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Limiting shapes of Ising droplets, Ising fingers, and Ising solitons
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We examine the evolution of an Ising ferromagnet endowed with zero-temperature single spin-flip dynamics.
A large droplet of one phase in the sea of the opposite phase eventually disappears. An interesting behavior occurs
in the intermediate regime when the droplet is still very large compared to the lattice spacing, but already very
small compared to the initial size. In this regime the shape of the droplet is essentially deterministic (fluctuations
are negligible in comparison with characteristic size). In two dimensions the shape is also universal, that is,
independent of the initial shape. We analytically determine the limiting shape of the Ising droplet on the square
lattice. When the initial state is a semi-infinite stripe of one phase in the sea of the opposite phase, it evolves into
a finger which translates along its axis. We determine the limiting shape and the velocity of the Ising finger on the
square lattice. An analog of the Ising finger on the cubic lattice is the translating Ising soliton. We show that far
away from the tip, the cross-section of the Ising soliton coincides with the limiting shape of the two-dimensional
Ising droplet and we determine a relation between the cross-section area, the distance from the tip, and the
velocity of the soliton.
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I. INTRODUCTION

At low temperatures, interfaces separating two broken-
symmetry ordered phases generally shrink and eventually
disappear. This coarsening process is very complicated as it
usually involves the evolution of numerous interfaces. The
general understanding of coarsening (the emergence of the
coarsening domain mosaic with a single characteristic scale
growing in a universal manner) has been steadily improving
over the last forty years [1,2], although many concrete ques-
tions remain unanswered [3]. Even in the simplest situation
when the two-dimensional Ising ferromagnet endowed with a
nonconservative dynamics is quenched from the temperature
above the critical to zero temperature, very few analytical
results have been established. (One such result describes the
ultimate fate of the system, e.g., the probability to end up in a
stripe state [4]; another [5] gives the statistics of domain hulls
in the case of the curvature-driven dynamics.)

Here we shall examine the evolution of a single interface.
We shall always assume that the Ising ferromagnet is subjected
to zero-temperature nonconservative dynamics and we also
consider the two-dimensional setting if not stated otherwise.
Even in this situation the evolution of a single closed interface
is not fully understood. (Equivalently, the evolution of a simply
connected domain of the minority phase surrounded by the sea
of the majority phase could not be generally “solved” [1,2].)
The detailed evolution of a closed interface is not particularly
interesting, but the asymptotic is as it is presumably universal
(independent of the details of the initial condition). This is one
of the goals of this study.

To examine the evolution we need a precise description
of the dynamics. The two most popular nonconservative
zero-temperature dynamics are the single spin-flip dynamics
(the chief example of the microscopic dynamics), and the
time-dependent Ginzburg-Landau (TDGL) equation which is
the prime example of the macroscopic dynamics. A zero-
temperature spin-flip dynamics forbids energy-raising flips.
Glauber’s version [6] of the single spin-flip dynamics specif-
ically prescribes that energy-conserving flips occur at a twice

smaller rate than energy-decreasing flips. For the Metropolis
algorithm both energy-conserving and energy-decreasing flip
rates are assumed to be equal. The energy-lowering spin-flip
events do occur, yet their frequency is asymptotically negligi-
ble and therefore these subtle differences in the single spin-flip
dynamics are irrelevant for the problems which we shall study.
In the following, we set the rate of energy-conserving flips to
unity.

Even at zero temperature the TDGL equation is difficult
to analyze since mathematically it is a nonlinear parabolic
partial differential equation [7]. Fortunately, in the interesting
situation when the width of the interface is much smaller than
its radius of curvature the TDGL equation reduces to a much
simpler Lifshitz-Allen-Cahn (LAC) equation [8] which asserts
that the normal velocity of the interface is proportional to
the local mean curvature. (The terminology is not yet settled:
The LAC equation is often termed the Allen-Cahn equation;
sometimes the TDGL equation is called the Allen-Cahn
equation; also in mathematical literature, people usually talk
about mean-curvature flows [9].)

