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Mixed population of competing totally asymmetric simple exclusion processes
with a shared reservoir of particles
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We introduce a mean-field theoretical framework to describe multiple totally asymmetric simple exclusion
processes (TASEPs) with different lattice lengths and entry and exit rates, competing for a finite reservoir of
particles. We present relations for the partitioning of particles between the reservoir and the lattices: These
relations allow us to show that competition for particles can have nontrivial effects on the phase behavior of
individual lattices. For a system with nonidentical lattices, we find that when a subset of lattices undergoes a
phase transition from low to high density, the entire set of lattice currents becomes independent of total particle
number. We generalize our approach to systems with a continuous distribution of lattice parameters, for which
we demonstrate that measurements of the current carried by a single lattice type can be used to extract the entire
distribution of lattice parameters. Our approach applies to populations of TASEPs with any distribution of lattice
parameters and could easily be extended beyond the mean-field case.
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I. INTRODUCTION

The totally asymmetric simple exclusion process (TASEP)
has become a paradigm in nonequilibrium statistical physics,
due to its rich phenomenology and wide applicability [1–6].
The majority of this work has focused on the case of a
single TASEP with a fixed entry rate (corresponding to
infinite availability of particles). However, many physical and
biological situations involve multiple lattices with different
parameters, whose dynamics is coupled via competition for
a finite pool of particles. In this paper we present a simple
mean-field theoretical framework to study such scenarios,
which can be used for an arbitrary number of lattices and for
any distribution of lattice parameters. We show that nontrivial
behavior, including extension of the shock phase to a finite
region of parameter space, and “buffering” of individual
currents to changes in the reservoir particle number, can
emerge from the competition between lattices for particles. We
further show that in these systems, information on the whole
system can be extracted from measurements of the behavior
of an individual lattice subtype.

The standard TASEP is a stochastic process which describes
the collective movement of particles along a one-dimensional
lattice composed of L sites. On the lattice, a particle hops
stochastically from site i to i + 1, provided that site i + 1
is empty. Particles enter the first site (if unoccupied) and
leave the last site with fixed rates. This model shows three
distinct phases controlled by the boundary rates: The low-
density (LD) phase occurs when the entry rate is limiting,
the high-density (HD) phase when then exit rate is limiting,
and the maximal current (MC) phase when both entry and
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exit rates are large enough that the current is limited only by
the hopping rate along the lattice. Exact steady-state solutions
for the density of particles on the lattice and the current are
known [7–9].

First introduced as a model of protein synthesis [10,11],
the TASEP nowadays provides a generic model for transport
processes, with applications including the production of
mRNA [12,13] and protein [14,15] in biological cells, the
motion of motor proteins along cytoskeletal filaments [16–20],
the transport of vesicles in fungal hyphae [21], collective insect
motion [22], and traffic flow problems [23]. Most of these
studies have focused on particle motion on a single TASEP
track (including tracks with multiple lanes; e.g., Ref. [24]); in
reality, however, one often has multiple tracks, which may have
different lengths and hopping and boundary rates, and which
compete for a finite number of particles. For example, in traffic
dynamics vehicles may distribute themselves across different
roads, while in biological cells different mRNA molecules
compete for the cellular protein production machinery [25].
Our aim in this paper is to provide a simple, intuitive, and
generic framework to study such problems.

This work is not the first to consider the effects of a finite
reservoir of particles, or of competition for particles between
several TASEPs. Recently Adams et al. [26] and Cook and Zia
[27] studied a single TASEP with a finite reservoir of particles,
using Monte Carlo simulations, mean-field theory, and both
simple and generalized domain-wall theories. Cook et al.
[28] extended this work, using Monte Carlo simulations and
domain-wall theory to describe several TASEPs of the same
or different lengths, sharing the same particle reservoir. This
work revealed interesting effects due to the reservoir-induced
coupling between TASEPs. In particular, a regime can exist
in which reservoir density is independent of the total particle
number. The domain-wall approach is powerful because it
can incorporate fluctuations and thus describe accurately
the density profiles on the lattices. However, this approach
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is difficult to generalize to many lattices with arbitrary
distributions of entry and exit rates. Here we take a much
simpler, mean-field approach. Our approach does not provide
information on fluctuations and cannot predict density profiles.
However, it yields a simple way to calculate phase diagrams
and is easy to generalize to arbitrary populations of lattices.

In Sec. II we describe our mean-field approach and present
relations for the partitioning of particles between the reservoir
and lattices. We apply this methodology to the case of a single
TASEP coupled to a finite reservoir in Sec. III A and to a
population of identical lattices in Sec. III B. As a result of the
competition for particles, a new region of the phase diagram
emerges, in which the LD and HD phases coexist; the size
of this region increases as the particle availability decreases.
Next, in Sec. IV, we consider a system with two different
types of lattices, and we find that an LD-HD phase transition
on one lattice type causes the behavior of the other lattice type
to become independent of the particle number. In Sec. V we
generalize to the case of mixed populations of lattices with
arbitrary distributions of boundary rates. Here we find that an
LD-HD phase transition on any lattice type “buffers” all other
lattices to changes in the particle number, and we show that
the entire distribution of lattice parameters can be extracted
from the current on a single lattice subtype. Finally we present
our conclusions in Sec. VI.

II. MEAN-FIELD THEORY FOR MULTIPLE
COMPETING TASEPs

We begin our discussion by recalling the behavior of a
single TASEP with fixed hopping rate γ , entry rate α̃, and exit
rate β̃ [1–5]. For the purposes of this paper we discuss only the
mean-field results for the steady-state average particle density
(number of particles per unit length) and current on the lattice,
which become exact in the limit of a large lattice. We first define
rescaled dimensionless entry and exit parameters α := α̃/γ

and β := β̃/γ (i.e., we use the hopping rate γ to define the
unit of time). The (mean-field) density ρ of particles on the
lattice takes one of three values, depending on α and β, as
summarized in Table I. The current J is related to the density by
J = γρ(1 − ρ). In the low-density (LD) phase, where α < β

and α < 1/2, the behavior of the system is dictated by the
entry rate and ρ = α. In the high-density (HD) phase, where
α > β and β < 1/2, the exit rate is limiting, particles queue
on the lattice, and ρ = 1 − β. When both entry and exit rates
are large, α,β � 1/2, neither rate is limiting, and the system is
in the maximal current (MC) phase, for which ρ = 1/2. The
transition from either LD or HD to the MC phase is continuous
in the density, but the transition between the LD and HD phases
is discontinuous in the density. On the HD-LD transition line,

TABLE I. Summary of the mean-field solutions for a single
TASEP with fixed entry and exit rate. These relations become exact
in the L → ∞ limit. Note that here α and β denote the dimensionless
parameters as defined in the text.

