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Different diffusive regimes, generalized Langevin and diffusion equations
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We investigate a generalized Langevin equation (GLE) in the presence of an additive noise characterized by
the mixture of the usual white noise and an arbitrary one. This scenario lead us to a wide class of diffusive
processes, in particular the ones whose noise correlation functions are governed by power laws, exponentials,
and Mittag-Leffler functions. The results show the presence of different diffusive regimes related to the spreading
of the system. In addition, we obtain a fractional diffusionlike equation from the GLE, confirming the results for
long time.
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I. INTRODUCTION

Since Richardson’s work in 1926 [1], a large number of
observations related to anomalous diffusion [2–6] have been
reported in several fields of science, for instance, brain studies
[7,8], social systems [9], biological cells [10,11], animal
foraging behavior [12], nanoscience [13,14], and geophysical
systems [15,16]. One of the main aspects of these situations
is the anomalous spreading of the system or the unusual
behavior of the correlation functions, which may be related
to the non-Markovian nature of the stochastic process present
in these systems. In this context, a typical behavior for the
mean square displacement is 〈(x − 〈x〉)2〉 ∝ tα , where α < 1
and α > 1 correspond to the sub- and superdiffusive cases
and α = 1 refers to the usual case. For processes governed
by Lévy distributions, this quantity is not finite. Situations
with different diffusive regimes are also possible and can be
verified in biological systems [17–19], motion of colloidal
particles [20], systems with long-range interactions [21,22],
and adsorption-desorption process [23–25]. These situations
have been investigated by using several approaches, such
as nonlinear diffusion equations [26], fractional diffusion
equations [27–30], random walks [31,32], and generalized
Langevin equations (GLE) [33–36], which can be connected
to a fractional diffusion equation [37]. From the previous
discussion, we observe the relevance of these diffusion
processes and, consequently, the formalisms employed to
describe them. It is also important to point out that to know
the physical mechanisms behind these processes lead us to the
suitable approach to describe them. In this sense, recent and
valuable discussions concerning this theme can be found in
Refs. [38,39].

Here, we address this work to investigate a GLE by
considering a large class of noise correlation functions, which
may be used as a powerful tool to investigate several physical
systems. For example, stochastic dynamics of non-Markovian
processes present in several scenarios such as nuclear fusion
reactions [40] where the nonlocality on time induces a memory
effect in the particle velocity, anomalous polymer dynamics
[41] connected to the mean relaxation of the polymer to
local strains, viscoelastic media [42], nonexponential decay
of the distribution of waiting times between successive
turnovers of a single enzyme molecule [43], diffusion over
a fluctuating barrier [44], quantum system with nonstationary

coupling [45], and in the subdiffusion within a single protein
molecule [46].

We start by considering two additive noises in the Langevin
equation: a white noise and another one with the correlation
function given by a power law. This choice is very interesting
and leads us to a situation characterized by different diffusive
regimes. One of them is the usual diffusion and the other,
connected to anomalous diffusion, depends on the power law
considered. A typical situation where this GLE with this
additive noise can find application is in the investigation of
the electrical response of the systems described in Ref. [47],
which are characterized by different diffusive regimes. In the
same context, the electrical response of the water [48] may be
described in terms of the GLE used here, since the fractional
diffusion equation used in Ref. [48] can be obtained from it
by suitable considerations. After, we consider a noise with
a general correlation function, instead of the power law. By
using this development, the sum of white and Mittag-Leffler
correlated noises is also investigated. In addition, based on
the approach proposed in Ref. [37], we obtain a diffusionlike
equation corresponding to the GLE and, by means of the
mean square displacement, we show that these approaches
are equivalent when long time scales are considered. These
results may be connected to fractional diffusion equations
[27–30], situations characterized by a finite collision time, and
non-Markovian processes. We present these developments in
Secs. II and III. The last section, i.e., Sec. IV, is devoted to the
discussions and conclusions.

