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Anisotropic velocity statistics of topological defects under shear flow
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We report numerical results on the velocity statistics of topological defects during the dynamics of phase
ordering and nonrelaxational evolution assisted by an external shear flow. We propose a numerically efficient
tracking method for finding the position and velocity of defects and apply it to vortices in a uniform field and
dislocations in anisotropic stripe patterns. During relaxational dynamics, the distribution function of the velocity
fluctuations is characterized by a dynamical scaling with a scaling function that has a robust algebraic tail with an
inverse cube power law. This is characteristic of defects of codimension 2, e.g., point defects in two dimensions
and filaments in three dimensions, regardless of whether the motion is isotropic (as for vortices) or highly
anisotropic (as for dislocations). However, the anisotropic dislocation motion leads to anisotropic statistical
properties when the interaction between defects and their motion is influenced by the presence of an external
shear flow transverse to the stripe orientation.
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I. INTRODUCTION

The small-scale dynamics of interacting defects plays
an important role in the evolution of complex systems. In
particular, topological defects are a common occurrence in sys-
tems supporting a continuous symmetry that is spontaneously
broken in the process of a nonequilibrium phase transition. One
central question is how the universal properties and scaling
laws near a critical phase transition relate to the presence
and interactions of defects. The formation and evolution of
topological defects are typically formulated in the framework
of the Ginzburg-Landau theory of symmetry-breaking phase
transitions, where defects are described as phase singularities
in a complex order-parameter field (rotational symmetry) [1,2].

The equilibrium structure of isolated topological defects is
deeply rooted in their topological properties and is relatively
well studied and understood [2]. In contrast, the dynamical and
statistical properties of interacting topological defects during
a nonequilibrium phase transition are far less understood and
are the subject of more recent systematic analyses. Numerous
studies have focused on the statistical properties of topological
defect ensembles in relation to the large-scale properties of
the system. Examples include the quenching dynamics during
phase-ordering kinetics [3,4], the motion of defects in convec-
tion patterns [5], the dislocation dynamics in crystal plasticity
[6,7], and the vortex filament motion in quantum flows [8]. A
common characteristic of these apparently disparate systems
is that they support codimension-2 topological defects, that
is, dislocations and vortices which in two dimensions (2D)
become point defects and defect filaments or loops in three
dimensions (3D). One common finding is the presence of a
robust scaling law in the local velocity statistics for these
kind of defects. Recent experiments on decaying quantum
turbulence in 4He report that the velocity field v induced by
quantized vortices is characterized by a v−3 scaling, attributed
to the rare reconnection events between vortex filaments
[9] and reproduced numerically in atomic Bose-Einstein
condensates [10] and counterflow turbulence [11]. Similar
velocity statistics has been observed in a discrete dislocation

dynamics model of crystal plasticity [12] and in experiments
on thermal convection in an inclined fluid layer [13].

Theoretically, the asymptotic tail of the velocity probability
distribution P (v) can be calculated in a statistical formulation
of random stationary configurations of point defects interact-
ing through a logarithmic potential in 2D [6,14]. The model
predicts the same tail distribution both in neutral systems
(zero net topological charge) and systems with a single-charge
distribution. An inverse cubic scaling is consistent with the
approximation of the nearest-neighbor interaction between
defects uniformly distributed in space [14]. In theoretical
studies of defect motion during phase-ordering kinetics, the
inverse cubic law is related to the annihilation events of
defect loops or between point defects with opposite topological
charges [4,15,16]. The coarsening during phase ordering is
reflected in a time-dependent density of defects and their
velocity distribution F (v,t), which is characterized by a
dynamical scaling law related to the growth law of the
characteristic length scale in the ordering kinetics [15–17].
For nonconservative dynamics of the order parameter, the
distribution of velocity for point defects in 2D takes the form
F (v,t) = 〈v(t)〉−1P [v/〈v(t)〉], where the scaling function is
P (x) ∼ x(1 + x2)−2 and the ensemble average velocity 〈v(t)〉
at time t is related to the average distance between defects
L(t) at time t and scales with time as 〈v(t)〉 ∼ 1/L(t) ∼ t−1/2

[15,16]. A different scaling exponent for the scaling function
P (x) is predicted for defect filaments in 3D [4,15], whereas
experiments [9] and numerics [11,12] suggest the same scaling
as for point defects.

In contrast to isotropic vortex dynamics, dislocation motion
in crystals, as well as in stripe patterns, is typically anisotropic
when confined to certain gliding and climbing planes. In ad-
dition, dislocations often coexist and interact with other kinds
of defects such as disinclinations and grain boundaries, which
makes it harder to study in isolation. For this reason, phase
ordering is much more difficult to study in isotropic stripe
phases and polycrystalline phases than in anisotropic stripes
and single crystals where only dislocations are present [18,19].
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Stripe ordering is a common pattern occurring in a diversity
of systems from zebra patterns to sand ripples and in classical
fluid convection systems, where defects are local tears of the
underlying pattern [5]. Anisotropic stripes or rolls develop by
an uniaxial ordering of stripes as happens, for instance, in
electrically driven convection flows of nematic liquid crystals
(electrohydrodynamic convection) [20] or in thermal convec-
tion flows of isotropic fluids down an inclined plane [21].