ρ = α LD phase α < β,α < 1/2 J = γα (1 − α)
ρ = 1 − β HD phase α > β,β < 1/2 J = γβ (1 − β)
ρ = 1/2 MC phase α,β � 1/2 J = γ /4

FIG. 1. Schematic illustration of the multitrack TASEP with a
finite pool of particles. Different lattices may have different lengths
and entry and exit rates. The entry rate of particles onto a given lattice
depends linearly on the concentration Nr/V of free particles, where
Nr is the number of particles in the reservoir and V is the volume of
the reservoir (shaded region).

where α = β and α,β < 1/2, there is “coexistence” between
the LD and HD phases: Part of the lattice takes on the density
of the LD phase while the remaining part takes on the density
of the HD phase, with a well-defined boundary between these
domains, called a shock. This scenario is known as a shock
phase (SP) [2].

In this paper we consider the case shown in Fig. 1, in
which multiple lattices with different lengths and entry and exit
parameters compete for a finite number of particles. The reser-
voir of free particles is assumed to have a finite volume V .1

When a particle exits a lattice, it immediately enters the reser-
voir, from where it is free to enter any other (or the
same) lattice. We assume that free particles are well mixed
(not correlated) and homogeneously distributed within the
reservoir. Since particles are conserved, the total number of
particles N can be written as

N = Nr + Nl, (1)

where Nr denotes the number of particles in the reservoir and
Nl the number of particles on the lattices. In turn, Nl can be
found by summing over the lattices:

Nl =
M∑

j=1

ρjLj , (2)

where M is the total number of lattices, ρj is the density of
particles on lattice j , and Lj is the length of lattice j .

The entry rate of particles onto any given lattice depends
on the density Nr/V of particles in the reservoir. Since the
reservoir is well mixed, we expect this rate to be linear in the
particle density, so that an individual TASEP j experiences an
injection rate αj given by

αj := α0,j

Nr

V
, (3)

1This scenario is typical of biochemical situations (e.g., motor
proteins on cytoskeletal filaments) in which both particles and tracks
are confined in a finite volume, and the rate of particle binding events
per track is proportional to the free particle concentration.
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where α0,j is the “intrinsic” affinity of lattice j for particles
(with units of volume per time). This relation implies that the
rate of particle binding events per lattice is proportional to the
free particle concentration: This is expected to be true as long
as the reservoir does not become too crowded with particles.

In the limit of a large total number N of particles (N → ∞
at constant N/V ), Nr = N − Nl � Nl , so that Nr/V will tend
to the total particle concentration N/V , and we recover the
standard TASEP with constant entry and exit rates. Since the
maximum value of Nl is

∑
j Lj = LM (denoting L := 〈Lj 〉

as the average over all lattices), the standard TASEP limit
is approached when N � LM . This means that the finite
reservoir plays an important role only for N/LM ∼ 1 or
smaller. Following previous work [26–28], the exit rate from
lattice j is assumed to be independent of the reservoir, being
simply given by its “intrinsic” exit rate βj .

Within the mixed population of TASEPs, the phase behavior
of a given lattice j is completely determined by its (Nr -
dependent) effective entry rate αj and exit rate βj , according
to the rules for a single TASEP, as listed in Table I. For any
given value of the reservoir particle number Nr (assuming
fixed V ), subpopulations of lattices will be in the LD, HD, and
MC phases, depending on their values of αj and βj .2 We can
therefore write the total number of particles on the lattices as

Nl = NLD + NHD + NMC, (4)

where NLD, NHD, and NMC are the total numbers of particles
on lattices in the LD, HD, and MC phases, respectively. The
density of particles on each lattice depends on which phase it
is in, according to the relations in Table I. Equation (4) can
therefore be rewritten as

Nl(Nr ) =
∑
j,LD

αj (Nr )Lj +
∑
j,HD

(1 − βj )Lj +
∑
j,MC

Lj/2. (5)

Here we explicitly note that NLD depends on the reservoir
particle number Nr through the dependence of the effective
injection rate αj on Nr . The three sums in Eq. (5) are over
lattices in the LD, HD, and MC phases: Because αj depends
on Nr , changes in the reservoir particle number will drive
phase transitions on the lattices, so that these three sums will
encompass different lattice subpopulations for different values
of Nr . We can then combine Eqs. (1) and (5) to express the
relation between the reservoir particle number Nr and the total
particle number N :

N = Nr +
∑
j,LD

αj (Nr )Lj +
∑
j,HD

(1 − βj )Lj +
∑
j,MC

Lj/2. (6)

Equation (6) forms the basis of our theoretical approach; in
the remainder of the paper we explore its implications, first for
some simple cases and then for more complex scenarios.

2In this work, we use a different convention from previous authors
[26–28] to define the phases of the single- and multitrack TASEP with
finite resources. These authors use a saturating function for the in-
jection rate α and label the phase of the system according to the
phase that would be obtained in the infinite reservoir limit (i.e., at the
saturation value of the injection rate). We instead define the phase of
the lattices as a reservoir density-dependent variable, determined by
the value α(Nr/V ) of the injection rate.

III. A HOMOGENOUS POPULATION OF TASEPs
COUPLED TO A FINITE RESERVOIR

We first consider the case of a homogeneous population
of lattices. Our system thus contains M identical lattices of
length L, intrinsic injection rate α0, and exit rate β, coupled
to a finite pool of N particles. Since the lattices are identical,
in our mean-field approach each lattice experiences the same
effective injection rate α = α0Nr/V . This implies that all the
lattices are in the same phase; we refer to this as the “global
phase” of the system. The relation between N and Nr is now
given by

N =

⎧⎪⎨
⎪⎩

Nr + LMα0Nr/V α0Nr/V < β, α0Nr/V < 1/2

Nr + LM(1 − β) α0Nr/V > β, β < 1/2

Nr + LM/2 α0Nr/V � 1/2, β � 1/2,

(7)

where the first, second, and third relations refer to the global
LD, HD, and MC phases, respectively.

