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Effective field theory approach to fluctuation-induced forces between colloids at an interface
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We discuss an effective field theory (EFT) approach to the computation of fluctuation-induced interactions
between particles bound to a thermally fluctuating fluid surface controlled by surface tension. By describing
particles as points, EFT avoids computing functional integrals subject to difficult constraints. Still, all information
pertaining to particle size and shape is systematically restored by amending the surface Hamiltonian with a
derivative expansion. The free energy is obtained as a cumulant expansion, for which straightforward techniques
exist. We derive a complete description for rigid axisymmetric objects, which allows us to develop a full
asymptotic expansion—in powers of the inverse distance—for the pair interaction. We also demonstrate by a
few examples the efficiency with which multibody interactions can be computed. Moreover, although the main
advantage of the EFT approach lies in explicit computation, we discuss how one can infer certain features of
cases involving flexible or anisotropic objects. The EFT description also permits a systematic computation of
ground-state surface-mediated interactions, which we illustrate with a few examples.
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I. INTRODUCTION

Be it the electromagnetic field, the curvature of a surface,
or the composition of an inhomogeneous mixture, boundaries
or objects interacting with a field generally place constraints
on the fluctuations of it. This is known to lead to interactions
between the constraining objects. The earliest and most famous
example of this effect was discussed in 1948 by Casimir,
who showed that two charge-neutral conducting plates in
vacuum attract due to the constraints they impose on the
quantum fluctuations of the electromagnetic field [1–3]. Today
it has become customary to name such interactions after
Casimir, even in cases where the underlying fluctuations are
not quantum mechanical but thermal in origin [4–6]. In this
article, we will investigate a particular incarnation of this
effect, namely, forces induced by thermal fluctuations between
particles bound to a fluid surface characterized by surface
tension [7–13].

The nontrivial aspects of such calculations tend to arise
from the constraints that the extended objects impose
on the partition sum. This issue is usually dealt with by pinning
the field to the surface of the objects through delta functions in
the integration measure [10]. A clear exposition of this method,
applied to compact objects in fluid membranes and films, can
be found in Ref. [11]. This method was later refined in the
context of the electromagnetic Casimir effect [14]. In the latter
work, the constraints of the objects enter the interaction energy
through their scattering matrix coefficients. In fact, usage of
scattering approaches for electromagnetic Casimir interactions
has a long history and has led to recent developments
[15–18] in the field, concerning analytical results. Very
recently, thermal Casimir interactions between biological
membrane inclusions were studied in a similar spirit [19].

In this paper we employ a different strategy to streamline the
boundary condition issue, namely, reverting to a point-particle
description. We emphasize right from the start that this is not an
uncontrolled approximation for the shape of the extended ob-
jects, because we can systematically rescue the complete finite-
size information by means of effective field theory (EFT). The
key philosophy behind EFT is separation of scales, which is

deeply rooted in the concept of renormalization (for a review,
see Ref. [20]). Originally developed in the context of quantum
field theory, it has been applied only quite recently in a purely
classical framework by Goldberger et al. [21], who used it to
study the gravity wave profile for in-spiraling black holes.
This particular incarnation of EFT has subsequently been
utilized to derive not only new results in gravitational wave
physics [22] but also to calculate the leading-order finite-size
correction to the Abraham-Dirac-Lorentz radiation reaction
force law in classical electrodynamics [23]. Both of these
applications dealt with intricate boundary condition problems
for classical nonfluctuating fields, whereas the present article
extends the formalism to allow for finite temperatures. We
recently introduced this generalization in Ref. [13]; here we
develop the formalism in greater detail, expand on our previous
results, and discuss further physical situations.

