperse systems compared to the hexagonal one for all
considered impact velocities. However, we find that the degree
of polydispersity has no significant effect on the penetration
depth as long as the system is not monodisperse and ordered.

Figure 8(b) shows that the penetration depth depends
approximately linearly on the impact speed of the intruder
for larger velocities and deeper penetration. This observation
agrees with results reported earlier [3,4,8], where it was found
that the penetration depth increases linearly with the impact
speed for a range of impact depths that are comparable or
larger than the intruder size. For smaller impact velocities, we
find deviations from the linear scaling, again consistent with
the literature [2,5,6]. We discuss this scaling in some more
detail in the Appendix.

Effect of gravity: We discuss here in more detail the
influence of the acceleration of gravity on the penetration
depth. As mentioned earlier, the value of the gravitational
acceleration is expected to play a role since it influences
the mobility of the particles following impact. Gravitational
compaction itself is found to play just a minor role, as discussed
in Sec. II. For brevity we consider the effect of gravity
only for the system characterized by r = 0.2, kt = 0. Here,
as the initial configuration, we consider a system prepared
under Earth’s gravity and then left to relax until the total
kinetic energy of the particles falls below a specified threshold
(10−10mgdav). Figure 9 compares the results for Earth’s gravity
with data for several other planets and satellites, specifically,
Pluto, Moon, Mars, and Jupiter. We find significantly deeper
penetration for smaller gravitational accelerations. At least for
the parameters considered, we do not find robust scaling of
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FIG. 9. (Color online) Influence of gravitational acceleration on
impact; here v = 1.0 and the other parameters are as in Fig. 2. We
chose g (given in cm/s2), appropriate to various objects in the solar
system: Pluto, Moon, Mars, Earth, and Jupiter.

D̄ with g. An expanded discussion of possible scaling with
g in other parameter regimes can be found in [7,8,10,13] and
the references therein. Figure 9 also shows that the maximum
penetration depth is reached at much later times as gravity is
decreased, as expected from the discussion in [8,13] and in the
Appendix.

Figure 10 shows the response to impact of granular
particles under different gravity. Here the particles are colored
according to the average normal force experienced (recall
that the force is given in nondimensional units defined using
Earth’s gravity). We see significantly increased mobility of the
particles after impact for smaller g, confirming the intuitive
argument presented above. Note that we modify only the
gravitational force on the particles and not their stiffness,

FIG. 10. (Color online) Snapshots of a granular system after
impact under the four larger gravities considered here (g = 160,369,

980, and 2479 cm/s2) from Fig. 9 at t ≈ 300. Gravity is monotonously
increasing from (a) to (d).

which remains the same. We also note that the change of
impact speed due to modified gravity is minor, only a fraction
of a percent.

Effect of system size and initial configuration: System size
has been recognized in previous work as one of the factors
which may influence the results [7,12,13,23–25]. To explore
this effect we have carried out additional simulations where the
system size was varied. Since modifying the system size also
requires changing the configurations of the particles, we also
consider the issue of reproducibility here, that is, we consider
the variations between realizations for the same macroscopic
parameters. Changing the initial particle configuration may
lead to different dynamics, and the different realizations give
us a measure of statistical fluctuations on macroscopic results
such as the penetration depth.

Figure 11 shows results for six different system sizes,
corresponding to different initial widths of the granular layer
W and the domain size in the horizontal direction L. First we
note that despite different visual appearances of the detailed
trajectories, the final penetration depth (the value reached for
long times) varies only very little (less than a particle diameter)

(a)W = 200, L = 50. (b)W = 200, L = 100.

(c)W = 200, L = 200. (d)W = 100, L = 100.

(e)W = 300, L = 100. (f)W = 300, L = 300.

FIG. 11. (Color online) Influence of the initial system width
W and length L on the penetration depth as a function of time.
The solid and dashed lines show three realizations of impacts with
the speed v = 1.0/0.1, respectively. The other parameters are as
in Fig. 2.
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between systems of different sizes. This variation is smaller
than that due to different initial conditions, and therefore we
conclude that for the systems considered here the system size
is sufficiently large that there is no significant influence on
the final penetration depth. This observation agrees with the
experiment results found in [24] and [26]. We note in passing
that the presence of the overshoot in D(t) is not influenced
by the system size, as also found in a recent experimental
work [8].