A. Single TASEP

For the purposes of illustration, we first consider the case
of a single (M = 1) TASEP of length L. For this test case, our
approach corresponds closely to the calculation presented for
a saturating function α(Nr ) by Adams et al. [26]. The relation
between the total particle number and the number of particles
in the reservoir is given by Eqs. (7), taking M = 1.

Figure 2(a) (solid and dashed lines) illustrates the mathe-
matical mapping between Nr and N given by Eqs. (7). If β �
1/2, then when α = 1/2 the lattice enters the MC phase and
the number of particles changes continuously. In contrast, if
β < 1/2, then when α = β the lattice enters the HD phase and
the number of particles on the lattice jumps discontinuously.
The results of the mean-field theory are in very good agreement
with continuous-time kinetic Monte Carlo simulations for a
single TASEP coupled to a finite reservoir of particles, for the
same parameter sets (circles and squares).

In most realistic scenarios, however, we expect that the total
number of particles N is fixed, while the reservoir number Nr

achieves a self-adjusting steady-state value depending on N

FIG. 2. (a) Relation between total particle number N and reser-
voir particle number Nr for a single TASEP with a finite reservoir of
particles, from Eqs. (7) with M = 1, L = 1000, and α0/V = 0.001.
The solid and dashed lines show the mean-field mapping, Eqs. (7)
for β = 0.4 and 0.6, respectively, while the circles and squares show
the results of kinetic Monte Carlo simulations for the same parameter
sets. (b) The same data as in (a) but inverted, i.e., showing the reservoir
particle number Nr as a function of the total particle number N .

011142-3



GREULICH, CIANDRINI, ALLEN, AND ROMANO PHYSICAL REVIEW E 85, 011142 (2012)

and the parameters of the lattices. We therefore need to invert
the mapping of Eqs. (7) to find Nr (N ): The number of particles
in the reservoir for a fixed total particle number. For a single
lattice, this inversion is shown in Fig. 2(b). For β < 1/2 the
LD-HD phase transition occurs over a finite range of N ; i.e.,
there exists a range of values of N for which the number of
particles in the reservoir Nr is independent of N . In this range
of values of N , the lattice is in the shock phase, with HD and LD
domains. If a new particle is added to the system it is quickly
absorbed by the lattice rather than staying in the reservoir,
increasing the size of the HD domain. Likewise, if a particle
is removed from the system, the relative size of the HD and
LD domains will adjust to keep the number of particles in the
reservoir constant. Thus, while the lattice is in the shock phase,
Nr is independent of N : The shock phase lattice buffers the
particle reservoir to fluctuations in the total particle number. It
is interesting to note that our mean-field theory captures this
key qualitative feature of the system, even though it deals only
with the average density of particles on the lattice and cannot
resolve the dynamics of the LD-HD “domain wall.”

B. Multiple TASEPs

Building on our results for a single TASEP, we next consider
a system consisting of M identical lattices. This system shows
qualitatively similar behavior to that illustrated in Fig. 2 for the
single TASEP case: If β < 1/2, the system undergoes a global
LD-HD transition when α0Nr/V = β, and this produces a
range of values of N for which the particle reservoir number
Nr is independent of N . The width of this plateau in Nr (N )
is exactly the height of the step in N (Nr ) and can be easily
obtained from Eqs. (7): Substituting the critical condition Nr =
βV/α0 and taking the difference between line 2 and line 1 in
Eqs. (7) gives the plateau width

�N = LM(1 − 2β). (8)

Hence, �N increases linearly with the number of lattices M .
We can also use Eqs. (7) to obtain a global phase diagram

for the system in the parameter space of the intrinsic entry and
exit rates (α0/V,β), for fixed N,L, and M , by substituting the
critical conditions Nr = βV/α0 and Nr = V/2α0 that define
the phase boundaries into the relations for N (Nr ) in Eqs. (7).3

Figure 3 shows this phase diagram, for several different values
of the total number of particles N . Interestingly, as N decreases
[Figs. 3(a)–3(d)], a finite region of the phase diagram emerges
where the lattices are in the shock phase (SP): Here the particle
number is too high for the LD phase but insufficient to allow
the TASEPs to reach the HD phase. As discussed above, in this
SP region of the phase diagram, the reservoir particle number

3For example, the phase transition from LD to SP can be obtained by
substituting the critical value Nr = βV/α0 in the first line of Eqs. (7).
This gives an implicit form for the phase transitions in the parameters
{α0,β,N,L,M,V }. Fixing N , M , L, and V , and solving for β, the
equation gives the the explicit form of the phase transition line. All
other phase transitions can be found in the same way by substituting
Nr , as shown in the Appendix. We note that in the parameter space
(α,β) the phase diagram would trivially be that of a single TASEP
with infinite resources (fixed α and β).

FIG. 3. Phase diagrams in the (α0/V,β) plane of the multitrack
TASEP for a fixed set of parameters (N , L, M). (a) N = 1.5 × 104, (b)
N = LM = 104, (c) N = 9.5 × 103, (d) N = 8 × 103. In all cases
L = 103 and M = 10. These choices of parameters represent, as
discussed in Sec. II, high (a), medium (b–c), and low (d) levels of
availability of free particles. Note that in this figure we consider only
cases in which 2N > LM . If instead 2N < LM , there are not enough
particles to bring all lattices into the MC phase, and the phase diagram
contains only the LD and SP phases.

Nr remains constant such that α0Nr/V = β. The extent of this
SP region decreases as the number of particles in the reservoir
increases, and for N � LM the phase diagram tends to that
of a single TASEP with infinite resources and α = α0N/V .