II. GENERALIZED LANGEVIN EQUATION

Let us start our analysis by considering a GLE in the absence
of a deterministic field. For this case, it can be expressed in
the following form:

ẍ(t) +
∫ t

0
dt ′ζ (t − t ′)ẋ(t ′) = ξ̄ (t), (1)

which is a nonlocal equation, where the mass is considered
unitary (without loss of generality), ζ (t − t ′) is the dissipative
memory kernel related to a frictional force, and ξ̄ (t) is a
random force (noise source) with zero mean [〈ξ̄ (t)〉 = 0]. If the
system described by Eq. (1) is in thermal equilibrium (the case
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considered here), the relationship between these microscopic
forces is given by the fluctuation-dissipation theorem [33]:

〈ξ̄ (t)ξ̄ (t ′)〉 = C(|t − t ′|) = kBT ζ (|t − t ′|), (2)

where kB is the Boltzmann constant, T is the absolute tem-
perature of the system, and C(|t − t ′|) is the noise correlation
function. For a white noise (uncorrelated noise), the correlation
function is given by a Dirac delta function and for colored
noises (correlated noise) it may be expressed, for example,
in terms of exponential functions [49], power laws [50], and
Mittag-Leffler functions [51,52].

Aiming to investigate some aspects of Eq. (1), i.e., the
behavior of its solutions, and how it is possible to get different
diffusive behaviors from Eq. (1), subjected to the initial
conditions x(0) = x0 and ẋ(0) = v0, we first consider the sum
of two distinct random forces: ξ̄ (t) = αξ (t) + βη(t), where
ξ (t) and η(t) are stochastic variables with zero mean and
correlation functions given by [34]

〈ξ (t)ξ (t ′)〉 = Aδ(t − t ′), (3)

〈η(t)η(t ′)〉 = B/|t − t ′|γ , (4)

with 〈ξ (t)η(t ′)〉 = 0, where A and B are non-negative pa-
rameters and 0 < γ < 1. In order to satisfy the fluctuation-
dissipation theorem, we have that

α2〈ξ (t)ξ (t ′)〉 + β2〈η(t)η(t ′)〉 = kBT ζ (|t − t ′|). (5)

Note that Eq. (1) is linear for x(t). However, the solution of
Eq. (1) with ξ̄ (t) = αξ (t) + βη(t) is not equal to the sum of
the solutions for ξ̄ (t) = αξ (t) and ξ̄ (t) = βη(t) considered
separately. In addition, Eqs. (3) and (4) incorporated in Eq. (5)
lead us to a mixture of the usual and the anomalous cases. A
direct consequence of this mixture is the presence of different
diffusive regimes depending on the time scale considered.
Similar choices, characterized by different diffusive regimes,
have been applied to describe the single-file diffusion [53–55]
(one-dimensional motion of interacting particles in pores that
are so narrow that the mutual passage of particles is excluded
[56]) and can be used to investigate the electrical response of
the systems such as those worked out in Refs. [47,48]. In partic-
ular, for single-file diffusion, the presence of the non-Gaussian
noise source is related to the mechanism of subdiffusion, i.e.,
the collisional interaction between the file components which
leads to long-range correlations or memory effects.

In our analysis about diffusive processes and Langevin
equations, we have to solve Eq. (1) and investigate the mean
square displacement related to the variable x. In this direction,
we apply the Laplace transform in Eqs. (1) and (5) to simplify
our calculations. Therefore, we obtain that

x(s) = [(s + ζ (s))x0 + v0]G(s) + ξ̄ (s)G(s), (6)

with

G(s) = 1

s2 + sζ (s)
(7)

and ζ (s) = Ā + B̄sγ−1, where Ā = α2A/kBT and B̄ =
β2B/kBT . The inverse Laplace transform lead us to

x(t) = 〈x(t)〉+ α

∫ t

0
dt ′ξ (t ′)G(t−t ′) + β

∫ t

0
dt ′η(t ′)G(t − t ′),

(8)

with 〈x(t)〉 = v0G(t) + x0 and the inverse Laplace transform
of G(s) given by

G(t) =
∞∑

n=0

t

	(1 + n)
(−B̄t3−γ )nE(n)