During relaxational dynamics, where the motion of defects
is dominated by mutual interactions prior to annihilations, the
statistics of the velocity components keeps the same form even
in the presence of strongly anisotropic motion of defects. A
numerical study of 2D phase ordering after a quench from a dis-
ordered state described by a nonconservative time-dependent
real Ginzburg-Landau model showed that the isotropic motion
of point vortices is characterized by a statistical distribution
with an inverse cubic tail in the scaling function P (v), as
predicted theoretically [22]. Similar statistical distributions
for the climbing (motion along the direction of the stripes)
and gliding (motion across the stripes) velocities of point
dislocations have been reproduced in a numerical study of
phase ordering in anisotropic stripes in two dimensions [23].
This is consistent with the theoretical understanding that
the dislocation motion in anisotropic stripes can be in fact
mapped onto a Ginzburg-Landau vortex dynamics [2]. This
also means that, to the leading-order approximation, the
interactions between dislocations are expected to be similar
to those between vortices.

The statistics of defect motion during nonrelaxational
evolution of the system, self-sustained or driven by an external
field, is less well understood due to correlation effects or ad-
ditional driving forces apart from the mutual nearest-neighbor
interactions between defects. A self-sustained motion of
defects is obtained in convection patterns when the mean flow
due to vertical vorticity, driven by the undulations in the normal
stripes and the presence of defects, acts as a self-induced drift
in the motion of defects [24]. This nontrivial dynamics of
defects leads to a spatiotemporal chaotic state also know as
“defect turbulence,” which was observed experimentally in
fluid convection systems [21,25] or diffusion-reaction systems
[26] and studied in numerous theoretical and numerical
investigations [24,27–30]. In this chaotic dynamical regime,
a statistically stationary distribution of the number of defects
is maintained by the defect annihilations and the spontaneous
creations of pairs due to the phase instability. To leading order
in the approximation of well-mixed and independent defects,
the distribution of the number of defects follows the Poisson
statistics with mean-square fluctuations given by the mean
number of defects [27]. The well-mixed assumption implies
that defect pairs are being created and annihilated randomly,
whereas experiments and numerical studies suggest that more
often defects created in a pair at a given time tend to annihilate
with each other in the same pair at a subsequent time [26,30],
which means that correlations between defects are important
effects in their creation and annihilation dynamics and leads to
a modified Poisson statistics in their number fluctuations [29].
A theoretical understanding of the effect of the self-induced
mean flow on the collective statistical properties of defect
motion is still lacking. However, experimentally measured
velocity statistics during the spatiotemporal chaotic dynamics

of uniaxial stripes in inclined layer convection are observed to
be slightly anisotropic, and the exponents in the tail distribution
of both climb and glide motion are close to −3 [13]. This is
suggestive of a dynamical regime dominated by annihilations
of dislocation pairs.

In this paper, we consider a simpler setup where nonrelax-
ational motion is driven by an externally imposed flow such
that defects are constantly created and annihilated, leading to
a statistically stationary defect dynamics. This can be attained
in an anisotropic stripe system when a shear flow is acting
normal to the stripe orientation. The role of the shear flow is
different from the commonly studied case of shear alignment
of isotropic stripes [13,31,32] or the buckling instability under
shear acting along uniaxial stripes orientation [33].

The purpose of this paper is threefold: (i) to present
an efficient numerical method for tracking the position and
velocity of topological defects, (ii) its application to study the
collective motion of dissipative vortices both in 2D and 3D
and dislocations in 2D, and (iii) to report on numerical results
where the anisotropic motion (glide and climb) of dislocations
subjected to a simple shear flow is explicitly manifested in the
velocity distributions, even though the statistics during phase
ordering are similar to those corresponding to the isotropic
motion of vortices.

To track the position and velocity of topological defects,
we implemented a numerical method inspired by the ana-
lytical treatments of Halperin [34] and Mazenko [16]. The
method was originally developed to locate defects in an
O(2)-symmetric order parameter with a Ginzburg-Landau
relaxation dynamics in 2D. We show numerically that this
method works very well for Ginzburg-Landau dynamics both
in 2D and 3D, and it is also suitable for tracking dislocations in
systems controlled by anisotropic Swift-Hohenberg dynamics.
Measuring the velocity statistics of vortices during relaxational
dynamics, we find a universal inverse cubic tail for defects of
the same codimension, that is, point vortices in 2D and vortex
filaments in 3D. The scaling law is directly related to the
pairwise interactions between vortices prior to annihilation
and reconnection events (in 3D). Finite-size core effects
induce a Gaussian cutoff to the v−3 scaling. A similar
statistical behavior is observed in the velocity of dislocations
in anisotropic stripe patterns. Despite the fact that dislocations
are dominated by their transverse motion and thus are highly
anisotropic, the distribution of the climb and glide velocities
shows the same long tail behavior. In the presence of an
external shear flow that leads to nonrelaxational dynamics, the
motion anisotropy is explicitly manifested in different statistics
of the velocity components. While the slow motion is highly
influenced by the shear flow, the high-speed limit may still be
dominated by the nearest-neighbor interactions.

The paper is organized as follows. Following this in-
troduction, we proceed in Sec. II to discuss a method of
efficiently tracking topological defects and apply it to a
collection of vortices as well as ensembles of dislocations.
Section III presents numerical results on the vortex velocity
statistics in 2D and 3D simulations of phase ordering. We
discuss the statistics of dislocations during phase ordering and
nonrelaxation dynamics sustained by an external shear flow in
Sec. IV. Concluding remarks and a summary are provided in
Sec. V.
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II. DEFECT DYNAMICS

Here we present a numerically efficient method for tracking
codimension-2 topological defects. The method is applied
to Ginzburg-Landau dynamics of vortices in 2D and 3D, as
well as to Swift-Hohenberg dynamics of dislocations in 2D
anisotropic stripes. The effect of hydrodynamic interactions
in the presence of an external shear flow is discussed in the
context of dislocation dynamics.

