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Power-law behavior in a cascade process with stopping events: A solvable model
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The present paper proposes a stochastic model to be solved analytically, and a power-law-like distribution is
derived. This model is formulated based on a cascade fracture with the additional effect that each fragment at
each stage of a cascade ceases fracture with a certain probability. When the probability is constant, the exponent
of the power-law cumulative distribution lies between −1 and 0, depending not only on the probability but the
distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is
less than −1, irrespective of the distribution of fracture points. The applicability of our model is also discussed.
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I. INTRODUCTION

A power-law distribution is found ubiquitously, ranging
from physical systems, such as critical phenomena in phase
transitions, aggregation, fracture, and earthquakes, to eco-
nomic systems, such as distributions of income and sales,
and price fluctuations [1]. A lot of physical approaches, such
as fractal growth [2], self-organized criticality [3], and the
“rich get richer” mechanism [4], have derived power-law
distributions in various systems, but our understanding of
power laws is still insufficient in view of their diversity. In the
present paper, we propose a simple stochastic model which
is analytically solvable and produces a power-law distribu-
tion. The model incorporates two elements: a multiplicative
stochastic cascade process and random stopping.

Fracture is one of the most typical phenomena deeply
related to a power law. A number of experiments have
confirmed that fragment size distributions mainly follow power
laws [5–7]. Theoretically, various models have attempted to
derive power-law distributions [8–11], but there seems to be
no decisive model which simply and analytically explains
a power-law distribution of fragment sizes without using
specific breaking mechanisms. Fracture phenomena have
offered us many interesting properties and behaviors, not only
a power-law distribution of fragment sizes. For example, the
shattering transition occurs when fragmentation of smaller
fragments becomes increasingly fast and a finite fraction of
mass falls into a dust phase of zero-size fragments [12]; also,
the damage-fragmentation transition observed in collisional
fragmentation yields scaling relations similar in percolation
theory [13].

Before we introduce our model, we briefly refer to a simple
multiplicative stochastic process, using a model of cascade
fracture [14]. In this model, one rod of length L breaks into
two fragments at a randomly chosen point, and each of the two
fragments again breaks into two subfragments, and so on [see
Fig. 1(a)]. The length of one of the fragments after the nth stage
of fracture is expressed as ξ1ξ2 · · · ξnL, where ξ1,ξ2, . . . ,ξn are
random numbers between 0 and 1. This process is referred to
as “multiplicative,” because the length of a fragment is given
by multiplying the previous length by ξi . The fragment size
distribution in this case is not a power-law distribution but a
lognormal one, which is proved by the central limit theorem
for log ξi .

II. MODEL AND ANALYSIS

Our model proposed in this paper also starts with one rod
of length L, and fragments repeatedly break into two subfrag-
ments. A fracture point is given by a random number ξ ∈ (0,1)
drawn from a probability density function g(ξ ). The difference
from the above simple multiplicative model is that each
fragment ceases fracture with probability ρ, which we call the
“stopping probability” [see Fig. 1(b)]. Whether each fragment
stops fracture or not is determined independently; once a frag-
ment ceases fracture, it never restarts fracture any more, and we
call such a fragment “inactive.” Previously, a similar stochastic
model of cascade fracture adopting a random-stopping event
has been proposed in Ref. [15], but their analyses treat only a
simple situation where g(ξ ) ≡ 1 in our notation. In this paper,
we solve the model for a general probability density g(ξ ).
Furthermore, we consider the two cases: (i) ρ is constant, and
(ii) ρ depends on the length of a fragment.

Case I (ρ is constant). We focus on the cumulative number
NL(x) of fragments, which represents the expected number of
the inactive fragments larger than x. NL(x) can be computed
as follows. With probability ρ, the initial rod ceases fracture;
one fragment (i.e., the initial rod itself) is larger than x.
With probability 1 − ρ, by contrast, the initial rod breaks
into two fragments at a random point given by ξ ; each of
the two fragments can experience further fracture, and these
subfracture processes are both similar to the whole process.
Hence, the expected number of the fragments larger than x

in this case is given by NξL(x) + N(1−ξ )L(x). By taking into
account that the fracture point ξ is drawn from a distribution
g, NL(x) satisfies the following equation:

NL(x) = ρ × 1 + (1 − ρ)
∫ 1

0
{NξL(x) + N(1−ξ )L(x)}g(ξ )dξ.