α̃,β̃
(−Āt), (9)

where α̃ = 1 and β̃ = 2 + (2 − γ )n. The function Eβ̃,α̃(x)
represents the generalized Mittag-Leffler function, whose
definition is given by

Eβ̃,α̃(x) =
∞∑

n=0

xn

	(β̃ + α̃n)
, (10)

with β̃ > 0 and α̃ > 0. The asymptotic limit of Eβ̃,α̃(x) for
x → ∞ is given by Eβ̃,α̃(x) ∼ −1/[	(β̃ − α̃)x]. The presence

of its derivative of the order n, i.e., E
(n)
α̃,β̃

(x) ≡ dnEα̃,β̃ (x)/dxn

[57], in G(t) indicates that the relaxation is not usual. This
feature can be verified by analyzing the asymptotic limit of
G(t), which lead us to a power-law behavior instead of an
exponential one.

By using these equations, it is possible to find the behavior
of the mean square displacement for the x variable. In fact,
performing some calculations, it is possible to show that [52]

σ 2
x (t) = 2I(t) − G2(t), (11)

with I(t) = ∫ t

0 dt ′G(t ′) and kBT = 1 (without loss of gener-
ality). The time-dependent behavior manifested by Eq. (11)
provides information about the spreading of the system
governed by Eq. (1). The presence of different diffusive
regimes may be verified by analyzing the time-dependent
behavior of Eq. (11). In fact, the behavior of Eq. (11) can
be approximated to

σ 2
x ≈ 2Ā

3
t3 + (3 − γ )

2B̄t4−γ

	(5 − γ )
(12)

for small times (t < (3/(2Ā))1/3),

σ 2
x ≈ 2t

Ā
(13)

for intermediate times (3/(2Ā))1/3 < t < (Ā/[	(1 +
γ )B̄])1/(1−γ ), and

σ 2
x ≈ 2tγ

	(1 + γ )B̄
(14)

for long times (Ā/[	(1 + γ )B̄])1/(1−γ ) � t < ∞. These
approximations were obtained by considering B̄ < Ā. For the
cases where this condition is not verified, the intermediated
regime is not evidenced as in the previous case. This feature can
be verified when comparing Fig. 1 with Fig. 2. In this situation,
the more convenient approximation to cover intermediate and
long times is given by the following equation:

σ 2
x ≈ 2t

Ā
E2,1−γ

(
− B̄

Ā
t1−γ

)
. (15)

These asymptotic behaviors show us that the spreading of
the solution has different diffusive behaviors. In Fig. 1, we
illustrate the behavior of σ 2

x (t) obtained from Eq. (11), as well
as the asymptotic expansions. Notice also that the first term in
Eq. (12) is not governed by the values of γ if 0 < γ < 1, in
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FIG. 1. (Color online) Time behavior of the variance obtained
from Eq. (11) with γ = 0.5, Ā = 0.1, and B̄ = 1 is illustrated by the
solid red line. The blue dotted line is the asymptotic expansion for
small times and the black dashed line for long times.

contrast with Eq. (13), which has a strong dependence on γ .
In particular, it is interesting to note that the behavior obtained
for Eq. (12) is the same founded in the usual scenario, i.e., in
absence of nonwhite noise (B = 0) and for short time. In Fig. 2,
we consider Ā > B̄ to illustrate the presence of a intermediate
regime governed by the usual white noise. This figure also
shows that the system may present different diffusive regimes
depending on the noises incorporated in the Langevin equation.
The crossover time, tc, between the different regimes can be
estimated from the mean square displacement by considering
the asymptotic results. In this sense, the first crossover time
occurs at t (1)

c ∼ √
3/Ā and the second one at t (2)

c ∼ [Ā/(	(1 +
γ )B̄)]1/(1−γ ).