Next, we comment on the oscillations of the penetration
depth that are clearly visible in Fig. 11. Perhaps contrary
to an intuitive expectation, these oscillations do not decrease
for the largest systems considered here; on the contrary, they
increase in amplitude. Below we first discuss the origin of
these oscillations, and then their dependence on the system
size.

Recall that the penetration depth is defined with respect
to the position of the top surface of the granular system
at initial time t = 0. During an impact, the kinetic energy
of the intruder is mostly transferred into elastic energy that
propagates through the system in the form of (damped) elastic
waves (see, e.g., [27]). (Note that some of the energy goes into
friction; this issue is discussed briefly in the Conclusions.)
These elastic waves interact with the system boundaries, and
in the case of the bottom boundary they partially reflect and
lead to an expansion of the whole granular bed. We have
confirmed this by comparing the period of oscillations visible
in Fig. 11 with the time it takes for the elastic waves to
cross the system twice. For example, note that for shallower
systems the period of the oscillations is shorter, as expected
based on the above argument. It is important to note that
for the present choice of parameters these elastic waves
do not influence in any significant manner the motion of
the intruder relative to the granular particles surrounding it:
they essentially lead to global oscillations of the system. To
confirm this statement, Fig. 12 shows the depth of the intruder
with respect to the t ime-dependent position of the interface,
calculated at the same time as the intruder’s position. The
long-time oscillation are not visible anymore. A different
regime, with intruders comparable in size to the granular
particles, and therefore more susceptible to the pressure

FIG. 12. (Color online) Penetration depth for a system charac-
terized by L = 100 and W = 200; the impact speed is v = 0.7; the
other parameters are as in Fig. 2.

due to the propagating elastic waves, has been discussed
recently [12].

The next question is the influence of the system size in
the horizontal direction L on the oscillations. Again, for the
sizes considered, there is no influence on the final penetration
depth. More narrow systems (with smaller L), however, lead to
increased amplitude of the oscillations. This is a consequence
of our periodic boundary conditions imposed at the right and
left boundaries: the waves propagating right and left from the
impact point “re-appear” from the other side of the domain and
increase the oscillatory behavior. In the case of large systems
these waves lead to nonsinusoidal oscillations, as can be seen
in Fig. 11(f).

The final question is why the oscillations do not diminish
with the system depth W . The answer to this question has to do
with the properties of the elastic waves propagating through the
system. It is known that propagation is enhanced in systems
characterized by stronger compression, or, correspondingly
to some degree, larger volume fractions, as discussed re-
cently [27]. In larger systems there is stronger gravitational
compaction in the deeper layers, leading to stronger wave
propagation and rebound, and correspondingly, to more visible
oscillations. This conjecture is supported by the results for
different gravity (Fig. 9), where we observe that in the systems
under smaller gravity the oscillations are weaker as well. We
note that for significantly larger systems compared to the ones
considered here, one expects that damping and/or friction
would be strong enough to reduce or eliminate the influence
of elastic waves. As one might expect, stronger damping
significantly reduces the amplitude of the oscillations, as
shown for the systems considered here in Fig. 5.

We note that to our knowledge these oscillations have not
been yet observed experimentally. Their eventual observation
may provide a new insight regarding response of a granular
system to an impact, and improve our understanding of the
influence of impact and resulting acoustic waves on granular
dynamics.

IV. MICROSTRUCTURE EVOLUTION, FORCE
NETWORKS, AND GRANULAR DYNAMICS

DURING IMPACT

In this section we discuss the internal response of the
granular system to impact, and the role which microstruc-
ture plays in determining the macroscopic results, such as
penetration depth. We concentrate in particular on the role
of polydispersity, ordering, and friction in determining the
granular response. We consider two separate sets of measures
to quantify the response: (i) the geometric and topological
properties of the force field evolving in a granular system
during impact, and (ii) the dynamics of the granular particles
quantified by measuring affine (conforming) and nonaffine
(nonconforming) components of granular motion.

A. Properties of the force field

Figures 13–16 show snapshots of the normal and tangential
forces which granular particles experience due to impact on a
polydisperse system at four different times. Animations of
the impact are available as Supplementary Materials [28].
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FIG. 13. (Color online) Normal force experienced by the granular
particles at four different times. Here v = 0.7, and the other
parameters are as in Fig. 2 (kinetic friction). Animations are available
[28].