(1)

If we rescale our length scale by a factor α(>0) and
observe fracture processes, the length of the initial rod is
αL in the new scale, and the cumulative number NL(x) turns
to NαL(αx). Hence, a scaling relation NαL(αx) = NL(x) or
NαL(x) = NL(x/α) is satisfied. Using this relation to convert
all subscripts in Eq. (1) into L, and introducing

ÑL(x) = NL(x) + ρ

1 − 2ρ
(2)
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FIG. 1. (Color online) (a) The simple model of cascade fracture,
where the fragments at each stage break into two subfragments.
The resulting fragment size distribution is a lognormal one. (b) Our
proposed model, which is different from (a) in that each fragment
ceases fracture with probability ρ.

in order to eliminate the inhomogeneous term “ρ” at the right-
hand side of Eq. (1), we obtain a homogeneous equation of ÑL:

ÑL(x) = (1 − ρ)
∫ 1

0

{
ÑL

(
x

ξ

)
+ ÑL

(
x

1 − ξ

)}
g(ξ )dξ.

(3)

We assume a power-law form ÑL(x) = Cx−β , where C and
β(>0) are both independent of x. Then, we have

(1 − ρ)
∫ 1

0
{ξβ + (1 − ξ )β}g(ξ )dξ = 1. (4)

The exponent β is determined by this equation; hence β

generally depends on both ρ and g. The coefficient C is
determined from Eq. (2) by considering NL(L) = ρ with
ÑL(L) = CL−β as

C = 2ρ(1 − ρ)

1 − 2ρ
Lβ.

Eventually, the complete solution is

NL(x) = 2ρ(1 − ρ)

1 − 2ρ
Lβx−β − ρ

1 − 2ρ

= ρ

1 − 2ρ

{
2(1 − ρ)

(
x

L

)−β

− 1

}
,

coupled with Eq. (4) for determination of β. Note that ÑL(x)
is an exact power law of x, but NL is not exactly because of
the presence of the second term “−1.” Nonetheless, NL(x)
can be approximated by a power law if the second term is
negligible, i.e., 2(1 − ρ) � (x/L)β , or if x is sufficiently
smaller than L and ρ is also small.

In above calculation, we postulate the power-law form
ÑL(x) = Cx−β , but the validity of this hypothesis is not
obvious at first sight. First of all, the uniqueness of solutions
of an integral equation (3) is not quite evident, and other types
of solutions may exist. We prove in the Appendix that Eq. (3)
can admit only power-law solutions.

The solution β of Eq. (4) cannot be expressed explicitly
for a general probability density g. Now, we provide three
examples of calculations of β. The simplest instance is g(ξ ) =

δ(ξ − 1/2), where δ is the Dirac δ function. In other words,
the fracture points are always at the middle of the fragments.
Equation (4) in this case is reduced to

2(1 − ρ)

(
1

2

)β

= 1,

and the solution is β = 1 + log(1 − ρ)/ log 2.
In the second example, the fracture point is distributed

uniformly over each fragment, i.e., g(ξ ) = 1 for all ξ ∈ (0,1).
Equation (4) becomes

(1 − ρ)
∫ 1

0
{ξβ + (1 − ξ )β}dξ = 2(1 − ρ)

1

1 + β
= 1,

and the solution is β = 1 − 2ρ, which reproduces the previous
result in Ref. [15].

The third example is g(ξ ) = 6ξ (1 − ξ ). (The coefficient
“6” comes from the normalization

∫ 1
0 g(ξ )dξ = 1.) Also in

this case, we can calculate β explicitly as

β =
√

49 − 48ρ − 5

2
,

which is a completely untrivial result.
In the above three examples, two limiting values β ↗ 1

as ρ ↘ 0 and β ↘ 0 as ρ ↗ 1/2 can be easily obtained in
common. Since β is a decreasing function with respect to ρ

