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Absolute negative mobility in a vibrational motor
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An anomalous transport phenomenon termed absolute negative mobility (ANM) was observed in a vibrational
motor, where an additional time-periodic signal filled the role usually played by noise in a Brownian motor.
Within a tailored parameter regime, the ANM behavior is maximized at two regimes upon variation of the bias.
The observed ANM still survives at a wide range of the driving strength and angular frequency of the additional
signal.
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I. INTRODUCTION

Directed transport in a periodic structure was investigated
extensively due to its potential applications in many processes
of physics, chemistry, and biology [1–7]. A Brownian motor
provides a prominent example for the constructive role of
nonequilibrium fluctuations. One can extract usable work
from noise based on the mechanism of a Brownian motor.
Recently, an alternative and surprising phenomenon termed
absolute negative mobility (ANM) stimulated extensive re-
search [8–17]. The ANM phenomenon involves a paradoxical
migration mechanism in which particles always move in a
direction opposite to the net acting force [10–13]. At first
sight it may conflict with the second law of thermodynamics
and the principle of Le Chatelier. However, for a system
driven far away from equilibrium by a time-periodic force,
the onset of ANM is possible. Initially, ANM is based on
genuine quantum-mechanical effects [8]. Subsequent research
revealed the performance of ANM under the realm of classical
physics [9–17]. The classical ANM was observed first in
a spatially periodic and symmetric model of interacting
Brownian particles [9], then it was further detected where a
single Brownian particle was forced along meandering paths
in a suitably tailored channel with inner walls [10–13].

Recently, ANM has been theoretically and experimentally
studied in the simplest case of a single Brownian particle
dynamics in one dimension [14–19]. The ANM phenomenon
of a purely noise-induced type will be maximized for an ap-
propriate amount of noise [14], while the deterministic ANM
induced by transient chaos will be weakened and diminished
by increasing temperature [15,16]. Inertial effects and high
frequency driving are vital for the occurrence of ANM [14–17].
The absolute negative conductance (ANC) phenomenon in
a Josephson junction device constitutes a realistic example
of the ANM in the general systems [18,19]. Furthermore,
ANM may arise as a special case when an overdamped
Brownian particle is exposed to a two-dimensional square
lattice potential [20]. The spatial asymmetry in the geometry of
the transported particle is able to cause ANM in a periodically
segmented two-dimensional channel [21]. In the presence of
time-delayed feedback, a spatially symmetric and periodic
system may show some character of the negative mobility
in an overdamped regime [22]. The interaction of two coupled
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particles can stimulate negative mobility in an overdamped
periodic system [23]. A new sorting and fractionation method
for colloidal particles in a periodically structured microfluidic
device has been successfully utilized based on the mechanism
of ANM [24].

Existing works about the classical ANM phenomenon are
always related to noise effects [9–23]. Motivated by research
on vibrational resonance where the role of noise in stochastic
resonance is replaced by a time-periodic signal [25,26], here
an alternative scenario is proposed to produce ANM. It is
interesting to investigate whether the ANM phenomenon can
exist when a time-periodic driving replaces the noise in the
Brownian motor exhibiting AMM [14–17]. This strategy is
technically feasible and may have promising applications
[26,27]. According to the terminology about vibrational
resonance, the periodic system is referred to as a “vibrational
motor” where a time-dependent signal plays a similar role as
the noise in the nonequilibrium transport process.

This paper is arranged as follows. In Sec. II, the dynamical
equation for a vibrational motor is introduced and the average
velocity is simulated and discussed. In Sec. III, a conclusion
of the results ends the paper.

II. ABSOLUTE NEGATIVE MOBILITY IN A
VIBRATIONAL MOTOR

An inertial particle in a spatially symmetric periodic
potential under the influence of two time-periodic signals and a
constant bias is governed by the dynamical equation expressed
in dimensionless form

ẍ + γ ẋ = −V ′(x) + a cos(ωt) + A cos(�t + φ) + f, (1)

where x = x(t) is a position of the particle at time t , a dot
and prime denote differentiation with respect to t and x,
respectively. The parameter γ denotes the friction coefficient.
The external spatially symmetric periodic potential reads
V (x) = sin(2πx) with unit period and barrier height �V = 2.
a cos(ωt) denotes the first time-periodic signal with frequency
ω and of amplitude a. A cos(�t + φ) is the second time-
periodic signal with frequency � and amplitude A. φ controls
the relative phase shift between the two time-periodic forces.
f is the constant bias force which can be negative, zero, or
positive.