Before the impact itself (part a) we see the force chains due to
gravitational compaction, already discussed earlier. During the
impact we observe approximate isotropic expansion of the area
in which particles experience large normal force. Properties of
this large-force area are discussed next.

One issue of interest is the influence of intergranular friction
on the force field. By comparing Figs. 13 and 15 we find no
significant differences, suggesting that the friction model is not

FIG. 14. (Color online) Tangential force experienced by the
granular particles at four different times for the same parameters as in
Fig. 13 (kinetic friction). Note different range of the force magnitudes
shown compared to Fig. 13. Animations are available [28].

FIG. 15. (Color online) Normal force experienced by the granular
particles at four different times for kt = 0.8; the other parameters are
as in Fig. 13 (static friction). Animations are available [28].

crucial in determining the properties of the normal force field
between the granular particles. On the other hand, Figs. 14
and 16 suggest that tangential forces depend strongly on the
friction model. Recalling now that the penetration depth is
much smaller for the particles modeled by static friction and
large Coulomb threshold (see Fig. 6) we conclude that at least
for the systems considered, tangential forces are the ones which
play a significant role in determining the dynamics and final
penetration depth of an intruder. The influence of friction on

FIG. 16. (Color online) Tangential force experienced by the
granular particles at four different times for the same parameters
as in Fig. 15 (static friction). Animations are available [28].
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FIG. 17. (Color online) Normal force experienced by the granular
particles at four different times during impact on a hexagonally
ordered system. Here r = 0.0 and the other parameters are as in
Fig. 13 (kinetic friction). Animations are available [28].

the force networks is even more obvious in the impact on a
hexagonally ordered system, which we discuss next.

Figures 17 to 20 show the structure of the normal and
tangential force field during impact on an ordered, hexagonal
system. We find that the forces propagate in a very different
way, compared to what we find for an impact on a random,
polydisperse system: in the case of the ordered packing,
we see predominant propagation in the lattice directions,
combined with a (weaker) uniform, isotropic front. Therefore

FIG. 18. (Color online) Tangential force experienced by the
granular particles at four different times for the same system as in
Fig. 17 (kinetic friction). Animations are available [28].

FIG. 19. (Color online) Normal force experienced by the granular
particles at four different times for kt = 0.8; the other parameters are
as in Fig. 17 (static friction). Animations are available [28].

we conclude that geometric microstructure plays a significant
role in determining the force field in a granular system. We note
that any degree of polydispersity and related disorder leads
to a transition from ray-like propagation, shown in Figs. 17
and 19, to isotropic propagation, seen in Figs. 13 and 15. We
have confirmed this by carrying out corresponding simulations
with smaller r (not shown here for brevity). Since we observe
larger magnitudes of the forces in the ordered system, we
expect that these larger forces manifest themselves as larger
forces on the intruder itself, and therefore lead to more shallow

FIG. 20. (Color online) Tangential force experienced by the
granular particles at four different times for the same system as in
Fig. 19 (static friction). Animations are available [28].
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penetration (see Fig. 8). These findings regarding the influence
of polydispersity are consistent with other recent work, where
the response of three-dimensional frictionless systems to a
localized perturbation was considered [29,30].

Next we discuss the influence of friction on force prop-
agation in an ordered system. Regarding normal forces, by
comparing Figs. 17 and 19, we again see no significant
differences on the temporal and spatial scales considered.
However, one can still observe the effect of friction on some
features of force propagation, which have been discussed
recently from the point of view of elastic versus hyperbolic
force propagation [20,31]. Static friction is expected to lead
to a more elastic-like response, that is, the force (or pressure)
on granular particles is expected to reach a maximum value
directly below the source, while kinetic or no friction is
expected to lead to a more a hyperbolic-like response with
a pressure dip below the source. By comparing the results
in Figs. 17 and 19 at t = 24, one can observe a variation
of this effect with the significantly more pronounced force
dip below the source for kinetic friction case. We note that
having an ordered structure is important to observe this
effect; polydispersity and associated disorder have masked
it in Figs. 13 and 15, which show the normal force for a
polydisperse system.