in these examples, we conclude that the reasonable ranges are
0 < β < 1 and 0 < ρ < 1/2. Moreover, the same constraints
for β and ρ can be derived for a general g(ξ ). Indeed, the
relations limρ↘0 β = 1 and limρ↗1/2 β = 0 and monotonity
of β with respect to ρ hold in a general g.
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FIG. 2. (Color online) Numerical results of cumulative number
NL(x) for L = 1 and ρ = 0.1,0.2,0.3, and 0.4, generated by counting
only the inactive fragments, and averaging 1000 samples each. Each
straight line indicates the corresponding ÑL that follows an exact
power law. The fracture points are (a) at the middle of the fragments
g(ξ ) = δ(ξ − 1/2), and (b) distributed uniformly g(ξ ) = 1.
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Here, we show the results of a numerical check of NL in
Fig. 2. The parameters are L = 1, and ρ = 0.1,0.2,0.3,0.4.
The probability density g for the fracture points are g(ξ ) =
δ(ξ − 1/2) in (a) and g(ξ ) = 1 in (b). Each sample of the
calculations was performed until all the active fragments
became smaller than 10−6, and we counted only the inactive
fragments, and each data set in the figure is the average of 1000
samples. An exact power law ÑL is also shown with a solid
line. Power laws fail in larger fragment sizes, as mentioned
above.

Case II (ρ depends on a fragment size). It is noted that
the above model provides only β < 1. However, in real
experiments of fracture, some results correspond to β > 1
[5,16]. Here we propose a modification of the above model in
order to realize β > 1 by treating the stopping probability as
a function of a fragment size. In particular, we give here the
stopping probability of a fragment of size � as

ρ(�) =
{(

λ
�

)γ
, � � λ

1, � � λ,
(5)

where λ is a characteristic length and γ > 0 is a constant.
The stopping probability (5) represents an effect that smaller
fragments have more difficulty experiencing further fracture.
Obviously, a fragment becomes inactive whenever its size
becomes smaller than λ; hence the parameter λ is the lower
bound of the fragment sizes. We employ the assumption λ � L

in the following analysis.
As in Case I, the cumulative number NL,λ(x), including two

parameters L and λ this time, plays an important role. In the
same way as Eq. (1), NL,λ satisfies the following equation:

NL,λ(x)

= {1 − ρ(L)}
∫ 1

0
{NξL,λ(x) + N(1−ξ )L,λ(x)}g(ξ )dξ + ρ(L)

=
{

1 −
(

λ

L

)γ } ∫ 1

0
{NξL,λ(x)

+N(1−ξ )L,λ(x)}g(ξ )dξ +
(

λ

L

)γ

	
∫ 1

0
{NξL,λ(x) + N(1−ξ )L,λ(x)}g(ξ )dξ, (6)

where we used the approximation λ/L 	 0. (the symbol “	”
is used only in this sense.)

A scaling relation NαL,αλ(αx) = NL,λ(x) is again obtained.
Moreover, by the definition of the cumulative number,

NL,λ(x) =
∫ L

x

ρ(�)ν(�)d� =
∫ L

x

(
λ

�

)γ

ν(�)d� ∝∼ λγ ,

where ν(�)d� is the average number of active fragments whose
lengths are within [�,� + d�). Thus, another scaling relation
NL,αλ(x) 	 αγ NL,λ(x) is derived for x � λ and α > 0. We
guess a power-law form NL,λ(x) = Cx−β , and substitute into
Eq. (6) together with the above two scaling relations, which
yields ∫ 1

0
{ξβ−γ + (1 − ξ )β−γ }g(ξ )dξ = 1.

Since the normalization
∫ 1

0 g(ξ )dξ = 1 holds, the solution is
β = 1 + γ . β > 1 is attained because γ > 0. A remarkable
point is that the exponent β = 1 + γ is universal over any
probability density g governing the fracture points. (Compare
this with the case of a constant stopping probability, where β

depends on g.)
The coefficient C is λγ L, derived from the consis-

tency of two expressions NL,λ(L) = CL−β = CL−(1+γ ) and
NL,λ(L) = ρ(L) = (λ/L)γ . Finally, the complete solution is
expressed as

NL,λ(x) = λγ Lx−(1+γ ) =
(

λ

L

)γ (
x

L

)−(1+γ )

. (7)

The calculation is based on x � λ; consequently, this solution
breaks down if x � λ.

Numerical confirmation is shown in Fig. 3, where we set
L = 1 and λ = 10−6. The numerically obtained cumulative
numbers clearly lie on the power-law solutions (solid lines)
over a wide range of larger fragment sizes. Also, the data
points deviate from the power laws in a fragment size close to
or less than λ, as expected theoretically.