The asymptotic evolution of a single closed interface in
two dimensions is fully understood in the realm of the LAC
equation. Indeed, the Grayson theorem [10] asserts that the
interface approaches to a circle, so at the final stage of
shrinking to a point the interface is the circle. Thus with respect
to the macroscopic nonconservative dynamics the limiting
shape is the circle. What is the limiting shape with respect to the
spin-flip dynamics? This question was previously investigated
by Karma and Lobkovsky [11] who exploited the self-similar
behavior on the late stage of evolution and succeeded in
reducing the problem to an ordinary differential equation
which they solved numerically. In Sec. II we use an additional
trick to reformulate the mathematical description in terms of
the Stefan problem (more precisely, the diffusion equation
with moving boundaries whose position is determined in
the process of solution). This Stefan problem admits an
exact self-similar solution which allows one to analytically
determine the limiting shape of the Ising droplet. Figure 1
plots both limiting shapes.
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FIG. 1. (Color online) The quarter of the limiting shape of
the Ising droplet and the quarter of the circle (the limiting shape
corresponding to the macroscopic curvature-driven dynamics). The
Ising droplet encloses the circle.

Infinite interfaces exhibit less universal evolution. Indeed,
the spectrum of qualitatively different initial conditions is
much more broad, and accordingly there are infinitely many
different limiting shapes. For instance in the situation when
the minority phase initially occupies the wedge (with opening
angle smaller than π ), the LAC equation admits a self-similar
solution [12] which gives the limiting shape (parametrized by
the opening angle of the wedge). On the square lattice the most
natural nontrivial “wedge” is the corner (the positive quadrant).
The evolution of the corresponding infinite interface can be
described in great details thanks to the mapping [13,14] on
the symmetric exclusion process. Using this mapping together
with results and methods developed in the studies of the
symmetric exclusion process (see, e.g., [15] and references
therein) one can determine both the limiting shape and
fluctuations [16].

Another interesting class of initial conditions corresponds
to semi-infinite stripes. In this case, stripes quickly approach
the limiting shape (known as the finger) which propagates
with constant velocity along its axis. The shape of the
finger corresponding to the macroscopic dynamics has been
rediscovered a few times as it arises in numerous applications,
e.g., in modeling of the motion of grain boundaries in an
annealing piece of metal [17], magnetohydrodynamic models
for the solar flares [18], dendritic crystal growth [19], boundary
renormalization group flows [20], and various other problems
in physics [21] and mathematics [9]. For spin-flip dynamics
(in this case we consider the finger which is parallel to one
of the axes of the square lattice) the shape of the Ising finger
was unknown. We compute the shape of the Ising finger in
Sec. III.

In Sec. IV we discuss challenges in computing the limiting
shapes in three dimensions and look at a particular limiting
shape corresponding to a translating Ising soliton. This is an
approximately parabolic object which moves at a constant
velocity along its axis (coinciding with the axis of the lattice).
The final Sec. V contains conclusions.
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FIG. 2. An illustration of a rare emergence of a short-living tiny
closed interface during the evolution of the finger.

II. ISING DROPLET

Any finite domain of one phase in the sea of the opposite
phase disappears in a finite time that scales as the square of the
characteristic size; in that sense, we qualitatively understand
the shrinking of a finite domain. A more detailed quantitative
understanding emerges in the long-time limit since after a
proper rescaling, the interface admits a deterministic limiting
shape as long as the droplet remains large. In this section we
compute the limiting shape of the Ising droplet on the square
lattice.

The spin-flip dynamics is stochastic and this causes a
number of subtle differences with the macroscopic dynamics
(the deterministic LAC equation). To highlight one of the
differences we note that the macroscopic dynamics always
leads to the decrease of the area of the simply connected
domain D. To verify this assertion we write the LAC equation
in the form vnormal = −DK , where K is the curvature and D

is the proportionality factor which has the dimension of the
diffusion constant. The area A(t) = area[D(t)] then evolves
according to

dA

dt
= −

∮
ds DK = −2πD. (1)

The last step in Eq. (1) is the consequence of the Gauss-Bonnet
theorem.