While Fig. 3 provides insight into the physics of the system,
in a real experimental situation we expect that the control
parameters are most likely to be the number of particles N and
the number of lattices M , rather than α0 and β. It is therefore
useful to plot phase diagrams in the parameter space (N,M),
for fixed α0/V and β. This can be achieved by reformatting the
boundary conditions for the global LD, HD, and MC phases
in terms of N and M , using the relations listed in Eqs. (7).
For example, for the system to be in the global LD phase we
require α0Nr/V < β and α0Nr/V < 1/2. Using the relation
N = Nr + LMα0Nr/V which holds for the LD phase, the
first inequality can be reformulated as N < (Vβ/α0 + LMβ),
while the second becomes N < (V/α0 + LM)/2. This pro-
cedure allows us to build phase diagrams in the (N,M)
parameter space. Figure 4(a) shows a case where β < 1/2,
so that the phase diagram contains a shock phase region, while
Fig. 4(b) shows a case where β � 1/2, so that the system
instead makes a continuous transition between the LD and
MC phases. Because of competition among the lattices for
particles, the global state of the system depends on both N and
M . Increasing the number of lattices M decreases the number
of particles per lattice, pushing the system toward the LD
phase, while increasing the number of particles N increases
the particles per lattice, pushing the system toward the HD or
MC phase. Table II in Appendix 1 summarizes the boundaries
among the global phases of this multitrack TASEP, in both
parameter spaces (N,M) and (α0/V,β).
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FIG. 4. (Color online) Multitrack TASEP phase diagram in the
parameter space (N , M), for α0/V = 5 × 10−3 and L = 104. (a)
Case with β = 0.25; (b) case in which the exit rate is not limiting,
β � 1/2 (note that in this case the boundary between LD and MC
does not depend on the precise value of β).

IV. A MIXED POPULATION OF TASEPs

We now move to the more relevant case, where the lattices
are not all identical. Here we find that the coupling between
lattices induced by the finite reservoir has interesting and
nontrivial effects. We first consider a population composed
of two different types of lattices: M (1) lattices with intrinsic
injection rate α

(1)
0 and M (2) lattices with intrinsic injection rate

α
(2)
0 > α

(1)
0 . Note that here we introduce a new notation: We

use upper indexes in brackets (e.g., α
(i)
0 ) to indicate properties

shared by all lattices in the same subpopulation, as opposed
to lower indexes (e.g., α0,j ) which we used to denote the
properties of individual lattices. For the sake of simplicity we
suppose that all the lattices have the same length L and exit
rate β. Our methodology can easily be extended to the case of
different L and β (see Sec. V).

Because the two lattice subpopulations have different values
of α0, they will undergo the LD-HD or LD-MC phase transition
at different values of the reservoir particle number Nr . For
the same value of Nr , the two subpopulations of lattices can
therefore be in different phases. The total number of particles
can be expressed in terms of the particle densities ρ(1) and ρ(2)

on the type-1 and type-2 lattices:

N = Nr + ρ(1)LM (1) + ρ(2)LM (2). (9)

The densities ρ(i) (i = 1,2) depend on the phase of the lattice:
If β < 1/2 one has

ρ(i) =
⎧⎨
⎩

α
(i)
0

V
Nr if α

(i)
0 Nr/V < β (LD)

1 − β if α
(i)
0 Nr/V > β (HD),

(10)

while if β � 1/2 the densities are

ρ(i) =
⎧⎨
⎩

α
(i)
0

V
Nr if α

(i)
0 Nr/V < 1/2 (LD)

1/2 if α
(i)
0 Nr/V � 1/2 (MC).

(11)

We can express Eq. (9) in a compact way by making use of the
Heaviside function [defined as θ (z) = 1 for z � 0 and θ (z) = 0

otherwise]. For β < 1/2 this results in

N = Nr + LM (1)

[
α

(1)
0 Nr

V
θ

(
β − α

(1)
0 Nr

V

)

+ (1 − β) θ

(
α

(1)
0 Nr

V
− β

)]

+LM (2)

[
α

(2)
0 Nr

V
θ

(
β − α

(2)
0 Nr

V

)

+ (1 − β) θ

(
α

(2)
0 Nr

V
− β

)]
, (12)

which can be rearranged to give

N = Nr + α
(1)
0 Nr

V
LM (1) + α

(2)
0 Nr

V
LM (2)

+LM (1)

(
1 − β − α

(1)
0 Nr

V

)
θ

(
Nr − Vβ

α
(1)
0

)

+LM (2)

(
1 − β − α

(2)
0 Nr

V

)
θ

(
Nr − Vβ

α
(2)
0

)
. (13)

For the case where β > 1/2 we could write an equivalent equa-
tion, using instead the densities and boundary conditions ap-
propriate for the LD to MC phase transition. It turns out, how-
ever, that this is exactly equivalent to Eq. (13), but with β re-
placed by 1/2. Equation (13) can therefore be used to describe
the full behavior of the system, for any value of β, with the pro-
viso that for β > 1/2, we simply set β = 1/2 in the equation.

From Equation (13) we can obtain the physically relevant
relation Nr (N ) by inversion (as in Sec. III B). Nr (N ) is plotted
in Fig. 5, for the case β < 1/2: The two θ steps of Eq. (13)
appear as two plateaus, corresponding to two regimes where
the reservoir is buffered due to the emergence of a shock phase
(SP) on one lattice subtype. In the case β � 1/2 we do not
obtain this effect, because the particle density on a lattice is
continuous across the LD to MC transition. Figure 5 also shows
the results of kinetic Monte Carlo simulations for a multi-
TASEP system coupled to a finite reservoir, with the same
parameter set. The agreement between the mean-field solution
and the simulations is very good; the slight discrepancy around
the phase transitions is due to finite size effects (the mean-field
solution becomes exact only in the limit L → ∞).

Equation (13) also provides a simple way to determine
the phase boundaries for this system; these occur as the
discontinuities of the Heaviside step functions are approached
from above and below, i.e., at Nr → (Vβ/α

(2)
0 )± and Nr →

(Vβ/α
(1)
0 )±. Explicit forms for these phase boundaries are

given in Appendix 2.
Figure 6 shows that the current per lattice and the par-

ticle density on the individual lattices exhibit a remarkable
dependence on the total particle number N . For the range of
values of N over which lattice type 2 is in the SP, the current
and density on the lattices of type 1 remain constant, even
though these lattices are far away from a phase transition. This
buffering effect occurs because the reservoir particle number
remains constant while any lattice subtype is in the SP; this
fixes α, and hence the current and density, of all lattices which
are in the LD phase (see Table I). Hence, lattices of type 1
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FIG. 5. (Color online) Reservoir particle number Nr as a function
of total particle number N for the system with two subpopulations
of lattices, with α

(1)
0 /V = 5 × 10−4, α

(2)
0 /V = 9 × 10−4, β = 0.15,

L = 300, M (1) = 30, and M (2) = 25. The full red line shows the
results of the mean-field theory, produced by numerical inversion
of Eq. (13); the blue circles are the results of kinetic Monte
Carlo simulations with the same parameter set. For the mean-field
theory, the first derivative of N (Nr ) is discontinuous at the critical
points given by Eqs. (A1). The width �N of the first plateau
is given by �N = LM (2)(1 − 2β), while the second plateau has
�N = LM (1)(1 − 2β); see Eq. (8). The phases of the two lattice
subpopulations are also labeled: For example, LD/HD denotes a
regime with the type-1 lattices in the LD phase and the type-2 lattices
in the HD phase.

are affected by the phase transition on lattice type 2, through
the coupling to the finite particle reservoir. Note that while
lattice type 2 is in the SP, its current remains constant, but its
density increases linearly with N . This reflects the fact that, in
the “buffering regime,” the SP lattices absorb particles as N

increases, keeping Nr constant. The same observation applies
to lattice type 1 in the second buffering region.