III. DISCUSSION

One can straightforwardly extend the model so that each
fragment breaks into n subfragments at a single fracture, where
n can be either a fixed or random number. A fragment size
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FIG. 3. (Color online) Numerical results of NL for L = 1. The parameter values of the stopping probability are λ = 10−6 and γ = 0.5,1,

and 1.5. Each data set was generated by averaging 1000 samples. Solid lines indicate the corresponding solutions (7). The probability densities
for the fracture points are, respectively, g(ξ ) = δ(ξ − 1/2) in (a), and g(ξ ) = 1 in (b).
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distribution in this case is again like a power law; the exponent
β is less than 1 under a constant stopping probability, and
β = 1 + γ (>1) under the stopping probability as in Eq. (5). A
special case like the Sierpinski fractal is found in Refs. [17,18]
without pointing out the sensitivity of β against g.

Now we discuss the relevance and applicability to other
systems. As described in Sec. I, the natural distribution related
to a multiplicative process is a lognormal distribution. Thus,
some additional “tricks” are needed to generate a power law
from a multiplicative process, such as a reset event [19],
additive noise [20], and a boundary constraint [21]. The trick
for a power law in our models is random stopping. Moreover,
our model is related to a stochastic branching process [22]. In
fact, in the case where the stopping probability is constant ρ,
the “genealogical tree” of the fragments is simply a kind of
the Galton-Watson branching process, in the sense that each
fragment at each stage of a cascade has either two “children”
of subfragments with probability ρ or no children with 1 − ρ.
Such a stochastic process has been investigated exhaustively,
but we stress that a stochastic branching process alone is not
associated with a power-law distribution.

For clarity, we formulate and analyze the model in terms
of the fracture of a rod. However, we require neither the
properties of materials nor specific breaking mechanisms;
hence, the model is not limited to the fracture of materials in a
narrow sense. For instance, at the simplest level, a power-law
distribution of income, often referred to as the Pareto distri-
bution [23], can be thought as the consequence of hierarchical
partitioning of profit or wealth, and a power-law distribution
of file sizes [24] is caused by the partitioning of bulk data.

It has been pointed out that a lognormal distribution can be
confused easily with a power-law distribution [25]. Our result
gives one theoretical basis for their connection; the difference
is whether the stopping probability exists or not. Some
experiments also have shown that the two types of distributions
can possess a common origin. In fact, a fragment size
distribution qualitatively changes according to impact energy
[26] (or falling height [27]): it exhibits a lognormal distribution
under lower energy, and a power-law distribution under higher
energy. We can roughly explain the experiments as follows. Let
us consider that the stopping probability is given by Eq. (5),
where the cumulative number follows a power law as in Eq. (7).
In the low-impact-energy limit, a fracture process corresponds
to a cascade limited to the first several stages, where most

fragments are far larger than λ, so ρ(�) 	 0 holds. This is
almost equivalent to the simple multiplicative process free
from stopping events [Fig. 1(a)]; therefore, the fragment size
distribution in this limit becomes rather like a lognormal
distribution.
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APPENDIX: THE VALIDITY OF A POWER-LAW
SOLUTION OF EQ. (3)

We prove here that Eq. (3) has only a power-law solution
ÑL(x) = Cx−β . First, Eq. (3) changes to

(1 − ρ)
∫ 1

0

{
ÑL

(
x
ξ

)
ÑL(x)

+
ÑL

(
x

1−ξ

)
ÑL(x)

}
g(ξ )dξ = 1

by dividing both sides by ÑL(x). The left-hand side is a
function of L and x, whereas the right-hand side is a constant.
Hence, ÑL(x/ξ )/ÑL(x) depends only on ξ in reality, and
we set �(ξ ) := ÑL(x)/ÑL(x/ξ ). Equivalently, we can write
ÑL(xy) = ÑL(x)�(y), and also ÑL(xy) = ÑL(y)�(x) by in-
terchanging x and y. Then, we have ÑL(x)�(y) = ÑL(y)�(x)
for any x and y, which concludes �(x) = cÑL(x) for some
constant c. (To be precise, c is a function of L.) Finally, a
closed relation

ÑL(xy) = cÑL(x)ÑL(y)

is obtained. By differentiating with respect to y and then
putting y = 1, we have a differential equation

xÑ ′
L(x) = cÑ ′

L(1)ÑL(x),

whose solution is a power law ÑL(x) = Cx−β , where C and
β := −cÑ ′

L(1) are constants. As in the main part of the paper,
the coefficient C is determined by a boundary condition,
and the exponent β by Eq. (4). In conclusion, the integral
equation (3) with the boundary condition ÑL(L) = ρ has the
unique power-law solution shown here.
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