Equation (1) represents the archetypal model of a vibra-
tional motor. The first time-periodic force is strong and can
bring the system out of equilibrium. The second time-periodic
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FIG. 1. The average velocity 〈v〉 of an inertial particle described
by Eq. (1) is depicted as a function of the forcing amplitude a for the
monochromatic (solid line) and biharmonic (dotted line) dynamics.
The remaining parameters are f = 0.12, ω = 4.9, γ = 0.9, � = 1.6,
and φ = 0.

signal is weak and creates analogous effects as noise. For
the absence of the second signal, the corresponding system
exhibits very rich dynamical behaviors, such as periodic,
quasiperiodic, and chaotic motion in the asymptotic long time
limit [28–30]. Within the proper parameter regime different
attractors may coexist. In the presence of the second signal,
by manipulating its driving amplitude and frequency, some
anomalous transport phenomena can be observed.

The inertia term ẍ in Eq. (1) is an indispensable ingredient
for the ANM phenomenon. Inertial effects play a crucial
role for this anomalous transport feature [14]. The ANM
is strictly ruled out in the absence of the inertia term [16].
The first time-periodic driving is also indispensable since
the ANM only survives in the nonequilibrium environment.
Our study focuses on the parameter regime that will never
be reached by the basins of transporting attractors with
opposite velocities. Without the second time-periodic driving,
the system dynamics is only governed by the nontransporting
attractors and the average velocity is always zero. Therefore
the second signal is vital for the emergence of ANM. A
modification on the second signal is allowable, for example,
one can change it into a square-wave signal. Lastly, omitting
the dissipative term γ ẋ will not exclude the ANM phenomenon
in principle. But the ANM phenomenon in the Hamiltonian
limit is beyond the scope of this paper.

If the last term of Eq. (1) is a noise [14–17], the transitions
between any deterministic attractor are always ergodic due to
noise-induced metastability. Hence the velocity is independent
of the initial condition. However, when the last term is a
time-periodic signal, Eq. (1) is purely deterministic so that
the resulting asymptotic long time dynamics is not necessarily
ergodic [17]. Particularly, solutions of different types and with
different transport directions (in the direction of f or opposite
to f ) may coexist within a tailored parameter region. Different
initial conditions may result in different types of solutions.

FIG. 2. The average velocity 〈v〉 of an inertial particle described
by Eq. (1) depicted versus the external bias f for the monochro-
matic (triangles) and biharmonic (circles) dynamics. The remaining
parameters are a = 4.2, ω = 4.9, γ = 0.9, � = 1.6, and φ = 0.

Under such a condition, an additional average over the initial
conditions must be performed.

The velocity 〈v〉 averaged over the time and ensemble is
used to characterize the directed transport in the vibrational
motor. It is defined as [16]

〈v〉 ≡ τ

L

〈
lim
t→∞

1

t

∫ t

0
dt ′ẋ(t ′)

〉
, (2)

where the ensemble average is indicated by 〈·〉 and the time
average ensures the independence of the initial transients.
τ = 2π

ω
denotes the temporal periodic of the first driving force

while L = 1 is the spatial periodic of the potential structure.
We carried out comprehensive numerical simulations of Eq. (1)
by the Runge-Kutta method of the second order with time
step �t = 0.001. The ensemble average is taken over an
ensemble of N = 1000 trajectories with uniformly distributed
initial conditions of position. For each trajectory the simulation
time interval is taken as Ts = 3 × 105. The driving frequency
ω = 4.9 of the first signal and friction coefficient γ = 0.9
are fixed throughout the paper. Specifically, a = 4.2, ω = 4.9,
γ = 0.9 are restricted in Figs. 2 through 5. This is a set of
optimal parameter values for the emergence of noise-induced
ANM [14]. The ANM induced by the additional signal is
expected to appear in this regime. Parts of our results are
presented as follows.