To conclude this section, we investigate the phase behavior
of this system as a function of the numbers M (1) and M (2) of
lattices in the two subpopulations. The parameter space (M (1),
M (2)) is likely to be relevant experimentally: For example, in
intracellular transport problems, M (1) and M (2) might represent
the number of cytoskeletal filaments of two different types
along which motor proteins can travel. Figure 7 shows the

FIG. 6. (Color online) Current per lattice J (i) (a) and density ρ(i)

(b) on type-1 and type-2 lattices for the system with two lattice
subpopulations. The red and black lines represent the mean-field
theory results for the type-1 and type-2 subpopulations of lattices
respectively (color online); the squares and circles show kinetic
Monte Carlo simulation results. The parameters used were α

(1)
0 /V =

4.5 × 10−6, α
(2)
0 /V = 7 × 10−6, β = 0.15, L = 1000, M (1) = 15,

and M (2) = 20. Note that the units of current are the particle hopping
rate γ .

FIG. 7. (Color online) Multitrack TASEP phase diagram in the
parameter space (M (1), M (2)). (a) A case with β = 0.25; (b) the situ-
ation in which the depletion rate is not limiting, β � 1/2. The other
parameters used are α

(1)
0 /V = 6.5 × 10−3, α

(2)
0 /V = 8.5 × 10−3,

L = 103, N = 104.

phase diagram of the system in the (M (1), M (2)) plane for (a)
β < 1/2 and (b) β � 1/2. It is clear that the competition for
particles plays an important role: The phase behavior of each
lattice subpopulation depends strongly on the size of the other
subpopulation.

V. A MIXED POPULATION WITH ARBITRARY
DISTRIBUTION OF BOUNDARY RATES

We now formulate the concepts of Secs. II–IV in a general
way, to allow us to describe a mixed lattice population with an
arbitrary distribution of parameter values. As in the preceding
discussion [see Eqs. (1) and (6)] our strategy is to express the
total number of particles N = Nr + NLD + NHD + NMC as a
function of the boundary parameters of the lattices.

The total number of lattices is denoted by M and the nor-
malized distribution of boundary rates and lengths (i.e., their
relative frequencies) for the mixed lattice population is denoted
by P (α0,β,L). Such a continuous distribution could be appro-
priate in situations where lattice parameter values are sensitive
to small environmental changes, or where the total number of
lattices is very large. We can then express the total number of
particles on lattices in the LD, HD, and MC phases as

NLD = M

∫ ∞

0
dL

∫∫
LD

L
α0Nr

V
P (α0,β,L) dα0 dβ,

NHD = M

∫ ∞

0
dL

∫∫
HD

L (1 − β) P (α0,β,L) dα0 dβ, (14)

NMC = M

∫ ∞

0
dL

∫∫
MC

L

2
P (α0,β,L)dα0 dβ,

where the integration limits are determined by the constraints
on α = α0Nr/V and β for the LD, HD, and MC regions,
respectively, as defined in Table I. Note that the MC case
can be recovered as a special case of the HD with β = 1/2.
Therefore, we can limit our analysis to β � 1/2, i.e., assuming
P (β > 1/2) = 0.4

4We can restrict our study to the LD and HD phases by redefining
the distribution of parameters as follows: Pnew(αo,β = 1/2,L) :=∫ ∞

1/2 dβ P (αo,β,L), Pnew(αo,β > 1/2,L) := 0, and Pnew(αo,β <

1/2,L) := P (α0,β < 1/2,L). Henceforth, for the sake of simplicity,
in the text we refer to Pnew(αo,β,L) as just P (αo,β,L).
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We also assume that the lengths of the lattices are
independent of the boundary rates, such that P (α0,β,L) =
P (α0,β)P (L). This allows us to perform the integration over
L in Eq. (14), yielding

NLD = 〈L〉M
∫ ∞

0
dβ

∫ Vβ

Nr

0
dα0

α0Nr

V
P (α0,β),

(15)

NHD = 〈L〉M
∫ ∞

0
dβ

∫ ∞

Vβ

Nr

dα0 (1 − β) P (α0,β),

where 〈L〉 is the average lattice length and we have inserted
the limits of integration as detailed in Table I. Note that since
P (β > 1/2) = 0 we are free to choose the upper limit of the β

integration as infinity. This simplifies our further calculations.
After adding and subtracting the term

〈L〉M ∫ ∞
0 dβ

∫ ∞
Vβ/Nr

dα0
α0Nr

V
P (α0,β) and inserting the

expressions for the subpopulations into the particle
conservation equation, we arrive at the result

N (Nr ) = Nr + 〈L〉M
[
Nr〈α0〉

V

+
∫ ∞

0
dβ

∫ ∞

Vβ/Nr

dα0

(
1 − β − α0Nr

V

)
P (α0,β)

]
,

(16)

where 〈α0〉 = ∫ ∞
0 dβ

∫ ∞
0 dα0 α0P (α0,β) is the average value

of α0. Equation (16) is a generalization of Eqs. (6) and (13) to
a continuous distribution of parameters.