A. Locating and tracking defects

The identification and evolution of a large population of
defects are generally nontrivial problems in systems described
by continuum approaches. Moving from the field variables to
the discrete particle variables is not straightforward. In most
defect studies, one resorts to various approximate methods to
estimate the locations and velocity of defects by following
their trajectories [13,19,22].

In systems that can be described by an O(2)-symmetric
order parameter ψ(r,t) whose evolution depicts the ordering
kinetics from an initially disordered state to an ordered state
(either isotropic and homogeneous or a periodic pattern), one
can use an elegant method based on a transformation from
the order-parameter dynamics to the discrete defect dynamics.
The analytical formulation of this method was pointed out
first by Halperin [34] and was subsequently extended by
Mazenko to determine the velocity of various topological
defects [4,16,35,36]. To our knowledge, this method has not
been previously implemented numerically. We show that it is
an efficient numerical tool used for tracking the evolution of
various types of defects.

The basic idea of this technique is that topological defects
are located at the zeros of the complex order-parameter
field ψ(r,t) [34]. The transformation from field to particle
variables is determined by the Jacobian determinant D(r) =
||∂ψn/∂rj ||, where n = 1,2 stands, respectively, for the real
and imaginary components of the order-parameter field, i.e.,
ψ = ψ1 + iψ2, and j = 1, . . . d, with d being the spatial
dimension. Thus, for d = 2, D(r) is a scalar quantity. Its sign
determines the topological charge, i.e., q = D(r)/|D(r)| =
±1, and the charge density is given as

ρ(r,t) = δ(ψ)D(r,t) =
N∑

i=1

qiδ(r − r i) (1)

for a collection of N -point vortices. The extension to string
defects in d = 3 is that the Jacobian determinant becomes a
vector field Dj (r) related to the vortex filament density by

ρj (r,t) = δ[ψ(r,t)]Dj (r), (2)

where the notation for the Dirac δ function is used [4].
The defect velocity v is determined from the property of

topological defects that their total charge is conserved (defects
are created and annihilated in pairs of opposite charge),
namely,

∂tρ + ∇ · (ρv) = 0, (3)

with the charge density ρ(r,t) defined above. For example,
in the case of point defects in 2D, the Jacobian determinant

becomes D = 1/(2i)(∇xψ
∗∇yψ − ∇xψ∇yψ

∗), where ψ∗ is
the complex conjugate of ψ . By differentiating D with time, a
current J (ψ̇) can be defined as [16]

J (ψ̇)
α = − iεαβ

2
(ψ̇∇βψ∗ − ψ̇∗∇βψ), (4)

such that the D field satisfies the continuity equation

∂tD + ∇ · J (ψ̇) = 0. (5)

Summation over repeated indices is implied, and εαβ is
the two-dimensional antisymmetric tensor, εxx = εyy = 0 and
εxy = −εyx = 1. From Eqs. (3) and (5), the defect velocity
is determined as v = J (ψ̇)/D. The defect velocity depends on
the dynamics of the order parameter through its time derivative
ψ̇(r,t). Explicitly, the velocity components are given by

vx = −i
ψ̇∇yψ

∗ − ψ̇∗∇yψ

2D ,

(6)

vy = i
ψ̇∇xψ

∗ − ψ̇∗∇xψ

2D ,

where ψ∗ is the complex conjugate of the ψ field and ψ̇ is
the time derivative of ψ which determines the evolution of the
order parameter. This can be generalized to d = 3, in which
case the velocity of vortex filaments is calculated as [4]

v = D × (ψ̇∗∇ψ − ψ̇∇ψ∗)

2D2
, (7)

where D2 = ∑3
j=1 DjDj and the velocity vector field is v =

(vx,vy,vz).
In the dilute defect density limit, it can be shown that the

vortex velocity defined by Eq. (6) becomes a function of the
phase and amplitude gradients of the order parameter ψ near
the vortex core [35]. The formula is exact and applies equally
well for a high density of defects.

B. Application to vortices

Vortices are defined as the zeros of an order parameter
ψ(x,t) with rotational symmetry (complex field) [2]. The
fact that the complex field vanishes at the core of a defect
is equivalent to a phase singularity; i.e., the phase of the order
parameter varies discontinuously around a closed contour
surrounding the defect. The phase θ is obtained from ψ =
|ψ |eiθ . The shift in phase around the contour or the winding
number, i.e.,

∮ ∇θ · d l = 2πn, defines the topological charge
of the defect. A single vortex corresponds to a unit of
topological charge, that is, n = 1.