Equation (1) helps us to understand coarsening dynamics
of two-dimensional Ising [5] and Potts [22] systems, yet its
deterministic nature disagrees with the microscopic spin-flip
dynamics. For instance, the zero-temperature spin-flip dynam-
ics allows area-raising moves. More precisely, any domain D
can grow up to its rectangle envelope (which is defined to be
the smallest rectangle aligned with the axes of the square lattice
that contains D). However, on average every domain shrinks.
Another subtle feature of the stochastic spin-flip dynamics
is that a single connected domain can evolve into a few
disjoint domains (see Fig. 2). Apart from pathological initial
conditions, e.g., those which contain “tendrils” of width one
(i.e., equal to the lattice spacing) or strips of width one, or rare
separations of tiny drops (Fig. 2), such breakups start to play
a significant role only when the droplet becomes comparable
with the lattice spacing; this late stage of evolution is clearly
stochastic, but it is not interesting. With all these caveats we
can talk about a single domain, ignore fluctuations, and focus
on the limiting shape as long as the domain is very large
compared to the lattice spacing.
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A few interesting mathematical papers discussed the re-
placement of the LAC equation with isotropic surface tension
by an equation with anisotropic surface tension which is
supposed to be a proper macroscopic equation corresponding
to the spin-flip dynamics [23–26]. We follow a similar
approach, yet our goal is not to fully justify the governing
equation (this is essentially achieved in previous papers), but
rather to solve it analytically.

The initial shape of the droplet is expected to become
asymptotically irrelevant. For instance, the initial rectangular
envelope Lx × Ly can be significantly different from the
square, Lx(t = 0) �= Ly(t = 0), yet asymptotically the rect-
angular envelop of the droplet is approaching to the square.
Denote by 2L(t) the size of this square at time t . For concrete-
ness, let the envelope be the square 0 � x,y � 2L. Due to
symmetry, we can limit ourselves to its quarter, 0 � x,y � L;
the boundary of the droplet thus goes from (x,y) = (0,L) to
(x,y) = (L,0). This boundary can be represented by a staircase
of kinks that can pile up at the same site, but cannot pass
through each other. It is more convenient to use a representation
in terms of an exclusion process, that is, a collection of particles
which undergo a random walk and cannot occupy the same site.
(Both these representations have appeared in the literature; see,
e.g., [11–14,27–29].)

The representation in terms of the symmetric exclusion
process becomes evident after rotating counterclockwise by
angle π/4 around the origin and projecting the boundary onto
the horizontal line (see Fig. 3). We put a particle on the
bond (leave the bond empty) if the corresponding bond on
the interface goes along co-diagonal (diagonal). The particles
can occupy the lattice sites, with no more than one particle
per site, and the particles undergo the symmetric exclusion
process.

In the long-time “hydrodynamic” limit we employ a
continuum description. The particle density n(z,t) satisfies
a diffusion equation

∂n

∂t
= ∂2n

∂z2
(2)

on a shrinking interval −L(t) � z � L(t). The boundary
conditions are

n(−L(t),t) = 1, n(L(t),t) = 0. (3)

y x

z

FIG. 3. An illustrative interface rotated by π/4 and the corre-
sponding particle configuration. A spin-flip event is shown together
with the correspondence hop of the particle in the symmetric
exclusion process.

It is sufficient to seek a self-similar solution which depends on
z and t only through a combination z/L(t),

n(z,t) = N (Z), Z = z/L(t). (4)

Plugging (4) into (2) we obtain

−LL̇ZN ′ = N ′′, (5)

where prime (dot) denotes differentiation with respect to Z

(time t). We now notice that the width L(t) shrinks at a rate
that is equal to the flux of particles:

L̇ = ∂n

∂z

∣∣∣
z=L(t)

= 1

L
N ′(1).