A. Discrete distributions

We first consider the case where our mixed population of
lattices contains a finite number of distinct subpopulations with
parameters (α(i)

0 ,β(i)). In this case the distribution P (α0,β)
can be expressed as a sum over δ functions: P (α0,β) =∑

i(M
(i)/M)δ(α(i)

0 − α0)δ(β(i) − β), where M (i) is the number
of lattices in subpopulation i and M is the total number of
lattices. Equation (16) then takes the form

N (Nr ) = Nr + 〈L〉
[
M

Nr〈α0〉
V

+
∑

i

M (i)

(
1 − β(i) − α

(i)
0 Nr

V

)
θ

(
Nr−

Vβ(i)

α
(i)
0

)]
,

(17)

which is an extension of Eq. (13) to an arbitrary number of sub-
populations. The function N (Nr ) has discontinuities at Nr =
Vβ(i)/α

(i)
0 , for β(i) < 1/2. For the inverse relation Nr (N ), these

become plateaus of width �N = 〈L〉M (i)
(
1 − 2β(i)

)
. Each

lattice type for which β(i) < 1/2 gives rise to a distinct plateau
in Nr (N ). Within plateau region i, lattices of type i are in
the shock phase, at the LD-HD phase boundary. Importantly,
because the reservoir particle number Nr controls the behavior
of the whole system, a plateau in Nr (N ) implies that the
entry of any subpopulation of lattices into the shock phase
is sufficient to make the whole system independent of the total
particle number N .

Since the relation N (Nr ) cannot be inverted analytically,
one cannot give a simple prescription for the ranges of values
of the total particle number where the system is buffered.

However, the generic prescription for the regions of N over
which the system is independent of N is

lower boundary of region i: lim
Nr→(Vβ(i)/α

(i)
0 )−

N (Nr ),

(18)
upper boundary of region i: lim

Nr→(Vβ(i)/α
(i)
0 )+

N (Nr )

for all lattice subpopulations i for which β(i) < 1/2. These
boundaries occur at the positions of the steps in the θ functions
in Eq. (17); the upper boundaries occur as the steps are ap-
proached from above, and the lower boundaries as the steps are
approached from below. It is important to note that the phase
transitions on any given lattice type depend on the parameter
values of all the lattices in the system, since Nr is determined
by the competition for particles among all the lattices.

B. Continuous distribution

We next consider a scenario where the population of
lattices does not contain distinct lattice subtypes, but instead
is described by a continuous probability distribution of
lattice parameters P (α0,β,L). In this case the conservation
equation (16) for the particle number does not reduce to a sum
of δ functions, as it does in the discrete case, and consequently
there are no discontinuities in the function N (Nr ). As a simple
example, let us assume that all the lattices have the same fixed
value α0 = α∗

0 , with a continuous probability distribution for β:
i.e., P (α0,β) = δ(α0 − α∗

0 )P (β) (as before, we have redefined
P (β) to consider the MC phase as a special case of the HD
phase). The integral over α0 in Eq. (16) then reduces to a step
function θ (α∗

0 − βV/Nr ), leading to

N (Nr ) = Nr + 〈L〉M

×
[
α∗

0Nr

V
+

∫ α∗
0Nr/V

0

(
1 − β − α∗

0Nr

V

)
P (β) dβ

]
,

(19)

where the upper limit on the integral reflects the condition
α > β for the HD phase.

To explore the consequences of Eq. (19), we consider the
specific case where the distribution of exit rates is Gaussian:
P (β) = 1/

√
2πσ 2 exp[−(β − 〈β〉)2/2σ 2]. In this case, the

integral in Eq. (19) can be calculated analytically to give

N (Nr ) = Nr + α∗
0Nr

V

+〈L〉M
(

1 −
{

1

2
〈β〉erf[(β − 〈β〉)/

√
2σ ]

−
√

σ 2

2π
e(β−〈β〉)2/2σ 2

}
− α∗

0Nr

V

)
. (20)

Figure 8(a) shows the inverse relation Nr (N ) for two
different widths σ of the distribution of β values. The most
striking feature is the “quasi-plateau” at intermediate values
of N , which mimics the true plateaus observed for the discrete
case (see, e.g., Fig. 5). As the distribution of β values narrows
(decreasing σ ) this feature becomes closer to a true plateau.
The fact that this “quasi-plateau” in Nr (N ) is observed for
a rather generic continuous distribution of β values suggests
that the buffering of the particle reservoir by lattices entering
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FIG. 8. (Color online) Particle reservoir concentration as a
function of the total number of particles for normal distributed exit
rates (a) and exit rates following a bimodal distribution (b). In both
cases, L = 300, M = 30, α∗

0/V = 10−4. (a) The average value of the
Gaussian peak is chosen 〈β〉 = 0.2; the dashed (black) line represents
the distribution with σ = 0.05, and the full (red) line represents the
distribution with σ = 0.01. (b) The two peaks are centered at β1 =
0.15 and β2 = 0.3, respectively. The dashed (black) line represents
the distribution for σ = 0.025, the full (red) line for σ = 0.005.

the shock phase is a general phenomenon, with smoothing
of the distribution of lattice parameters tending to “soften”
the buffering effect. For large N (which implies large Nr ),
the terms in Eq. (20) which are linear in Nr dominate the
β-dependent terms so that Nr (N ) becomes linear and inde-
pendent of the β distribution.

Figure 8(b) shows the corresponding results for a bimodal
distribution of β values, consisting of two Gaussian peaks.
Once again, for narrow Gaussian peaks, a plateau-like form for
Nr (N ) is recovered, but this time with two “quasi-plateaus.”
This is analogous to the case studied in Sec. IV, where each
lattice subpopulation produces its own range of values of N

over which the system is buffered.

C. Relation between the distribution of boundary rates
and single lattice properties

A key feature of the systems discussed in this paper is that
the behavior of all the lattices is coupled via the shared particle
reservoir, so that the function Nr (N ) depends on the entire
distribution of lattice parameters P (α0,β). This implies that
measurements of the reservoir particle number Nr , or of the
current on a few lattices, as functions of N , contain information
on the full distribution of lattice parameters P (α0,β). In this
section we briefly sketch how such measurements could be
used to compute P (α0,β). For simplicity, we assume that the
entry rate α0 = α∗

0 is fixed for all lattices, so that our aim is to
compute the distribution of the exit rates P (β).