It is possible to consider other forms for Eq. (3) or Eq. (4),
leading us to different diffusive processes which may be related
to different diffusive regimes. In this direction, we extend one
of these equations by considering an arbitrary correlation, i.e.,

〈η(t)η(t ′)〉 = Bϒ(|t − t ′|), (16)

where ϒ(|t |) is a time-dependent function that has Laplace
transform defined. In general, ϒ(|t |) enables us to connect
Eq. (16) with correlation functions governed by exponentials,
power-law, Mittag-Leffler, and other functions depending on
the process considered. The main change produced in the
previous results, by considering Eq. (16) instead of Eq. (4),

FIG. 2. (Color online) Behavior of Eq. (11) vs t for γ = 0.5,
Ā = 10, and B̄ = 1 is illustrated. The other lines are used to evidence
the diffusive regimes manifested by Eq. (11).

is in Eq. (7). After some calculations using Eq. (16), we have
that

G(s) = 1

s2 + s(Ā + B̄ϒ(s))
, (17)

which has as inverse Laplace transform,

G(t) = 1

Ā
(1 − e−Āt ) +

∞∑
n=1

(−B̄)n

	(1 + n)

×
∫ t

0
dt ′t ′n+1E

(n)
1,2(−Āt ′)�n(t − t ′), (18)

where

�n(t) =
∫ t

0
dtnϒ(t − tn)

∫ tn

0
dtn−1ϒ(tn − tn−1) · · ·

×
∫ t2

0
dt1ϒ(t2 − t1)ϒ(t1). (19)

Note that, for B̄ sufficiently small, the sum in Eq. (18) could be
truncated at a given order in B̄ to obtain an approximated so-
lution. This procedure resembles a perturbation development
in the sense that the solution of the GLE can be grouped in
powers of B̄.

Another interesting choice for Eq. (16) is to consider
ϒ(|t |) = Eγ (−|t |γ /τ

γ
γ )/τγ

γ (τγ is a characteristic time) (see
also Refs. [51,52]) because it has two asymptotic behaviors:
a stretched exponential one for short times and a power-law
one for long times. These two different behaviors imply in
different diffusive regimes, which can be related to anomalous
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diffusion. After substituting this colored noise into Eq. (18)
and performing some calculations, we obtain that

G(t)= 1

Ā
(1−e−Āt ) +

∞∑
n=1

(−B̄)n

	(1+n)

∫ t

0
dt ′t ′n+1e−Āt ′�n(t−t ′),

(20)

with

�n(t) = tn

τ n
γ

[
E(n)

γ,ν

(
− tγ

τ
γ
γ

)
+ tγ

τ
γ
γ

E
(n)
γ,ν+γ

(
− tγ

τ
γ
γ

)]
(21)

and ν = 1 + (1 − γ )n. The regimes and the influence of the
noise on the solution obtained can be evidenced by analyzing
the asymptotic behaviors for short and long times of Eq. (20).
In this direction, it is possible to show that

G(t) ≈ t − 1

2
Āt2 + 1

6τ
γ
γ

(
Ā2τ γ

γ − B̄
)
t3 (22)

for short times and

G(t) ≈ t

∞∑
n=0

1

	(1 + n)
(−B̄t2−γ )nE(n)

1,ν(−Āt) (23)

for long times, with ν = 2 + (1 − γ )n. Notice again that, for
short times, the relaxation process is not dominated by the γ

values. On the other hand, the γ value plays an important role
for long times.