Introducing the parameter b defined via

LL̇ = −2b = N ′(1), (6)

we rewrite (5) as

N ′′ = 2bZN ′. (7)

Integrating (7) subject to N ′(1) = −2b we obtain

N ′ = −2b ebZ2−b. (8)

Integrating Eq. (8) and using N (1) = 0 we get

N (Z) = 2b

∫ 1

Z

dv ebv2−b. (9)

The boundary condition N (−1) = 1, or equivalently N (0) =
1/2, yields

1 = 4b

∫ 1

0
dv ebv2−b (10)

from which b ≈ 0.3051025211. In terms of original variables,
the interface is implicitly given by

y(x,t) =
∫ ∞

x−y

dz n(z,t). (11)

Writing

X = x

L(t)
, Y = y

L(t)
(12)

and using (9) we rewrite (11) as

Y = 1 − ebu2−b − 2bu

∫ 1

u

dv ebv2−b , u ≡ X − Y. (13)

The limiting shape (13) together with the circle (the limiting
shape corresponding to the LAC equation) are plotted on Fig. 1.
The Ising droplet encloses the circle when both limiting shapes
are rescaled in such a way that their rectangular envelops are
identical [0,2] × [0,2] squares. For instance, the diagonal point
on the Ising droplet lies at

X∗ = Y∗ = 1 − e−b = 0.262952192433887454 . . .

while for the circle

X∗ = Y∗ = 1 − 1√
2

= 0.292893218813452427 . . . .

Near the axes the Ising droplet is more flat, e.g.,

Y = b (1 − X)2 + . . .
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FIG. 4. Schematic illustration of the evolution of a semi-infinite
strip (a rectangular finger of the minority minus phase surrounded by
the majority plus phase). On the right-hand side, the flip of the lowest
minority spin, the tip spin in this example, is an irreversible process
that causes the minimum height of the finger to advance by one.

when X → 1, while in the case of the circle

Y = 1
2 (1 − X)2 + . . . .

Chayes, Schonmann, and Swindle [24] proved that the area
of the droplet decreases with average rate 4. This theorem
provides a useful consistency check. Let us first compute the
area under a quarter of the interface

A = L2
∫ 1

0
dX

∫ 1

0
dY. (14)

Changing variables, (X,Y ) → (u = X − Y,Y ), and noting that
the Jacobian is equal to unity, D(u,Y )

D(X,Y ) = 1, we get

A = 2L2
∫ 1

0
du Y (u). (15)

Equation (13) gives an explicit expression for Y = Y (u).
Plugging it into (15) we compute the integral and find that
the area of the droplet A = 4L2 − 4A is given by

A = 4L2

[
2
∫ 1

0
du (1 + bu2)ebu2−b − 1

]
. (16)

Differentiating and using LL̇ = −2b we get [30]

Ȧ = −16b

[
2
∫ 1

0
du (1 + bu2)ebu2−b − 1

]
= −4. (17)

The last relation is established by using (10) and

2
∫ 1

0
du ebu2−b bu2 = 1 − (4b)−1, (18)

which is derived from (10) through integration by part.

III. ISING FINGER

Here we consider the finger geometry (Fig. 4); e.g., we
assume that the minority phase initially occupies the semi-
infinite region y > 0 and |x| < L. The interesting regime is
t 
 L2, where the two corners of the initial finger interact and
the finger relaxes to a limiting shape that eventually recedes at
constant velocity. In a reference frame moving with the finger,
the interface y(x) is thus stationary.

We consider the spin-flip dynamics which is stochastic, so
the area of the finger can occasionally increase, although on
average it decreases. The rectangular envelop is now a semi-
infinite region y > h and |x| < L where h(t) is the current

height of the tip. More precisely, the tip is formed by all
adjacent spins on the lowest height. If the tip of the finger
contains a single spin (as on the right-hand side of Fig. 4), then
when this spin flips, the fingertip irreversibly advances by one
unit. The finger can shed disconnected pieces whenever the tip
of the finger has the width equal to one and the height greater
than one (see Fig. 2). Here we consider a very wide finger, L 

1, and in this situation the above subtleties are asymptotically
negligible, so we ignore fluctuations and shedding events and
focus on the limiting shape. (For narrow fingers the stochastic
effects are important. The full description of the evolution of
the finger of the least possible width 2 is highly nontrivial and
unknown.)