As for the disordered system discussed above, the influence
of friction model is much more significant for tangential forces
than for normal forces. Figures 18 and 20 illustrate this effect.
In addition to observing significantly larger tangential forces
when static friction is included, we again find more hyperbolic-
like force propagation in the case of kinetic friction, and a more
uniform, elastic-like response when static friction is present.

Figure 21 shows F , the total force on the intruder in the y

direction, for different friction models and polydispersities and
ordering. We see that this force is very large immediately after
impact, and then decreases significantly on a very short time
scale. The second, much smaller peak in the force visible in
some of the results is due to reflected elastic waves as discussed
before. The influence of these waves on the intruder dynamics
is minor. While we note larger force for impact on polydisperse
particles with a static friction model [blue dash-dotted line in
Fig. 21(a)], perhaps the most important observation regarding

(a) polydisperse, r = 0.2. (b) hexagonal, r = 0.0.

FIG. 21. (Color online) The total force on the intruder as a
function of time for the following systems [depth vs time for the
systems in part (a) is available in Fig. 6]: μ = 0 (red dashed line);
μ = 0.1,kt = 0.0 (green dotted line); μ = 0.1,kt = 0.8 (pink dash-
dot-dotted line), μ = 0.5,kt = 0.0 (solid black line); μ = 0.5,kt =
0.8 (blue dash-dotted line). Here v = 0.7; the other parameters are as
in Fig. 2.

the results shown in this figure is how similar they are for
the different systems considered here, suggesting that it may
be difficult to extract the main features about the intruder’s
dynamics based on this information alone. Recall that the
penetration depths differ significantly between the different
friction models and different polydispersities.

The force fields, in particular in disordered systems, may
have very complicated structures. Therefore it is difficult to
extract their generic properties, and to reach, for example, an
answer to the question of global changes of the force field
due to an impact. For this reason, we consider topological
properties of the force network, by computing its connectivity.
One measure of the connectivity can be formulated in terms
of Betti numbers, which are global topological measures
specifying the properties of a network [32]. In particular, the
zeroth Betti number, B0, measures the number of connected
components, and the first Betti number, B1, measures the
number of holes inside a network. Clearly these quantities
depend on the force threshold chosen. For example, if one
chooses zero threshold (considering all the particles), B0 will
provide an information about the packing of the material.
As the force threshold is increased, the number of particles
experiencing a force larger than a given threshold decreases,
and consequently the topology of the network changes. The
computations are carried out using the publicly available
software package CHOMP [33]. These computations involve
thresholding a particular force level and producing a binary
image (black less than or equal to the threshold and white
above the threshold), and then computing Betti numbers,
hence measuring the connectivity of the resulting images.
Here we will concentrate only on B0, with the main goal
of quantifying the differences between the force networks
developing during impact for different friction models, and
for different polydispersities. We note that here we explore
connectivity on the particle scale; an alternative approach
where connectivity is considered on the level of individual
contacts is possible as well [34]. Future work should address
the differences, if any, resulting from these two different
approaches to computing connectivity. For brevity, here we
concentrate only on the force fields in polydisperse systems.

Figure 22 shows B0 for the impact on a polydisperse system
with (a) kinetic and (b) static friction. The snapshots of the
corresponding force field for part (a) can be seen in Fig. 13.
We see that for very small and for very large forces, the B0 are
very small since for very small forces all particles are found to
form a cluster (due to being in contact with each other), while
the number of particles experiencing very large forces is small,
so that there are no components (clusters) to be seen. The main
difference between the the two parts of the figures is a larger
number of components (clusters) for the system where static
friction is included. Recalling more shallow penetration for
the system where static friction is included, we conjecture that
there is a correlation between larger number of components
(clusters) and corresponding resistance to an impact. To our
knowledge, this influence of static friction on the structure
of force network has not been discussed previously in the
literature.

Figure 23 shows the tangential forces for the same system
as in Fig. 22. The information which can be obtained from
this figure is consistent with the insight which we reached by
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FIG. 22. (Color online) Zeroth Betti number B0 for the normal
force during impacts on polydisperse, r = 0.2, systems with v = 0.7
and (a) kinetic friction; (b) static friction; the other parameters are as
in Fig. 2. In this and the following figure, B0 are normalized by the
number of particles, and the forces by the average (normal) force on
all particles. Note that the peaks in the B0 for Fn/〈Fn〉 ≈ 2 (perhaps
more visible in the following figure) are due to the elastic waves
propagating through the system.

considering the normal forces: larger number of components
(clusters) for the systems where static friction is present.