III. DERIVATION OF A DIFFUSIONLIKE EQUATION

Now, we dedicate this section to derive a generalized
diffusionlike equation associated with the GLE based on the
approach proposed by Khan and Reynolds [37]. In this sense,
we start by considering the following generalized Kramers
equation for the joint probability density function ρ(x,v; t).
As cited in [37,58], this equation is(

∂

∂t
+ v

∂

∂x

)
ρ(x,v; t)

= − ∂

∂v

[
ρ(x,v; t)

∫ t

0
ζ (t − t ′) v(t ′)dt ′

]

+ ∂2

∂v2

∫ t

0
dt ′〈ξ̄ (t)ξ̄ (t ′)〉

〈
δ(v(t)−v) exp

(∫ t

τ

ζ (u)du

) 〉
,

(24)

which is equivalent to the GLE as pointed out in [59]. In
the following, we investigate how to obtain from Eq. (24) a
diffusionlike equation involving only the spatial variable. In
this sense, from Eq. (24), it is possible to obtain the following
equations:

∂W

∂t
+ ∂

∂x
(Wv̄) = 0 (25)

and

∂

∂t
(Wv̄) + ∂

∂x
(Wv2) +

∫ t

0
ζ (t − t ′)(Wv̄)dt ′ = 0, (26)

where W (x,t) = ∫ ∞
−∞ ρ(x,v,t)dv, Wv̄ = ∫ ∞

−∞ vρ(x,v,t)dv,

and Wv2 = ∫ ∞
−∞ v2ρ(x,v,t)dv. Equation (25) is, formally,

a continuity equation and it can be found by integrating
Eq. (24) with respect to v. Equation (26) is obtained by
multiplying Eq. (24) by v and integrating it with respect to
v. By eliminating Wv̄ from Eqs. (25) and (26), we obtain the
following diffusionlike equation:

∂2W

∂t2
+

∫ t

0
ζ (t − t ′)

∂W

∂t ′
dt ′ = ∂2

∂x2
(Wv2). (27)

Depending on the choice of ζ (t) and the time scale considered,
this equation may be connected to several cases, such as the
fractional diffusion equations [28,30] and fractional diffusion
equation of distributed order [60]. In particular, Eq. (27) can
be considered as an extension of the Cattaneo equation; other
extensions can be found in Ref. [61]. In this sense, it can
be related to situations with finite collision time, which is
not present in the usual diffusion equation. Indeed, the usual
diffusion equation is an approximation valid only for time
scales that are large enough when compared to the time
scale related to the microscopic collisions. As pointed out
in Ref. [62], one of the most striking nonphysical properties
of the standard diffusion equation is an infinite velocity
of information propagation. However, the inclusion of the
finite collision frequency in the system may create additional
difficulties to treat the problem; an approximation that makes
the problem more tractable is discussed by Bourret [63] and
may lead to an integral equation similar to Eq. (27) with
a correlation function in the kernel [64]. In addition, it is
interesting to note that Eq. (27) may also be connected to the
situations discussed in Refs. [65–67], which are essentially
non-Markovian.

By using Eq. (27), a generalized diffusionlike equation
related to the GLE with two additive noises can be obtained
when Eqs. (3), (5), and (16) are considered. It is given by

∂2W

∂t2
+ Ā∂W

∂t
+ B̄

∫ t

0
dt ′ϒ(|t−t ′|)∂W

∂t ′
= ∂2

∂x2
(Wv2) (28)

(Ā = α2A/kBT and B̄ = β2B/kBT ). This equation presents
different diffusive regimes depending on the time scale
considered; a similar situation is found in Ref. [61]. These
different behaviors can be verified by analyzing the mean
square displacement (or the second moment depending on
the initial condition), which is a measure of the spreading of
the system. With this purpose, by multiplying Eq. (28) by x2

and integrating it with respect to x variable, we have that

d2

dt2
〈x2〉(t) + Ā d

dt
〈x2〉(t) + B̄

∫ t

0
dt ′ϒ(|t − t ′|) d

dt ′
〈x2〉(t ′)