Due to symmetry we can limit ourselves to the region 0 <

x < L and y > 0. The governing equation for the interface
shape y(x,t) is [11]

yt = yxx

(1 + yx)2
, (19)

where yt = ∂y

∂t
,yx = ∂y

∂x
, etc. In an upward-moving reference

system in which the surface is stationary,

v = yxx

(1 + yx)2
. (20)

This equation must have a solution satisfying the boundary
conditions y(0) = 0 and y(L) = ∞. These conditions fix the
velocity

v = 1

L
. (21)

The shape of the finger is

Y = − ln(1 − X) − X , (X,Y ) =
(

x

L
,
y

L

)
. (22)

This theoretical prediction perfectly agrees with previous
simulation results (cf. Fig. 5 with Fig. 8 of [12]).

It is interesting to compare the Ising finger (22) with the
finger that arises if the system evolves according to the TDGL
equation, that is, the mean-curvature evolution (Fig. 5). In
the latter framework, the interface y(x) satisfies the equation
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FIG. 5. (Color online) The limiting shape of the Ising finger,
Eq. (22), corresponding to the microscopic spin-flip dynamics; the
limiting shape of the TDGL finger, Eq. (23), corresponding to the
macroscopic curvature-driven dynamics.
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yxx = v(1 + y2
x ) in the upward-moving reference system in

which the surface is stationary. Integrating this equation and
imposing the boundary condition y → ∞ when |x| → L, one
arrives at the following TDGL finger:

Y = − 2

π
ln

[
cos

(
πX

2

)]
. (23)

This finger recedes at a constant velocity that is given by v =
y ′′(x = 0) = π/2L. The expression (23) for the finger shape
has been derived by Mullins in the context of modeling the
motion of grain boundaries [17], and it has subsequently arisen
in numerous applications [9,12,18–21]; this finger also appears
under the name grim reaper in the mathematics literature and
hairpin [20] in the physics literature.

IV. ISING SOLITON

In three dimensions, even in the realm of the LAC equation
(equivalently the mean-curvature evolution) little is known
about the limiting shapes. If the initial domain is convex and
compact, it approaches to a ball and eventually shrinks to a
point. Thus in this setting the limiting shape is a sphere [31]
and the behavior is similar to the behavior observed in two
dimensions [10]. However, in three dimensions the assumption
of convexity is important—a compact closed interface which is
topologically a sphere may become singular before it shrinks to
a point. The simplest example is provided by a dumbbell with
sufficiently thin neck. The classification of possible limiting
shapes (the surfaces of the shrinking LAC droplets) and the
description of singularities of closed interfaces undergoing the
mean-curvature evolution is an active research area; see, e.g.,
Refs. [32–34].

In the case of zero-temperature spin-flip dynamics, not a
single limiting shape is known in three dimensions. Indeed,
even an equation governing the evolution of the interface in
three dimensions is unknown. In the simplest case when when
the initial domain is convex, or almost convex, the limiting
shape should be closed to the sphere. Simulations [11] confirm
this expectation.

Consider now possible analogs of the two-dimensional
finger. Let us first discuss the mean-curvature evolution. In
three dimensions there are various possibilities; e.g., one can
start with a semi-infinite bar, or consider rotationally invariant
initial conditions. The former case is more similar to the
two-dimensional finger, but mathematically the problem is
challenging since even in the reference frame moving with the
finger one must solve a nonlinear partial differential equation.
In the rotationally invariant setting the problem reduces to
an ordinary differential equation. The limiting shape is very
different from the finger; viz., the width of the cross-section
diverges with the distance from the tip. This solution is usually
termed the (rotationally invariant) translating soliton and it
has been investigated in Refs. [34–36]. Using the cylindrical
coordinates and representing the interface in the form r =
r(z,t) we reduce the mean-curvature evolution equation to

rt = rzz

1 + r2
z

− 1

r
. (24)