We now consider the nonconservative evolution of a ψ(r,t)
field described by the time-dependent Ginzburg-Landau equa-
tion given by

∂tψ = ∇2ψ + ψ(1 − |ψ |2), (8)

which we simulate both in 2D and 3D. For computational
efficiency, we solve Eq. (8) by a cell dynamical system
(CDS) algorithm, that was originally developed for studying
spinodal decomposition dynamics [37] and extensively used
to study phase ordering of systems with continuous symmetry
[3,38,39]. In the Appendix we provide a detailed description
and recapitulation of the algorithm, for completeness, and
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FIG. 1. (Color online) Snapshot of a measure of the charge-
density vector field for a configuration of vortex filaments in 3D
simulation of phase ordering. The figure shows the x component Dx

of the Jacobian determinant defined in Sec. II. The system size in this
simulation is 1283.

define the parameters of the simulation used below. In par-
ticular, the depth of the quench corresponds to the parameter
A, and the strengths of the diffusive couplings in the model
are denoted by C. Simulations in 2D are done on a system
size of 10242 cells, while in 3D we use 1283 cells for dx = 1.
Unless otherwise noted, the values for the CDS parameters
A, the depth of the quench, and C, the strength of the
spatial coupling, are A = 1.5, C = 3/20(1 + A) (for 2D), and
C = 3/24(1 + A) (for 3D). Results were averaged over 48
random initial conditions, unless otherwise noted.

The vortex dynamics from the Ginzburg-Landau evolu-
tion in Eq. (8) is similar to the previous one reported in
Ref. [22]. Here, we use a different tracking method for
locating the defects and extend the analysis to vortex filaments
in 3D.

A snapshot of the charge-density field for vortex filaments
in 3D obtained using Halperin and Mazenko’s method,
discussed in the previous section, is shown in Fig. 1. The
charge-density field is directly proportional to the D field,
which is zero everywhere except along the vortex filaments. A
similar representation is obtained for point vortices in 2D,
where the charge field is localized at the vortex core and
vanishes everywhere else, as shown in Fig. 2(a). Since the
charge density is directly related to the D field, it means
that the defect velocities are meaningfully defined only at
the defect positions. In the numerical discretizations, defects
are associated with small blobs (in 2D) or thin tubes (in 3D)
with a specific characteristic size that defines the vortex core
size. We define the defect regions as the locations at which
the absolute charge density is above 75% of the theoretical
value of |q| = 1. The values of the D field are finite within
these regions, and thus the division is also finite. The velocity
of the located defects is determined from Eq. (7) for filaments
in 3D and Eq. (7) for point vortices in 2D. The time derivative

(a) (b)

FIG. 2. (Color online) (a) Snapshot of the charge-density field
corresponding to a configuration of point vortices in 2D simulations.
In panel (b), we show the dislocations in an underlying anisotropic
stripe configuration. The lighter blobs correspond to defects that have
a positive charge, while the darker blobs are the defects of the opposite
charge. The system size in both cases is 10242, while the snapshots
are drawn from a subset.

ψ̇ of the ψ field is defined by the right-hand-side expression
in Eq. (8), namely, ψ̇ ≡ ∇2ψ + ψ(1 − |ψ |2).

C. Application to dislocations

Here, we focus on tracking dislocations in anisotropic stripe
patterns. A similar tracking method can be extended to locate
the defects in a crystal phase and will be the subject of a
separate study reported elsewhere.

We consider the defects in a periodic pattern characterized
by a preferred wave number k formed by stripes. Stripe
patterns occur in a variety of systems, typical examples being
convective rolls in Rayleigh-Bénard convection of isotropic
fluids [5] and convective flows in nematic liquid crystals
[40] in the dynamics of diblock copolymers [41]. When the
orientation of the local ordering is random, as in isotropic
stripes, we encounter both isolated defects such as dislocations
or disinclinations as well as grain boundaries. The coexistence
of different types of defects makes it difficult to analyze their
statistics. Moreover, the ordering kinetics of isotropic stripes
tends to be dominated at large times by grain-boundary slow
motion, which can lead to glassy configurations [18]. By
fixing the orientation of the stripes along a preferred axis,
point defects such as dislocations can be isolated from the
other types of defects. Examples of anisotropic stripes are
in electrohydrodynamic convection of planary aligned liquid
crystals [25] and Rayleigh-Benard convection of an inclined
fluid layer [13].

The statistics of dislocations in anisotropic stripes has been
discussed previously by Qian and Mazenko [23], who propose
a model based on an effective Swift-Hohenberg (SH) free
energy with an additional term that accounts for the coupling to
an external field aligning the stripes along a preferred direction.
The stripe pattern in 2D is represented by a real periodic field
u(r,t), which satisfies an anisotropic SH dynamics given by

∂tu = (1 − r|u|2)u − (1 + ∇2)2u − c∇2
xu, (9)

where the last term is added to impose a preferred orientation
of the stripes along the vertical y axis with c > 0 being the
coupling strength to the external field. The quench depth
r > 0 is interpreted in the context of convection patterns as
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the deviation from the onset of convection, r ≈ R/Rc − 1,
where R is the Rayleigh number and Rc is the critical R

at the onset [5]. The anisotropic preferred orientation can
be seen by linearizing Eq. (9) around the mode solution
u ∼ exp(ωt + ikxx + ikyy), with the growth rate obtained
from Eq. (9) as

ω = (1 − r) − (
1 − k2

x − k2
y

)2 + ck2
x, (10)

and imposing the condition ω(r; kx,ky) = 0 at the onset of
instability with respect to a mode of wave numbers kx and ky .
The condition is found by minimizing ω with respect to kx and
ky , i.e., ∂ω/∂kx = 0 and ∂ω/∂ky = 0. This leads to ky = 0
and kx = √