= 2〈v2〉(t), (29)

where 〈x2〉(t) = ∫ ∞
−∞ x2W dx and 〈v2〉(t) = ∫ ∞

−∞
∫ ∞
−∞ v2ρ

(x,v,t)dv dx. Note that, to obtain 〈x2〉, we need to know the
time dependence of 〈v2〉. However, we are interested in the be-
havior of Eq. (28) for long times, i.e., when it can be connected
to a fractional diffusion equation of distributed order for a suit-
able choice of ϒ(t). In order to cover this scenario, we approx-
imate 〈v2〉 to a constant, i.e., 〈v2〉 ≈ D. Applying the Laplace
transform with 〈x(0)〉 = 0, it is possible to obtain the second
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FIG. 3. (Color online) Comparison of the variance behavior in
the time of Eqs. (11) and (32) with γ = 0.5, Ā = 0.1, B̄ = 1, and
D = 1. The blue dotted line is the diffusionlike equation approach and
the straight red line is the GLE approach. Note that, for small times,
Eqs. (11) and (32) have a different behavior due to the approximations
considered.

moment 〈x2〉 from Eq. (29) and, consequently, the mean
square displacement σ 2

x . After some calculations, we obtain
that

σ 2
x (s) = 2D

s(s + Ā)

∞∑
n=0

(
− B̄ ϒ(s)

s + Ā

)n

, (30)

with the inverse Laplace transform being given by

σ 2
x = 2D

[
1

Ā
(1 − e−Āt ) +

∞∑
n=1

(−B̄)n

	(1 + n)

×
∫ t

0
dt ′t ′n+1E

(n)
1,2(−Āt ′)�n(t − t ′)

]
, (31)

where �n(t) was defined in Eq. (19).

From Eqs. (18) and (31), it is interesting to note that
these equations have relaxation processes governed by the
generalized Mittag-Leffler function, which for long time lead
us to the same time behavior obtained for the Langevin
equation. In order to verify this feature, we consider the case
characterized by ϒ(|t |) = B/|t − t ′|γ , which is solved in the
previous section. By substituting this function into Eq. (29),
we obtain that

σ 2
x = 2D

∞∑
n=0

t2

	(1 + n)
(−B̄t2−γ )nE(n)

ᾱ,β̄
(−Āt), (32)

where ᾱ = 1 and β̄ = n(1 − γ ) + 3. In Fig. 3, we compare
this result with the one found in the GLE approach by
plotting Eqs. (11) and (32). As we can see, this figure
shows a good agreement between Eqs. (11) and (32) when
long times are considered, as expected from the previous
discussion. In particular, the asymptotic limits for Eq. (32) are
σ 2

x ∼ 2〈v2〉t2(1 − Āt/3) for short times, σ 2
x ∼ 2〈v2〉t/Ā for

intermediate times, and σ 2
x ∼ 2〈v2〉tγ /[	(1 + γ )B̄] for long

times. Notice that Eqs. (11) and (32) are proportional to t for
intermediate times and to tγ for long times when B̄ < Ā.
This fact is a consequence of the presence of the usual and
power-law relaxations in the system; the last one is evidenced
by the presence of the generalized Mittag-Leffler functions.

IV. SUMMARY AND CONCLUSIONS

We have investigated a Langevin equation by taking
additive noises into account. In particular, different diffusive
regimes may be manifested depending on the time scale con-
sidered. This feature is evidenced when the Langevin equation
is analyzed by incorporating the sum of two noises, one of them
being white. Furthermore, since any noise can be decoupled as
a sum of two others, this approach may be viewed as a kind of
perturbative approach, where the nonwhite noise is considered
as a perturbation. After this, we have analyzed the diffusionlike
equations that are related to these Langevin equations by using
the procedure present in [37]. The diffusion equation also man-
ifests, similar to the Langevin equations, different diffusive
regimes. In addition, we verify that the spreading, for an initial
condition obtained for this diffusion equation, is equivalent
to the Langevin equation when long times are considered.
Finally, we hope that the results presented here can be useful
to investigate situations related to anomalous diffusion.
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