We conclude by summarizing our current results regarding
properties of the force field during an impact. For disordered,
polydisperse system, we find the following:

(1) The main influence of static friction on the force field is
a significant increase of tangential forces.

(2) Both normal and tangential forces show increased
ramification (in the sense of increased number of components
(clusters)) in the presence of static friction.

For monodisperse, ordered systems, we find
(1) As for polydisperse systems, there is only a minor

influence of friction on the normal forces, while tangential
forces are increased strongly when static friction is included.
In addition, the total force on an intruder is similar for
monodisperse ordered and polydisperse disordered systems,
suggesting that it may be difficult to extract information about
the intruder’s dynamics based on the information about the
total force on the intruder alone.

(2) The normal force field is highly uniform; however, the
tangential force field is much more structured, suggesting that
a significant amount of disorder of the tangential interactions
between the particles is introduced during an impact.

We note that the current results concentrate only on the
global, large scale features. More work is needed to analyze
the detailed, local, properties of the force fields, including their
temporal evolution.

FIG. 23. (Color online) Zeroth Betti number B0 for the tangential
force during impacts on the systems as in Fig. 22.

B. Properties of the displacement field

Next, we consider dynamics of the granular particles due
to impact. For this purpose we compute the displacement field
using the approach from [35], outlined briefly in what follows.
The displacement field shows how granular particles respond
to an impact, and will allow us to correlate granular response
and dynamics of the impactor. The approach of Falk and
Langer [35] allows one to compute both affine (conforming)
and nonaffine (nonconforming) parts of the displacement field.
The affine part, providing information about the dominant
component of granular dynamics, is of particular interest for
the present problem since the basic locally coarse-grained
solution is not known. The nonaffine part can be associated
with plastic deformation of granular system due to impact,
leading to irreversible changes of the granular structure

The affine and nonaffine components are computed as
follows. For each particle, a circle of radius R centered at
the particle is defined, and all the particles in this circle are
considered to be its neighbors. We choose the size of this
circle to be R = 2.5d. Let us denote by r0(t) the position of
this central particle and by rm(t),m = 1, . . . ,n the positions of
its neighboring particles, respectively. Then, the displacement
of one neighboring particle relative to the central one is given
by rn(t) − r0(t) at time t . Assuming only conforming (affine)
deformations are present, we denote them by

r(t + δt) = A(t) · r(t),

where A(t) is a 2 × 2 matrix. Under the affine deformation, the
displacement of the neighboring particle relative to the central
one becomes

A(t) · rn(t) − A(t) · r0(t). (3)
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To measure the difference between an actual deformation and
the affine part we define the quantity D2 as the mean-square
difference between the actual displacement rn(t) − r0(t) and
the one defined by Eq. (3), that is,

D2 =
m∑

n=1

‖rn(t + δt) − r0(t + δt) −{A(t) · [rn(t) − r0(t)]}‖2.

(4)

Then we find the minimum D2
min of D2 by minimizing D2 with

respect to the four elements of A(t), that is,

A(t) =
[

A11(t) A12(t)

A21(t) A22(t)

]
.

We obtain the expression for A(t) and the corresponding
nonaffine component D2

min. The magnitude of D2
min indicates

the local nonaffine component of displacement in the vicinity
of each particle. In addition, we can retrieve the affine
component from A(t).

Figure 24 shows snapshots of the affine deformation for
the polydisperse systems characterized by different friction
models. We show the x and y components of the vector Af =
A · [r(t) − r(t − δt)]. These figures reveal outward motion
of the granular particles away from the point of impact
[Figs. 24(a) and 24(b)], downward motion in the area below
the impact, combined with the upward motion at the surface
of the granular bed just next to the impact point. While the
results for the two systems are fairly similar, we see increased
mobility for the particles experiencing kinetic friction only, in
particular for the y component of affine deformation.

Figure 25 shows D2
min, measuring the strength of the

nonaffine component. This component of motion is more
prominent for the case where only kinematic friction is present;

(c) A f · j, kt = 0.0. (d) A f · j, kt = 0.8.

(a) A f · i, kt = 0.0. (b) A f · i, kt = 0.8.