1 + c/2 for c > 0.
We consider the amplitude formulation of Eq. (9) with

an additional contribution due to an external shear flow. We
impose a shear flow that is normal to the main orientation
of the stripes to allow for the nucleation of defects due to
wave-number shifts by shear deformation. In order to track
dislocations in a complex order-parameter field, we write the
periodic field in terms of its complex envelope field ψ(r,t),
namely, u(r) = √

rψ(r)eik·r + c.c. Without loss of generality,
we consider stripes with the wave vector parallel to the
horizontal x axis, i.e., k = (k0,0). The complex ψ field satisfies
an amplitude equation derived from Eq. (9) and given to the
leading order in r as

∂tψ + γ̇xLx[ψ] = r(1 − |ψ |2)ψ − L2[ψ] − cL2
x[ψ], (11)

where L ≡ (∇2 + 2ik · ∇) is derived from (1 + ∇2) and Lx ≡
∇x + ik0 comes from the gradient ∇x . The advection term is
determined by a velocity field, which hereby is taken as a
simple shear flow γ̇ = v0y x̂, and the last term is added to
impose a preferred orientation of the stripes along the vertical
y axis.

We integrate numerically Eq. (11) using a fourth-order
Runge-Kutta scheme and a spherical approximation for the
gradients [42] (see Appendix) on a square domain of size
1024dx × 1024dx. The time step is dt = 0.05 and the spatial
resolution is dx = π/4, so that about eight grid points are used
to resolve the pattern wavelength λ = 2π/k0, with k0 = 1. The
other parameters are set to c = 1, r = 1, and v0 is a changing
parameter. In the absence of shear, period boundary conditions
on all sides are used. At a finite shear rate, we impose zero
flux boundary conditions on the upper and lower boundaries
and periodic conditions on the lateral boundaries.

Dislocations are efficiently located as the zeros of the
complex envelope field ψ using Mazenko’s algorithm. In
Fig. 2(b), we illustrate a stripe configuration with the location
of dislocations and their topological charge proportional to the
Jacobian determinant ||∂ψn/∂rj ||. The velocity of dislocations
is obtained using Eq. (6) with the evolution of the order
parameter given by the right-hand side of Eq. (11), namely,
ψ̇ ≡ r(1 − |ψ |2)ψ − L2[ψ] − cL2

x[ψ].

III. VORTEX STATISTICS

To determine the velocity statistics of vortices, we initiate
the system in a disordered state and follow the ordering
kinetics dominated by the initial formation and subsequent
coarsening of topological defects. At a particular time, we

calculate the local defect velocities v using Mazenko’s method
as described above. We save the absolute values, v = |v|, every
few time iterations and run the system from 48 random initial
conditions. This way, we compute the probability distribution
function (PDF) of the defect velocity at a given time, i.e.,
F (v,t). In the asymptotic limit t → ∞ of the coarsening
dynamics, we expect scale invariance of the typical coarsening
length scale, i.e., L(t) ∼ t1/2 for nonconservative dynamics
(apart from logarithmic corrections in 2D). Hence the typical
velocity obtained as 1/L(t) scales with time as 〈v(t)〉 ∼ t−1/2

and corresponds to the velocity of defects in a pair prior
to annihilation and separated by a distance of the order
of L(t). In the simulations, 〈v(t)〉 is the ensemble average
velocity at a particular time, and when calculated over long
times it converges to the expected asymptotic scaling. This
dynamical scaling of the mean velocity implies also a scaling
with time of F (v,t). We notice that the time dependence
in the PDFs can be eliminated by rescaling the velocity
variables by their ensemble average values at a given time, i.e.,
ṽ ≡ v/〈v(t)〉. Analytically, this corresponds to the rescaling
F (v,t) = t1/2P (vt1/2).

The scaling function P (x) of the velocity distribution is
a function of the rescaled velocity field v/〈v(t)〉 and has a
broad tail with an inverse cubic decay. This is shown in Fig. 3
for 2D simulations and Fig. 4 for 3D dynamics. The v−3

tail corresponds to the regime of large velocities obtained in
pair interactions prior to annihilation events or, for 3D, also
reconnections events. The −3 scaling exponent is determined
by the logarithmic mutual interaction potential as shown in,
e.g., Refs. [15,43]. Since point defects in 2D and filaments in
3D are both codimension-2 topological defects with the same
type of interactions, we expect a similar scaling behavior. This

FIG. 3. (Color online) Collapsed probability distribution function
(scaling function) of the absolute velocity of point vortices in 2D
during phase ordering. (Inset) PDF of the defect velocity for different
core sizes (open circles correspond to larger core size and crosses
correspond to smaller core size) to show that the Gaussian cutoff
depends effectively on the vortex core size. The model parameters
for the inset figure are A = 2.05 (open circles), A = 1.05 (crosses),
and C = 3/20(1 + A). In the main graph, A = 1.5. Here v ≡ |v|.
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FIG. 4. (Color online) Scaling function of the probability distri-
bution function of the absolute velocity of vortex filaments in 3D
during phase ordering. Here v ≡ |v|.

is consistent with other numerical studies that also show that
the tail of the P (v) distribution is dominated by the v−3 scaling
both in 2D and 3D simulations [11,12]. We provide additional
numerical evidence for this scaling regime also during phase
ordering kinetics.