Figure 1 depicts the dependence of the average velocity 〈v〉
versus the driving amplitude a of the first signal for a positive
bias set at f = 0.12. One can see that the particle exhibits
the behaviors of normal positive transport (〈v〉 > 0), zero
transport(〈v〉 = 0), and anomalous negative transport (〈v〉 <

0) for different values of a. We are interested in the regime
where 〈v〉 = 0 for the monochromatic signal driving (A = 0)
and 〈v〉 < 0 for an additional signal driving (A = 0.05). The
corresponding ANM phenomenon occurs taking a = 4.2 as
an example. This ANM behavior is solely induced by the
additional signal where it was identified by noise in a Brownian
motor in the same parameter regime [14,16,18].
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FIG. 3. The (γ , a) plane for the case of the coexisting v = 0 and v = ± 1
2 attractors. Different gray tones denote different velocities. The

white regime corresponds to the attractor v = 1
2 while the black region denotes the attactor v = − 1

2 . The parameters are chosen as ω = 4.9,
f = 0.12, � = 1.6, φ = 0 and (a) A = 0, (b) A = 0.05. The particular choice of the parameter values (a = 4.2 and γ = 0.9) in Figs. 1,2,
and 4 is indicated by a black cross.

A typical example for the ANM phenomenon is displayed
in Fig. 2. The average velocity 〈v〉 against the external bias
f is plotted within particular parameter regimes (a = 4.2,
ω = 4.9, γ = 0.9) where ANM can be solely induced by noise
[14,16,18]. The average velocity is zero for small f without
the second signal (A = 0.00) (i.e., the system is at a locked
state that does not contribute to the directed transport).
However, the presence of the second periodic driving changes
this picture. A very weak driving strength yields a negative
velocity for f � 0.17. The particle displays normal transport
by further increasing f . It should be pointed out that the
average velocity 〈v〉 posses two negative-valued minima at
f = 0.05 and f = 0.12, respectively. From the physical
viewpoint, the ANM effect is enhanced by f in two different
regimes. To our best knowledge it has not been observed in
the previous works concerning the ANM phenomenon in the
one-dimensional periodic potential. This behavior has been
observed before for a single particle moving in a zigzag-shaped
two-dimensional potential pipeline [11].
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FIG. 4. The trajectory of the inertial particle for the (a) monochro-
matic and (b) biharmonic dynamics at a = 4.2, ω = 4.9, γ = 0.9,
f = 0.12, � = 1.6, φ = 0 and (a) A = 0, (b) A = 0.05.

To provide in more detail the nature of the ANM in the
vibrational motor, let us look at orbits just for the absence and
presence of the second signal. For the absence of the second
driving force (i.e., A = 0) the orbit is at a locked state that
does not contribute to the directed transport. Consequently,
the average velocity 〈v〉 at A = 0 for varying f in a small
range is zero. There exist a large number of unstable periodic
orbits, transporting the particle in both positive and negative
directions [14]. In the presence of the second signal the orbit is
divided into two parts. The first part displays an almost regular
oscillated motion and the second parts exhibits intermittent
bursts into the negative direction. As a consequence, the
average velocity 〈v〉 is negative at A = 0.05 for f > 0.

The role of the coexisting attractors is essential for the ANM
phenomenon [15,16,18,19]. In Fig. 3, the coexisting attractors
are demonstrated for bias force f = 0.12. Equation (1) is
integrated numerically for different values of γ and a by
sampling the initial condition randomly. Different initial
conditions may result in different velocities, then different
velocities are marked by different gray tones in the parameter
space. The coexisting attractors are revealed by this algorithm.
One can see from Fig. 3(a) that attractor v = 0 coexists
with attractors v = ± 1

2 in the (γ , a) plane. Nontransporting
attractor v = 0, which is globally attractive, exists in the
whole parameter space. The nontransporting attractor v = 0
dominates the particular motion in the gray region. Attractor
v = − 1

2 dominates the transport in the black regime, while its
counterpart v = 1

2 governs the transport in the white regime.
The black cross, which corresponds to the specific parameter
values adopted in Figs. 1,2, and 4, is located in the regime of the
attractor v = 0, thus the particle is not transported at all but just
oscillates around its equilibrium position. With the application
of the second signal [see Fig. 3(b)], things change drastically.
Beside the regimes dominated by the above attractors, new
transport behaviors arise. Particularly, the dark gray regime
in the left top of the figure exhibits negative velocity, while
the black cross is also in this regime. Here the presence of
the second signal has two roles. In one role it can induce
directed transport in the direction opposite to the external bias
in the nontransporting regime. In the other role, it reduces the
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FIG. 5. The velocity probability distribution P (v) of Fig. 3. The exact probability P (v) in panel (a) for the three peaks (from left to right)
read 11.56, 128.1, and 17.73. The exact probability P (v) in panel (b) for the five peaks (from left to right) read 3.384, 6.242, 61.7, 6.626, and
6.557.

directed transport in a positive or negative direction induced
by deterministic attractors.