FIG. 24. (Color online) Affine deformation at t = 24 for impact
on polydisperse systems modeled by different friction models: kinetic
[(a) and (c)] and static [(b) and (d)]. Here i and j are the unit vectors
in the x and y directions, and v = 0.7. The other parameters are as in
Fig. 2.

(a) kt = 0.0. (b) kt = 0.8.

FIG. 25. (Color online) D2
min distribution at t = 24 for impact on

polydisperse systems modeled by different friction models: kinetic
(a) and static (b). The other parameters are as in Fig. 24.

however, the differences between the two cases are only
moderate.

Precise information about affine and nonaffine components
of granular dynamics for hexagonally ordered systems is also
of interest. Figures 26 and 27 show corresponding results,
again for the systems characterized by kinematic and static
friction, for the hexagonally ordered systems. Here we also
include the L2 norm of the affine deformation since it provides
useful additional insight. Figure 26 shows stronger affine
deformation for the kinetic friction case, particularly visible

(e) ||A f ||, kt = 0.0. (f) ||A f ||, kt = 0.8.

(c) A f · j, kt = 0.0. (d) A f · j, kt = 0.8.

(a) A f · i, kt = 0.0. (b) A f · i, kt = 0.8.

FIG. 26. (Color online) Affine deformation at t = 24 for impact
on monodisperse hexagonal systems modeled by different friction
models: kinetic [(a) and (c)], and static [(b), (d), and (e)]. Here v = 0.7
and the other parameters are as in Fig. 2.
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(a) kt = 0.0. (b) kt = 0.8.

FIG. 27. (Color online) D2
min distribution at t = 24 for impact on

polydisperse systems modeled by different friction models: kinetic
(a) and static (b). The other parameters are as in Fig. 26.

when considering the norms [Figs. 26(e) and 26(f)]. Granular
particles interacting only by kinetic friction clearly respond
stronger to an impact. Consistently, Fig. 27 then shows that
nonaffine component is also much more pronounced for the
kinetic friction case, suggesting that static friction also reduces
nonaffinity of particle motion.

V. CONCLUSIONS

In this work we analyze the response of a granular system
to an impact, with particular emphasis on understanding the
influence of granular microstructure on intruder dynamics. In
particular, we present a precise descriptions of the force and
displacement fields, which have not been discussed previously
with this level of detail. The results show that the grain-scale
properties play a crucial role in determining the dynamics of
an intruder. The main findings are as follows:

(1) Force propagation in a granular system is strongly
influenced by structural ordering. The total penetration depth is
significantly smaller for impacts on ordered granular material.

(2) Frictional interactions and the resulting tangential forces
between the particles play a major role in determining the final
penetration depth, at least for the considered parameters. Both
the type of frictional model used (static versus kinetic friction)
and the Coulomb threshold are relevant. In addition, frictional
effects may lead to a change from overshoot to a monotonous
increase of penetration depth with time, suggesting that friction
plays an important role in determining the forces that an
intruder experiences during impact.

(3) The analysis of the force field in the granular material
confirms a strong influence of tangential forces. In addition,
our results are consistent with a transition from a hyperbolic
to an elastic type of force propagation through the granular
matter. For example, a more pronounced pressure dip may be
seen below the point of impact for a kinetic friction type of
interaction between the granular particles, compared to the
static friction.

(4) The analysis of the displacement field shows stronger
affine and nonaffine deformation for systems of particles
interacting via the kinetic friction model, suggesting that
increased mobility of the particles when static friction is not
included is responsible for larger penetration depths.

To further illustrate the influence of friction and of elastic
damping on the dynamics, we discuss briefly the evolution of
the energy in the system consisting of the intruder and granular

(c) Potential energy. (d) Elastic energy.

(a) Total energy. (b) Kinetic energy.