From Figs. 3 and 4, we notice that the vortex core structure
has a drastic influence on the defect velocity statistics [43].
This effect is given by a Gaussian tail which takes over the
v−3 regimes at very large fluctuations. The vortex core size is
more pronounced in 3D simulations, due to numerical bounds
on higher spatial resolutions. It is easier to vary the aspect ratio
between system size and vortex core size in 2D simulations to
observe the vortex core effect. In CDS simulations, the core
size is fixed by the parameter A. We consider two different
values of A, namely, A = 1.05 for small cores and A = 2.05
for larger cores, averaged over 2000 random initial conditions.
The system size was reduced to 1282 cells. The dependence
of the Gaussian cutoff on the core size is shown in the inset
of Fig. 3, while the velocity distribution for an intermediate
core size, parametrized by A = 1.5, is plotted in the main
graph of Fig. 3, using 10242 cells and averaging over 48 initial
conditions.

IV. DISLOCATION STATISTICS

Next we discuss the statistics of dislocations in anisotropic
stripes during phase ordering and nonrelaxational dynamics
assisted by a shear flow.

A. Dynamical scaling regimes

In the early stages, the evolution of defects is dominated by
pairwise interactions leading to annihilations and a decrease in
the density of defects. We measure the density of defects ρd (t)
as the ratio between the effective area occupied by the defects
and the total system area. Alternatively, the number of defects
N can be estimated as the area occupied by the defects divided
by the approximate core area of a defect. In simulations, we

(a) (b)

FIG. 5. (Color online) (a) Density of defects ρd as a function of
time t for different values of the imposed shear velocity v0. (b) Data
collapse of the rescaled density with the mean density in the statistical
steady state ρ0 ∼ t

−2/3
0 , where t0 is the crossover time to the steady

state. The inset figure shows how t0 scales with v0 as t0 ∼ 1/v0.

choose a large system size of 10242 and calculate ρd (t) as
a function of time, starting from a random initial condition.
During the relaxation dynamics, the defect density for a very
large system is equivalent to the averaged density over many
initial conditions for a smaller system size and is a smooth
function of time [44]. As expected in the coarsening regime,
the density obeys a power law in time as ρd (t) ∼ log(t)/t like
the density of vortices in Ginzburg-Landau theory [22]. This
behavior is shown in Fig. 5(a) by the data in the open circles
and is consistent with formal arguments that the anisotropic
Swift-Hohenberg dynamics can be mapped onto the isotropic
Ginzburg-Landau dynamics [2]. In Fig. 5(a), we also plot the
density ρd (t) as a function of time for various values of the
shear rate v0. We notice that in the late stages, when long-
range hydrodynamic interactions set in, the density of defects
ceases to decrease monotonically and approaches instead a
statistically steady state. In this steady state, the defect density
fluctuates in time about a mean value because of the sporadic
pair creations and subsequent annihilations of defect pairs.
Averages over initial conditions would lead to a constant mean
density ρ0 in this steady state, i.e., 〈ρd (t)〉IC → ρ0 as t → ∞.
We also observe that the mean number of defects 〈N〉 in the
steady state appears to increase with the applied shear v0,
suggesting that the creation rate of defect pairs depends on v0.
Also, the mean-square fluctuations 〈N2〉 − 〈N〉2 in the number
of defects increase monotonically with 〈N〉 with significant
deviations from what would be expected in a Poisson process.
It appears that the number statistics of defects behaves in a
similar manner to that in defect turbulence [30], although a
detailed analysis of this suggestion would be beyond the scope
of this paper.

From the data presented in Fig. 5(b), we can determine
the crossover time t0 to the statistical steady state, and we
find that it increases to a first approximation as t0 ∼ v−1

0 , as
shown in the inset of Fig. 5(b). It turns out that phase ordering
assisted by hydrodynamic effects slows down the growth of the
typical distance between defects with corrections that follow
a L(t) ∼ t1/3 law until saturating to the steady state. This
implies that the steady-state defect density can be estimated
as ρ0 ∼ L(t0)−2 ∼ t

−2/3
0 . Equivalently, the mean density in the

steady state increases with the applied shear as ρ0 ∼ v
2/3
0 . As

a first step to see whether there is any data collapse associated
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(a) (b)

FIG. 6. (Color online) (a) Evolution with time of the ensemble
average of the velocity component vx ≡ 〈|vx(t)|〉 for different values
of the shear rate. (b) Data collapse of the rescaled vx as a function of
the rescaled time t/t0.

with this scaling behavior, we plot the rescaled ρ/ρ0 versus
the rescaled t/t0 as shown in Fig. 5(b).

Because the normal stripes are aligned along the y direction,
the climb and glide motions of the dislocations correspond, re-
spectively, to the vertical and horizontal velocities. The motion
is anisotropic and dominated by the transverse (gliding) dy-
namics of dislocations. We observe that climb motion typically
occurs when two dislocations of opposite topological charge
approach each other to annihilate; otherwise, dislocations
would move by gliding across the stripes. Nevertheless, when
the two motions are driven by the local pairwise interactions
between dislocations, they exhibit similar characteristics. In
the early states, where the dynamics is controlled mainly by the
phase ordering and annihilations of dislocations, the ensemble
average of the net velocities (absolute values), 〈|vx |〉(t) and
〈|vy |〉(t), scale with time as t−1/2 until hydrodynamic effects
set in and the defects are accelerating until they cross over at
t0 to a statistically stationary state. This behavior is shown in
Fig. 6(a) for 〈|vx |〉 and in Fig. 7(a) for 〈|vy |〉, corresponding
to different values of the imposed shear velocity v0. In
the later stages, hydrodynamic effects become important
and there is a transient regime where the mean velocities
increase almost linearly with time until t0, after which a
statistically stationary state is reached. Since we run large-scale
simulations for a given realization without averaging over
initial conditions, the ensemble-averaged velocities, 〈|vx |〉(t)
and 〈|vy |〉(t), correspond to time series in the statistical steady
state. Averaging these fluctuations over many initial conditions

(a) (b)

FIG. 7. (Color online) (a) Evolution with time of the ensemble
average of the velocity component vy ≡ 〈|vy(t)|〉 for different values
of the shear rate. (b) Rescaled vy plotted as a function of the rescaled
time t/t0.

would smooth out the late-stage time dependence to a constant
value.