The probability distribution P (v) of the velocity v calcu-
lated in Fig. 3 is plotted in Fig. 5. For the case of the driving
amplitude A = 0, the P (v) possesses three peaks that locate
in v = 0,± 1

2 , respectively. The three peaks are in accordance
with the three coexisting attractors in Fig. 5. In the case of
the driving amplitude A = 0.05, two additional peaks emerge
around the origin, and the left peak is more obvious than
the right peak. It is seen that the added signal is apt to
favor transport in the negative direction in the nontransporting
regime.

Although the ANM phenomenon in Fig. 2 is observed
for fixed values of driving strength A and frequency �, it
is not an exception and can emerge in a wide range of A

and �. This point is confirmed in Fig. 6 by scanning the
parameter apace where it exhibits negative velocity. Within
the regime of A ∈ (0.02,0.21) at � = 1.6, the direction of the
current is opposite to the applied bias f . The velocity 〈v〉
has a negative-valued minima at A = 0.11, which means the
negative velocity can be maximized by choosing the proper
driving amplitude. For A > 0.21, the particle displays normal
transport. Under the regime of � ∈ (1.4,2.2) at A = 0.05, the
sign of 〈v〉 is opposite to f . This means the particle shows

the ANM feature, and the ANM is optimized at � = 1.5. For
� < 1.4 or � > 2.2, no transport occurs. Moreover, a kind of
resonant activation (RA) arises in Fig. 6(b), where the average
velocity possesses absolute peaks versus the oscillatory drive
frequency [6,7].

To quantify the transport properties under the varying of
amplitude A and frequency �, we plot the (A, �) plane in
Fig. 7. The same method in Fig. 3 is adopted to generate
Fig. 7. In Fig. 7, the anomalous transport opposite to small
bias f exists in a wide range, just beyond the light gray region
and the white region. When the frequency � exceeds some
value, the gray level deepens, which means the presence of
negative velocity against the small bias f . Meanwhile, the
parameter values (A = 0.05, � = 1.6) marked by a black
cross are in the dark gray regime. This is consistent with
the ANM phenomenon in Fig. 2. The maximally achievable
velocities against the small bias can be improved by selecting
the parameter values in the black regime.

The probability distribution P (v) of the velocity v in Fig. 7
is plotted in Fig. 8. The probability distribution P (v) has two
peaks. The sharp peak which locates at v = 0 is induced by
the attractor v = 0. The broad peak which locates around
v = −0.03 reflects the ANM phenomenon induced by the
additional signal.
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FIG. 6. The average velocity 〈v〉 as a function of A and � at a = 4.2, ω = 4.9, γ = 0.9, f = 0.12, φ = 0 and (a)� = 1.6, (b) A = 0.05.
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In the simulation results of Figs. 1 through 8, the phase shift
φ is set at zero. The time-reversal invariance is persistent under
this case. However, the nonzero φ induces the breaking of the
time-reversal symmetry [31]. In Fig. 9, we have presented the
ANM phenomenon for several values of phase shift φ. Varying
φ just yields a slight influence on the ANM phenomenon.
Since the driving amplitude A is very weak compared to a,
the change of relative phase shift hardly affects the ANM
phenomenon.

In our study, the system parameters are all of the order of
magnitude of unity, which makes analytical studies extremely
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FIG. 8. The velocity probability distribution P (v) of Fig. 7. The
exact probability P (v) for the two peaks (from left to right) reads
22.39 and 142.9.
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FIG. 9. The average velocity 〈v〉 versus f with different values
of phase shift φ. The rest of the parameters are the same as those in
Fig. 2. Dotted horizontal line corresponds to zero current.

difficult [16]. Known analytical tools, including a perturba-
tional approach, become completely impossible. Numerical
simulations become a reliable tool on modeling the ANM
phenomenon [14–18].

III. CONCLUSION

The idea of a vibrational motor is put forward when the role
of noise in a Brownian motor is replaced by a time-periodic
force. An abnormal transport phenomenon termed absolute
negative mobility (ANM) is investigated in a vibrational motor.
For the regime where the ANM phenomenon is solely induced
by a noise, the ANM can also be induced by a weakly
periodic force. These theoretical results imply an alternative
strategy for the control of the ANM phenomenon. Since the
periodic driving is more controllable than the noise, the ANM
observed here might shed light on many processes where
different particle species or biology molecular should be sorted
or separated. In addition, many other interesting transport
phenomena, such as current reversal, desire further exploration
in the vibrational motor. The present paper does not consider
the influence of noise. This issue is the subject of our ongoing
investigations.
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