FIG. 28. (Color online) Combined energy of the intruder and
granular particles during impact for three systems characterized by
different frictional properties; penetration depth vs time is shown in
Fig. 6. Here we show the results for μ = 0 (red dashed line); μ = 0.5,
kt = 0.0 (black solid line), and μ = 0.5, kt = 0.8 (blue dash-dotted
line). The parameters are as in Fig. 6.

particles. Figure 28 shows the total, kinetic, potential, and
elastic energies as a function of time for combined intruder
and granular particles system. For brevity, only the results
obtained for polydisperse systems are shown since the results
for monodisperse ones are similar. The total energy, which
is the sum of the kinetic, potential, and elastic energies for
the complete system (granular particles and intruder) shows a
monotonous decrease and illustrates faster loss of energy for
the systems with friction (kinetic or static). Figure 28(b) shows
that kinetic energy is lost very quickly, again faster in the case
of frictional systems. Figures 28(c) and 28(d) show that the
exchange of energy between potential and elastic components
persists for much longer times, although both the intruder and
the granular particles are essentially at rest, as can be seen
from the kinetic energy plot [Fig. 28(b)].

We conclude that the energy evolution is similar for the
three types of systems considered here, with the differences
between static and kinetic friction models being surprisingly
minor. Therefore, energy balance on its own does not provide a
complete picture since, as can be seen clearly in, for example,
Fig. 6, static friction leads to a significant decrease in the
penetration depth. It is necessary to go beyond energy balance
and explore the structure of the force field and dynamical
response of granular media to gain a better understanding of
the interaction of an intruder with a granular system, and its
consequences on the final penetration depth.

In this work we have concentrated only on relatively shal-
low impacts, where the final penetration depth is comparable
to or smaller than the intruder’s size. Future work will analyze
deeper penetration, as well as directly compare computational
results with two-dimensional experiments. In addition, it is of
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importance to extend the simulations to three dimensions to be
able to compare with the much wider range of experimental
results, and quantify the influence of dimensionality on the
results. This work is currently ongoing.
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APPENDIX: COMPARISON TO EFFECTIVE MODELS
AND EXPERIMENTAL RESULTS

A simple model for the force describing interactions
between an intruder and granular material can be outlined as
follows (see, e.g., [7,8,10]). The total force on the intruder
includes gravity, and the force due to interaction with the
granular material. The interaction force may be considered
as a separable function of two variables, (y(t),u(t)), where
y(t) is the time dependent position of the intruder and u(t) is
its time-dependent velocity∑

F = Mg + Fd (y) + Fv(u). (A1)

Here M is the mass of the intruder and the positive y directions
points in the direction of gravity (for simplicity, we also use y to
refer to the time-dependent depth of the intruder). It should be
noted here that there is a strong assumption that this separation
can actually be done, which is not clear a priori. However,
assuming that this separated model is appropriate, one can
proceed to discuss the origin of the force terms. The depth-
dependent force Fd (y) may be taken to be a result of resistance
by the granular material to impact, which is present even for
vanishing velocity. This force is commonly considered to be
due to friction, although it was recently observed to be present
even if frictional effects were absent [13]. As reported in the
literature [7,8,10,13], by exploring an analogy with hydrostatic
forces which govern propagation though a Newtonian fluid,
Fd (y) is expected to vary linearly with y, Fd ∝ y for large y,
with more complicated behavior expected for smaller y [10].
The velocity dependent force Fv(u) is the inertial drag force,
required to push away the particles in front of the intruder.
For an intruder of diameter Di and having velocity u, a simple
argument [10] suggests that this component of the force scales
as Fv ∝ u2, although one can also find evidence for linear
scaling F ∝ u [3,8].

To examine the depth dependent force Fd (y), we consider
a number of different impact velocities v and we find
the intruder’s acceleration as a function of y, at fixed u.
For brevity, here we discuss only impacts on polydisperse,
disordered systems. Figures 29(a), 29(c), and 29(e) show
the results obtained for three systems: Coulomb threshold
μ = 0 (frictionless), and μ = 0.5 with kinetic kt = 0 and
static kt = 0.8 friction. For the frictionless case, shown in
Fig. 29(a), we find monotonously increasing a(h), with a
dependence which can be described reasonably well by a linear
fit, consistent with several previous studies [8,13]. Friction,
however, leads to modifications not only of the linearity, but
also of monotonicity of the a(y) dependence, as illustrated in

(e) µ = 0.5, kt = 0.8. (f) µ = 0.5, kt = 0.8.

(a) µ = 0. (b) µ = 0.