The mean-square fluctuations in the steady state are an
increasing function of the applied shear. We observe that the
mean value of the climb velocity is approximately an order
of magnitude smaller than the typical velocity of gliding. A
rescaling of velocity components as a function of the rescaled
time in the units of t0 is presented in Figs. 6(b) and 7(b), which
however gives a poor data collapse. Improving this turned out
to be a challenging task, one of the reasons being that there is an
additional characteristic time scale given by the crossover from
the relaxation dynamics to the transient period of acceleration
prior to the steady state. It may be that this time scale also
plays a role in the scaling function, but we have not succeeded
in including it to our satisfaction. This is an unresolved issue
that deserves a separate detailed study.

The statistically stationary regime is characterized by
fluctuations in the density of defects and their velocities
around a mean value that depends on the imposed shear
flow. Fluctuations in the defect density are attributed to the
sudden nucleation of dislocation pairs and their subsequent
annihilation, either with the same pair member or with
dislocations from another pair.

Physically, the nucleation mechanism is related to the phase
shifts induced by the transverse shear deformations. The reason
for this is that the action of an external shear flow is cumulative
in the phase θ of the complex envelope field ψ = |ψ |eiθ

and its gradients ∇θ , similar to the effect of the self-induced
mean flow [45]. The shear flow advects the underlying stripe
pattern together with its defects. This motion induces small
undulations along the stripes which build up stresses and create
distortions in the pattern. These distortions, which are localized
into transverse “shear bands,” grow with time up to the point
where they locally tear apart the stripes, releasing pairs of
defects. The shear flow affects both the isolated motion of
defects and, more importantly, the interaction between defects.
The effect of the large-scale flow on the defect interactions
becomes stronger where the defect motion is slower [45].

B. Velocity statistics

In the absence of shear flow, the motion of dislocations is
symmetric. Although the mean velocity in the absolute value
is nonzero and related to the mutual interaction forces, the
velocity of dislocations averages out to zero. This is equivalent
to the symmetric probability distributions of the velocity
fluctuations, as shown in Fig. 8. The actual distribution is time
dependent due to quench dynamics by annihilations. However,
using the dynamical scaling behavior of the probability
distribution we can remove the time dependence by effectively
rescaling the dislocation velocity by the ensemble average of
the absolute velocity at a given time, i.e., ṽi ≡ vi/〈|vi(t)|〉,
with i = x,y for the two components. The distribution of
these rescaled velocities corresponds to the scaling function
of the time-dependent probability distribution, as discussed
previously in the context of vortex dynamics. From Fig. 8,
we notice that the probability distributions of the climb and
glide velocities retain a similar form that is characterized by a
long tail with a −3 power law, as in the relaxational dynamics
of vortices. This is consistent with previous numerical studies
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FIG. 8. (Color online) Time-independent scaling function of the
probability distribution corresponding to climb (crosses), respectively
glide (open circles) velocities during the phase ordering in the absence
of an external field. The rescaled velocity variable is given as ṽj ≡
vj /〈|vj |〉 for j = x,y. The inset figure shows the log-log plot of the
PDF calculated with logarithmic binning.

of the velocity statistics of defects in the anisotropic Swift-
Hohenberg dynamics from Ref. [23].

At a finite shear rate and in the late stage of a statistically
stationary regime, the motion of dislocations is influenced by
the imposed flow. Dislocations of opposite topological charges
tend to move in opposite directions, with an asymmetry in
their mean transverse motion that is related to the shear
rate, i.e., γ̇ ∼ (〈v+

x 〉 − 〈v−
x 〉), while the climb motion remains

almost symmetric. The velocity probability distribution for
positive, respectively, negative, dislocations becomes the same
when we rescale their corresponding absolute velocities as
ṽs ≡ |vs |/〈|vs |〉, where s = ±, so that P +(ṽ+) = P −(ṽ−).

In Fig. 9, we plot the probability distribution functions of
the rescaled gliding velocities and climbing velocities in the
steady-state regime. For the transverse motion, the small-scale
velocity fluctuations are normally distributed around the mean
flow. Large fluctuations against the flow are due to events
where pairs of dislocations of opposite charge, gliding opposite
to their drift flow, are attracting and annihilating. These events
contribute to the long left tail for P +(vx) and right tail
for P −(vx). The statistics of small climb velocities are also
influenced by the imposed shear flow and given by the slight
asymmetry in the P s(vy). However, the large fluctuations in
the longitudinal motion are due to pair interactions prior to
annihilations. These fluctuations are captured by the long tails
in the P (vy) distribution and they seem to follow the inverse
cubic law, but with less accuracy than in the relaxational case.
Typically, a nucleation event leads to a burst in the local density
of dislocations which will annihilate subsequently by the fast
climbing motions. However, these large velocity events occur
on a longer time scale than during relaxational dynamics, so
that the system needs to be followed longer in the steady
state. This is computationally challenging, because of the prior

(a)

(b)

FIG. 9. (Color online) (a) PDF of the gliding velocity for positive
(open diamonds and circles) and negative (open triangles and crosses)
dislocations in the statistically stationary state at different shear rates.
(b) Probability distribution function of the climb velocity for positive
(open circles and diamonds) and negative (open crosses and triangles)
dislocations in the statistically stationary state. In both cases, the
rescaled velocity variable is ṽj ≡ vj /〈|vj |〉 for j = x,y. The inset
figure shows the log-log plot of the tail PDF with logarithmic binning.

transient acceleration period whose length increases as the
driving force is decreased.