This equation admits a family of solutions parametrized by
the soliton speed v > 0. For the soliton moving with constant
speed v along the z direction we write

r(z,t) = v−1R(Z), z − vt = v−1Z (25)

and recast Eq. (24) into an ordinary differential equation

−R′ = R′′

1 + (R′)2
− 1

R′ , (26)

where prime denotes the derivative with respect to Z. Equa-
tion (26) cannot be solved in quadratures, but one can readily
extract asymptotic behaviors near the tip of the soliton (without
loss of generality we set the position of the tip to Z = 0) and
far away from the tip. Near the tip, Z → +0, one finds that R2

has a regular asymptotic expansion in powers of Z:

R2 = 4Z − 1
2Z2 − 5

72Z3 + . . . . (27)

Far away from the tip, Z → ∞, the expansion is more
cumbersome as it contains logarithms:

R2 = 2Z + ln Z + . . . . (28)

Overall, the interface is approximately parabolic.
Consider now an Ising soliton on the cubic lattice which

moves with a constant velocity along the z axis. This Ising
soliton is an analog of the rotationally invariant soliton
(26)–(28). We cannot provide the detailed description of the
Ising soliton as we do not even know the governing evolution
equation. Far away from the tip, however, the problem is
essentially two dimensional. [The same is valid in the case
of the macroscopic dynamics—far away from the tip the LAC
equation (24) reduces to the two-dimensional LAC equation
rt = −1/r .] Therefore the cross-section of the Ising soliton
must be identical to the Ising droplet which was studied in
Sec. II. Let [−L,L] × [−L,L], where L = L(z,t), be the
rectangular envelop of the Ising soliton. The soliton moves
without changing its shape, so L(z,t) = L(Z) with Z defined
in Eq. (25). Plugging L(Z) into (6) we get

−v2L
dL

dZ
= −2b

from which we find the leading behavior far away from the
tip:

L2 = 4b

v2
Z. (29)

This behavior is similar to (28) describing the rotationally
invariant soliton once we notice that vL plays the role of R;
cf. (25). Thus the shape of the Ising soliton is asymptotically
parabolic; e.g., the area of the cross-section scales linearly
with the distance from the tip in the Z → ∞ limit. The cross-
section is not a disk even far away from the tip; it is actually
asymptotically identical to the Ising droplet on the square
lattice.

To determine the entire shape of the Ising soliton one must
know an equation governing the evolution of the interface in
three dimensions and even then one would rely on numerical
integration since even in the reference frame moving with
the soliton a governing equation would turn into a nonlinear
partial differential equation. One possible direction is to guess
a governing equation and then try to determine the behavior
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near the tip where one can employ asymptotic methods. An
attempt of such an analysis is given in the Appendix.

V. CONCLUSIONS

We have performed an analytical study of the limit-
ing shapes arising in the context of the zero-temperature
single spin-flip dynamics. We have determined the limiting
shape of the shrinking Ising droplet and the limiting shape of
the Ising finger which moves along its axis (coinciding with
one of the two axes of the square lattice). We have investigated
the limiting shapes only on the square lattice; an analytical
computation of the limiting shapes on the hexagonal lattice
appears feasible and it would be interesting to perform such a
calculation.

There is much more room for diverse limiting shapes on the
cubic lattice. Nothing is known about these limiting shapes.
The chief reason is the lack of the equation describing the
evolution of interfaces on the cubic lattice. There are also
intrinsic mathematical difficulties in analyzing such would-be
governing equations. For one particular limiting shape, the
translating Ising soliton which moves along its axis (coinciding
with one of the three axes of the cubic lattice), one can
circumvent the aforementioned challenges and extract partial
analytic information. We have shown that asymptotically (that
is, far away from the tip) the surface of the translating Ising
soliton is parabolic; e.g., the cross-section area grows linearly
with the distance from the tip. Furthermore, the cross-section
of the Ising soliton coincides with the limiting shape of the
Ising droplet on the square lattice. Making a plausible guess
about the governing evolution equation, we have deduced the
shape of the translating Ising soliton near its tip (Appendix).
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APPENDIX: TIP OF THE TRANSLATING ISING SOLITON