(c) µ = 0.5, kt = 0. (d) µ = 0.5, kt = 0.

a
a

a

FIG. 29. (Color online) Intruder’s acceleration vs its time-
dependent depth y(t) and time-dependent velocity u(t). The impact
velocities are v = 0.05, v = 0.1, v = 0.2, v = 0.3, v = 0.4, v = 0.7,
and v = 1.0. The parameters that are not varied are as in Fig. 2.

Figs. 29(c) and 29(e), where kinetic and static friction were
considered, respectively. The deviation from monotonicity is
particularly obvious for small y, as expected based on the
arguments given in [10]. Therefore we find that the dependence
of the intruder’s acceleration on time-dependent penetration
depth y(t) is strongly influenced by the frictional properties of
the granular material.

Let us now consider the dependence of the intruder’s
acceleration on its time-dependent velocity u. To do so we
again consider different initial velocities v and find a(u) for
fixed y. Figures 29(b), 29(d), and 29(e) show the results for
the three different friction cases. We extract a(u) for relatively
small y, where the acceleration is relatively large, in order
to decrease the scatter of the results. Note that for the static
friction case we could extract accelerations only for y between
1 and 3 since the final penetration depth is small here.

First, we note that Figs. 29(b), 29(d), and 29(e) do not show
any obvious y dependence. That is, for fixed u, a does not
appear to depend on y. By comparison of the results we see
however that there is a strong influence of friction. Only the
frictionless and kinetic friction lead to approximate power-law
scaling a ∝ uk , at least for the parameters considered here. As
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seen in Figs. 29(b) and 29(d), the fitting exponent k is smaller
than the proposed value k = 2 [7,10,13]; for the frictionless
case we find a best fit with k ≈ 1.4, and for the kinetic friction
case we find k ≈ 1 [3]. From the frictionless results shown
in Fig. 29(b) it does appear, however, that the slope increases
with the depth y, suggesting that different scaling may be
found at different depths. We conjecture that the parameters
and penetration depths considered here belong to the “inter-
mediate range” where there is no precisely defined scaling
regime [8].

Clearly more work is needed to understand precisely the
nature of the forces determining impact dynamics, and their
dependence on the quantities such as the velocity of intruder
or its depth. In any case, at least from the point of view of a
comparison with physical experiments carried out, necessarily
with frictional particles, the most relevant conclusion is that
the speed dependence of the force on the intruder may be
influenced strongly by the friction model for intergranular
forces. As pointed out [10], this aspect of the problem is
complicated by the fact that most particle interaction laws
include velocity-dependent frictional damping, which may
prevent us from reaching generic answers regarding the speed
dependence of the force on an intruder.

Finally, we briefly compare our simulations with the avail-
able experimental results for the dependence of penetration on
the falling distance. In the experiments of Durian et al. [7],
it was found that the final penetration depth dependence can
be well fitted by D̄ ∝ H 1/3, where H = h + y, and h is the
falling distance before impact. Other investigators have found
somewhat different results, suggesting D̄ ∝ v [4,8]. We have
already briefly mentioned scaling of D̄ with v, see Fig. 8,
where we saw that approximately D̄ ∝ v.

Figure 30 shows D̄ for a polydisperse, disordered sys-
tem [Fig. 30(a)], and for a monodisperse, ordered system

(a) r = 0.2. (b) r = 0.0.

FIG. 30. (Color online) Intruder’s final penetration depth D̄ vs
H = h + y, where h is the falling distance. Here we show μ = 0.0
(red circles), μ = 0.5, kt = 0 (black squares), and μ = 0.5, kt = 0.8
(blue diamonds). The parameters that are not varied are as in Fig. 2.

[Fig. 30(b)]. We find that for an impact on a polydisperse
system D̄ can be fitted reasonably well by a power law using an
exponent which is close (although typically a bit smaller) than
1/3. The main deviation occurs for very small values of H , for
which the penetration depth is also very small. However, the
quality of the fit is not sufficient to distinguish between D̄ ∝
H 1/3 scaling shown here, or D̄ ∝ v, suggested by Fig. 8. We
do not find a significant influence of friction model here, aside
from significantly smaller penetration depths for the frictional
cases.

For impacts on a monodisperse, ordered system, we find
that the results are significantly different, in particular for the
frictional cases. There is no obvious scaling of the penetration
depth with the total falling distance H . This result underscores
the fact that an ordered granular microstructure can have
a significant influence on the penetration process. Future
research should show the generality of this conclusion.
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