V. CONCLUSIONS

In summary, our numerical simulations suggest that the
velocity statistics of codimension-2 defects exhibits a dy-
namical scale invariance with a scaling function that has a
universal inverse cubic tail when the defect dynamics is driven
by mutual pair interactions leading to annihilations. This is
valid both for point defects in 2D and defect filaments in 3D
during phase ordering kinetics. Finite-size effects of the defect
core introduce a Gaussian cutoff to the v−3 scaling. A similar
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statistical behavior is observed in the velocity of dislocations
in anisotropic stripe patterns during phase ordering. Although
the motion is highly anisotropic and dominated by the
gliding of dislocations, the distributions of the climb and
glide velocity fluctuations exhibit the same algebraic tail
when the motion is driven by the local interactions between
dislocations. During nonrelaxational dynamics assisted by
an external transverse shear flow, small velocity fluctuations
are influenced by the mean flow, whereas the asymptotically
large fluctuations are still due to pairwise interactions. In
statistically stationary dynamics, anisotropic defect motion
is manifested also in anisotropic statistics of the glide and
climb velocities. In this study, we have neglected the effect
of a self-induced mean flow in the defect dynamics. This
effect is, however, important to capture the spatiotemporal
chaotic dynamics, as seen from experiments. It would thus
be interesting to study in future investigations the statistical
properties of interacting defects when the combined effect of
a large-scale flow and a self-induced mean flow is taken into
account.
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APPENDIX: CALCULATION OF DERIVATIVES IN CELL
DYNAMICAL SYSTEMS MODELS

We solve the time-dependent real Ginzburg-Landau dynam-
ics from Eq. (8) using the cell dynamical systems approach
(CDS) [38,39,46]. Numerical efficiency becomes particularly
important in 3D simulations, and this method is tailored to
that. The complex variable ψ(r,t) is replaced by a ψ

(n)
i,j (or

ψ
(n)
i,j,k in 3D) defined on a square lattice of size N × N (a cube

of size N × N × N in 3D) at time n. The idea of the CDS
method is to construct a discrete set of maps for each lattice
cell such that the flow properties of the continuous dynamical
system are preserved. A cell dynamics is defined by two steps:
a local update,

ψ̃ (n+1) = Aψ (n)√
1 + ψ2(n)(A2 − 1)

, (A1)

where A > 1 is a parameter that determines the global rate
of convergence to the fixed points of the local double-well

potential, and a global update taking into account the interac-
tions between neighboring cells:

ψ (n+1) = ψ̃ (n+1) + C∇2ψ̃ (n+1), (A2)

where C is a constant proportional to the phenomenological
diffusion constant. The isotropy of the order parameter being
simulated naturally mandates the isotropy of the difference
operators used to implement the coupled maps (see Tomita
[42]). Oono and Puri [46] chose a nine-point stencil to
implement a “Laplacian” operator, which is highly isotropic
for a 2D square lattice [47]. This stencil reads

∇2ψ ≡ 3

dx2

(
1

6

∑
NN

ψ + 1

12

∑
NNN

ψ − ψ

)
, (A3)

where NN stands for the nearest neighbors in the discretized
lattice and NNN are the next-to-nearest neighbors for each
node in the lattice.

Considering the same isotropy requirements, the discretiza-
tion of the 3D Laplace operator reads as [39]

∇2f ≡ 3

dx2

(
1

9

∑
NN

ψ + 1

36

∑
NNN

ψ − ψ

)
. (A4)

Since the calculation of the position and velocities of defects
involves first-order spatial derivatives of the ψ field, an
isotropic discretization of the gradients is important in order
to reduce the underlying lattice anisotropic effects. We use the
isotropic version of the gradients both in 2D and 3D. Following
the idea that these operators have to be accurately represented
in Fourier space [47], we use the following stencil for 2D:

∇xψ ≡ 1

8dx
(ψi+1,j+1 + 2ψi,j+1 − ψi−1,j+1

+ψi+1,j−1 − 2ψi,j−1 − ψi−1,j−1), (A5)

where i and j are the lattice indices for the x and y

directions, respectively. Swapping indices we can obtain
the corresponding expression for ∇yψ . We note that this
expression looks very similar to a four-point first derivative
in a 2D square lattice [48]. For the gradients in 3D, the stencil
reads

∇xψ = 1

8dx
(ψi+1,j+1,k−ψi−1,j+1,k + ψi+1,j−1,k − ψi−1,j−1,k

+ψi+1,j,k+1 − ψi−1,j,k+1 + ψi+1,j,k−1 − ψi−1,j,k−1)

+ 1

4dx
(ψi,j+1,k − ψi,j−1,k + ψi,j,k+1 − ψi,j,k−1),

(A6)

with the corresponding index swap to obtain ∇yψ and ∇zψ .
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