We first consider the case where one is able to measure
experimentally the function Nr (N ). In this case P (β) can be
obtained from the derivative dNr/dN : Differentiating Eq. (19)
with respect to Nr produces a linear differential equation for
the cumulative probability distribution Q(β) := ∫ β

0 P (β ′)dβ ′.
This differential equation is

dN

dNr

= 1 + 〈L〉Mα∗
0

V

+〈L〉M
[
α∗

0

V
(1 − 2β) Q′(β) − α∗

0

V
Q(β)

]
, (21)

where the dependence of Q on β is given by substituting
α∗

0Nr/V = β. Note that here we used Leibniz’s integral
rule d

dy

∫ y

0 f (x,y) dx = f (y,y) + ∫ y

0
d
dy

f (x,y) dx, with x =
β ′,y = α∗

0Nr/V and the integrand f (x,y) = (1 − x− y)P (x).
Equation (21) depends on dN/dNr = 1/(dNr/dN) and can
be solved by standard methods (e.g., the method of variation of
constants). If, rather than knowing Nr (N ), we know the current
Jj on a particular lattice j (in the LD phase) as a function of
N , we can use the relation dJj/dN = (dJj/dNr )(dNr/dN)
(since Jj depends only on Nr for fixed V , M (i), α∗

0 , and βj ) to
write

dN

dNr

=
(

dJj

dNr

) / (
dJj

dN

)
,

and note that dJj/dNr can be computed from the TASEP
result (for lattices in the LD phase) Jj = γαj (1 − αj ) where
αj = α∗

0Nr/V . Having thus obtained dN/dNr , we can again
use the derivative of Eq. (19) to extract P (β). Note, however,
that this procedure works only for the range of values of β for
which lattice j remains in the LD phase; if the lattice is in the
HD or MC phase, the current Jj (N ) contains no information
on the reservoir particle number and cannot be used to obtain
P (β). While it remains to be seen how useful the prescription
outlined here would actually be for extracting P (β) from real
(noisy) data, this discussion highlights the important point that,
in principle, one can extract information on the parameter
distribution of the whole system from measurements of the
behavior of just a single system component.

VI. DISCUSSION

In this paper we have presented a mean-field theoretical
framework to study systems in which multiple TASEPs with
different parameters compete for a common pool of particles.
We expect this approach to be useful in modeling a wide
range of systems, from control of gene expression in biological
cells to traffic flow problems. Previous work has addressed
the effects of a finite particle reservoir on TASEP dynamics,
for single lattices [26,27] and for multiple lattices with equal
boundary rates [28]); here we extend this work to mixed
populations of lattices with an arbitrarily complex distribution
of parameters.

Our theoretical approach, presented in Sec. II, is based on
combining the equation for conservation of the total number of
particles with the mean-field results for the standard TASEP.
This approach provides a simple way to deal with mixed
populations of lattices. Although our mean-field theory does
not provide information on fluctuations or on density profiles,
it nevertheless reveals interesting phenomena which emerge
from the competition for particles in a mixed multi-TASEP
system and provides a method to calculate the full phase
diagram. These phenomena arise because the finite reservoir
effectively couples all the lattices, so that a phase transition
on one lattice influences the behavior of the others. Although
in this work we used the mean-field TASEP results, one could
easily incorporate into the same framework exact or simulated
relations for the particle density as a function of the entry and
exit rates.

A key observation which emerges from our work is that
for a mixed population of lattices coupled to a finite reservoir
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of particles, any lattice subtype which enters the SP absorbs
all further particles added to the system, buffering the particle
reservoir and making the currents and densities of all other
lattices insensitive to changes in the total particle number
N , even though these lattices may be far from their phase
boundaries. This effect is specific to systems where the lattices
have different intrinsic entry and exit rates: If α0 and β are the
same for all lattices (and if lattices are large enough to neglect
finite size effects), phase transitions occur on all lattices at the
same critical particle reservoir number and the current does
not show an additional plateau as a function of N . This was
the case in previous work [26], which considered a mixture of
lattice with different lengths but identical boundary rates. In
these conditions, a plateau in the current as a function of N is
due only to finite size effects.

The physical mechanism underlying the buffering of the
system to changes in N is attributable to lattices undergoing
the LD-HD transition that “soak up” changes in the reservoir
particle number Nr . As they undergo this transition, lattices
enter the shock phase, in which a queue of particles forms at
the end of the lattice. For shock phase lattices, the particle
entry rate α = α0Nr/V is fixed by the exit rate β (α = β):
Thus the number of particles on a shock phase lattice adjusts
to compensate for changes in Nr . In the phase diagram for the
standard TASEP model, the shock phase occurs only on
the line separating the HD and LD phases, where α = β; in the
case of a finite reservoir of particles, however, the shock phase
occupies a finite region of the (α0,β) phase diagram. This is
because the same entry rate α can be achieved over a range of
N , Nr being set by the position of the domain wall.

An interesting analogy can be drawn between this phe-
nomenon and first-order phase separations in (equilibrium)
thermodynamics. The plateau in Nr (N ) which arises in our
models is a direct consequence of the discontinuity in the
particle density as a lattice undergoes the LD-HD phase
transition. Similarly, a first order phase transition such as
the boiling of water involves a discontinuity in the entropy,
which is associated with latent heat: During the transition, the
temperature remains constant even though further heat energy
is constantly being supplied. In this analogy, heat plays the
role of N in our models while temperature plays the role of
the reservoir particle number Nr .

We also show in this paper that the coupling between
lattices induced by a finite particle reservoir makes it possible
(under some circumstances) to extract the entire distribution
of lattice parameters from measurements of the reservoir
density, or indeed the current carried by a single lattice
subtype, as a function of the total particle number N . It
will be interesting to explore the feasibility of this approach
for extracting information from real, noisy, experimental
data.

The multitrack TASEP with finite particle reservoir studied
here bears a similarity to previous work on TASEPs on closed
networks [29]. In particular, a system of M lattices with a
common reservoir can be mapped onto a network topology
formed by M rings having a unique common site [30]. The
common site plays an analogous role to a particle reservoir.
However, in that problem, in contrast to the one studied here,
both the exit and entry rates depend on the occupation of the
common site.

A key priority for future work must be to explore ways
to include the effects of fluctuations, which are neglected
in our mean-field approach. Previous work has shown that
interesting fluctuation-driven effects, including localization of
domain boundaries, can occur in TASEPs with finite particle
number [27]; extending this work to complex mixtures of
TASEP is likely to prove fruitful. Another promising avenue
may be to study how the behavior of systems of the type
studied here changes with changes in their volume: This should
prove relevant when modeling transport or protein production
dynamics in growing biological cells.