We need to know the equation governing the evolution of the
interface on the cubic lattice. In a related (but simpler) problem
of spin-flip dynamics in a magnetic field, the governing
evolution equation for the interface has been guessed in
recent study [37]. This guess has been guided by symmetry
considerations [the governing equation for z(x,y; t) should
be invariant under the change of any coordinate pair] and by
the requirement that it should reduce to the two-dimensional
evolution equation in appropriate settings. Two functionally
independent simple equations have been found [37], as well as
families of equations built from the independent solutions.
Only the two independent equations seemed sufficiently
simple and plausible; one of the two simple equations was
found to be in excellent agreement with simulations. A similar

program is possible in the present case, and one gets that the
analog of the equation which is expected to be exact is

zt =
(
1 + 1

zx+zy

)2

(
1 + 1

zx

)2(
1 + 1

zy

)2

[
zxx

z2
x

− zxy

zxzy

+ zyy

z2
y

]
. (A1)

This equation is a generalization of Eq. (19) governing the
evolution of the interfaces on the square lattice and it is
an analog of the equation describing the evolution of the
interfaces on the cubic lattice in the presence of the magnetic
field [37].

Equation (A1) applies to the region x > 0,y > 0 where
zx > 0,zy > 0. Generally the first derivatives should be written
as |zx | and |zy | and then the equation will be applicable
everywhere. Due to symmetry we can limit ourselves to
the region x > 0,y > 0, so the form (A1) suffices. Equation
(A1) is harder to judge than equations analyzed in Ref. [37]
as we cannot solve (A1) analytically. Postponing a careful
consideration of the agreement between the predictions of
(A1) and numerical results for the future, let us just examine
the behavior near the tip. First, we notice that for the Ising
soliton which moves with constant velocity v along the z axis
Eq. (A1) reduces to

v =
(
1 + 1

zx+zy

)2

(
1 + 1

zx

)2(
1 + 1

zy

)2

[
zxx

z2
x

− zxy

zxzy

+ zyy

z2
y

]
. (A2)

An additional transformation

x = v−1X, y = v−1Y, z − vt = v−1Z (A3)

allows us to recast Eq. (A2) to v-independent form
(
1 + 1

ZX

)2(
1 + 1

ZY

)2

(
1 + 1

ZX+ZY

)2 = ZXX

Z2
X

− ZXY

ZXZY

+ ZYY

Z2
Y

. (A4)

Near the tip, that is, when 0 < X � 1 and 0 < Y � 1, we
seek the solution as an expansion in the form analogous to
(27), namely

Z = C(X2 + 2λXY + Y 2) + . . . . (A5)

Plugging (A5) into (A4) and keeping only the leading terms
we find the consistency when an “asymmetry” parameter λ

is the root of the cubic equation λ3 − 3λ + 2 = 0 and the
amplitude is given by C = 1

2 (1 + λ)2. Since λ3 − 3λ + 2 =
(λ − 1)2(λ + 2) there are two roots, λ = 1 and λ = −2. The
second root is inappropriate since the resulting quadratic form
X2 − 4XY + Y 2 vanishes in the X > 0,Y > 0. Hence λ = 1
and C = 2, so near the tip

Z = 2(|X| + |Y |)2 + . . . , (A6)

where we have written the solution in the form which is valid
for all X,Y satisfying |X| � 1 and |Y | � 1. More precisely,
(A6) is valid when

v � |X| � 1, v � |Y | � 1. (A7)

Indeed, the continuum description underlying the usage of
evolution equations like (A1) applies only when the distance
from the tip far exceeds the lattice spacing. In other words,
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|x| 
 1 and |y| 
 1, and this in conjunction with (A3) gives
the lower bounds in Eq. (A7). Not surprisingly, the velocity
must be very small. The same applies, of course, to the two-

dimensional finger; viz., the continuum description leading
to the limiting shape (22) is valid when the corresponding
velocity (21) is very small.
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