In summary, we have presented a simple and intuitive
mean-field theoretical framework for studying multi-TASEP
problems with finite reservoir of particles. Our method has
allowed us to show that interesting physical phenomena
emerge from the competition for particles among nonidentical
lattices, including buffering of the system to changes in the
total particle number. This approach should prove a versatile
tool for studying a wide variety of “real-world” problems
[31] involving competition among complex populations of
transport processes.
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APPENDIX: CRITICAL POINTS

In this appendix, we provide explicit expressions for
the location of the critical lines for the homogeneous and
mixed populations of TASEPs discussed in Secs. III B
and IV.

1. Homogeneous multitrack TASEP

We first present the phase boundaries for the homogeneous
case of Sec. III B, in which the M lattices have identical
boundary rates α0 and β. In our mean-field approach, all
the lattices are in the same phase, which we denote the
“global phase” of the system. Table II gives the conditions
determining the global phase diagram, for the cases where the
exit rate β is limiting (β < 1/2) and where β is not limiting
(β � 1/2). As discussed in Sec. III B, one may choose as
variable parameters either the entry and exit rates α0 and β,
or the number of particles N and lattices M . These alternative
choices correspond, respectively, to the phase diagrams shown
in Figs. 3 and 4. Table II gives explicit forms for the phase
boundaries in both these cases: The upper line in each row
gives the conditions on α0 and β (assuming fixed N and M),
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TABLE II. Explicit expressions for the constraints to be satisfied
in each global phase of the homogeneous multitrack TASEP with M

lattices of length L, each with intrinsic entry rate α0 and exit rate β,
with N particles. The phase boundaries are given in the case β < 1/2
(left column) and β � 1/2 (right column). Each row corresponds to
a global phase (LD;HD;MC;SP) and for each phase the constraints
are given in terms of α0 and β (upper line; corresponds to Fig. 3) and
N and M (lower line; corresponds to Fig. 4).

β < 1/2 β � 1/2

LD
αo

V
<

β

N − LMβ

αo

V
<

1

2N − LM

N < V
β

αo

+ LMβ N <
V

2αo

+ LM

2

HD
αo

V
>

β

N − LM(1 − β)
−

N > V
β

αo

+ LM(1 − β) −

MC − αo

V
�

1

2N − LM

− N �
V

2αo

+ LM

2

SP
β

N − LMβ
<

αo

V
<

β

N − LM(1 − β)
−

V
β

αo

+ LMβ < N < V
β

αo

+ LM(1 − β) −

while the lower line gives the conditions on N and M (for
fixed α0 and β).

2. Mixed population of TASEPs

For the mixed multitrack TASEP discussed in Sec. IV,
which is composed of two subpopulations of lattices with
different intrinsic entry rates α0, the states of the system are
characterized by the phases of the two lattice subpopulations
(e.g., in the LD/SP state, subpopulation 1 is in the low-density
phase while subpopulation 2 is in the shock phase). Boundaries
between these states occur when the θ functions in Eq. (13)

TABLE IV. Phase boundaries for the multitrack TASEP with two
lattice subpopulations introduced in Sec. IV, for the case β � 1/2,
obtained by combining Eq. (A2) with Eq. (13).

Low density/Low density: N <
V

2α
(2)
0

+ α
(1)
0

2α
(2)
0

LM (1) + LM (2)

2

Low density/Maximal current:

V

2α
(2)
0

+ α
(1)
0

2α
(2)
0

LM (1) + LM (2)

2
< N <

V

2α
(1)
0

+ L(M (1) + M (2))

2

Maximal current/Maximal current: N >
V

2α
(1)
0

+ L(M (1) + M (2))

2

are approached from above or below (at these points one
of the lattice subpopulations undergoes a phase transition).
More precisely, if β < 1/2 the phase transitions are located as
follows:

LD/LD → LD/SP : lim
Nr→(Vβ/α

(2)
0 )−

N (Nr ),

LD/SP → LD/HD : lim
Nr→(Vβ/α

(2)
0 )+

N (Nr ), (A1)

LD/HD → SP/HD : lim
Nr→(Vβ/α

(1)
0 )−

N (Nr ),

SP/HD → HD/HD : lim
Nr→(Vβ/α

(1)
0 )+

N (Nr ),

while if β � 1/2:

LD/LD → LD/MC: lim
Nr→V/2α

(2)
0

N (Nr ),

(A2)
LD/MC → MC/MC: lim

Nr→V/2α
(2)
0

N (Nr ).

Tables III and IV give explicit expressions for the constraints
on the parameters N, L, V, M (1), M (2), α

(1)
0 ,α

(2)
0 , and β,

for each of the possible states of the system, in the cases
where β < 1/2 (Table III) and β � 1/2 (Table IV). To
obtain these phase boundaries we insert the limits defined in
Eqs. (A1) and (A2) into Eq. (13), using limz→0+ θ (z) = 1 and
limz→0− θ (z) = 0. Note that this simply means to substitute
the critical values Nr = βV/α

(i)
0 (LD-HD transition) and

TABLE III. Phase boundaries for the multitrack TASEP with two lattice subpopulations introduced in
Sec. IV, for the case β < 1/2, obtained by combining Eq. (A1) with Eq. (13).

Low density/Low density: N <
Vβ

α
(2)
0

+ β
α

(1)
0

α
(2)
0

LM (1) + βLM (2)

Low density/Shock phase:
Vβ

α
(2)
0

+ β
α

(1)
0

α
(2)
0

LM (1) + βLM (2) < N <
Vβ

α
(2)
0

+ β
α

(1)
0

α
(2)
0

LM (1) + (1 − β)LM (2)

Low density/High density:
Vβ

α
(2)
0

+ β
α

(1)
0

α
(2)
0

LM (1) + (1 − β)LM (2) < N <
Vβ

α
(1)
0

+ βLM (1) + (1 − β)LM (2)

Shock phase/High density:
Vβ

α
(1)
0

+ βLM (1) + (1 − β)LM (2) < N < V
β

α
(1)
0

+ (1 − β)(M (1) + M (2))L

High density/High density: N >
Vβ

α
(1)
0

+ (1 − β)(M (1) + M (2))L
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Nr = V/2α
(i)
0 (MC transitions), respectively, while the limit

from below corresponds to substituting the θ function in
Eq. (13) with θ (z) = 0 for the lower limit and θ (z) = 1 for
the upper limit.
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