Examples of point-particle approaches employed to com-
pute surface-mediated forces have appeared several times
[24–26] in the context of biological membranes. However,
in most of these references the final answer depends on the
short wavelength cutoff of the continuum theory, which is
ambiguous by construction. To alleviate the issue, the cutoff
is usually fixed by reinterpreting it as a multiple of the
inclusion size, but there are at least two problems with this:
(1) The size of the objects embedded in the field and the short
wavelength cutoff of the theory are generally unrelated, and
(2) even if the objects do have sizes of the same order as
the cutoff, it is not clear how to treat particles with different
radii. Instead, the proper way to free physical quantities from
dependence on some ambiguous cutoff is via renormalization
techniques. Our approach is constructed such that the cutoff
never “contaminates” the interactions and therefore never
inappropriately restricts particle sizes. Another difference
between earlier point-particle approaches and ours is the fact
that our treatment is not approximate in that all finite-size
information is systematically retained in the point-particle
picture. Unless this is done, it would not even make sense to
attempt calculating higher-order corrections to asymptotically
correct results.
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For the sake of clarity, we restrict this paper to the case of
rigid particles, e.g., colloids adsorbed at a fluid-fluid interface.
In other words, within the region of the surface occupied by
the particle, fluctuations are not only reduced, but are frozen,
in a manner compatible with the boundary conditions at the
circumference of the particle and its permissible rigid body
motions. Furthermore, we will assume the shapes of the parti-
cles are such that they have a circular footprint on the surface.
While these two assumptions allow us to carry out a more
transparent discussion of the EFT formalism, we nonetheless
outline what is entailed in relaxing these assumptions. We
also briefly turn our attention to interactions that are induced
not by fluctuations but by permanent shape irregularities of
the particles. The formalism allows a systematic approach to
calculate these interactions without resorting to a superposition
assumption to disentangle the boundary conditions of the
particles from one another.

In the following section, we begin our discussion by
reviewing the nature of the surface and fluctuation-induced
interactions we are interested in, as well as outlining our ef-
fective field theory approach. We then proceed in Sec. III with
constructing the effective theory and computing interactions in
an asymptotic expansion. First, we illustrate the computation
by considering only one of the many terms in the expansion
as an example in Sec. III B. Then, we derive the interaction
free energy of a pair of particles as a full expansion, i.e., valid
at arbitrary separation, and extract the leading near-contact
behavior. We then compute the leading nontrivial triplet and
quadruplet interactions, as well as briefly discuss the case of
soft or nonaxisymmetric particles. Finally, we show how the
formalism can be used for problems where the particles impart
a permanent deformation on the surface. To separate the main
arguments from mundane technicalities, we have collected
details of certain calculations as well as auxiliary discussions
in four appendices.

II. FORMALISM

A. The surface

We are interested in a fluid surface whose behavior is
determined by the surface tension energy σ

∫
dA, where the

integral encompasses the entire surface and σ is the surface
tension. A nearly flat surface can be parameterized using
the Monge gauge [27], describing the shape in terms of its
orthogonal deviation h from a flat xy base plane. This yields
the energy functional

Hsurf[h] = σ

∫
S

d2r

√
1 + h2

i (r), (1)

where we write the gradient with the partial derivative subscript
i. Note that the domain S of the integral is not the whole
R2 but excludes the regions defined by the projection of the
colloids onto the base plane. The presence of the particles
imposes conditions on h at the boundaries of these regions.
For concreteness, let us picture circular disks floating on the
surface, which dictate the height of the fluid film anywhere
along their circumference.

Under the further assumption of a weakly deformed
surface, |∇h| � 1, one finally arrives at the quadratic surface

Hamiltonian

Hsurf[h] = 1

2
σ

∫
S

d2r h2
i (r), (2)

up to an irrelevant constant. The existence of this integral
defines the function space that h(r) belongs to.

B. Fluctuation-induced interactions

At a given temperature, the surface will fluctuate around
its ground-state shape, which minimizes the energy as de-
fined in Eq. (2), while still subject to the boundary con-
ditions imposed by the particles, i.e., the continuity of the
surface along their circumference. These local constraints on
the fluctuations will result in the partition function and the
free energy being dependent on the spatial arrangement of the
constrained regions, hence giving rise to forces.

Formally, the free energy is given as

βF = − log
∫

Dh e−βHsurf [h], (3)

where the partition function is a functional integral over all
permissible field configurations h(r), i.e., those compatible
with the boundary conditions imposed by the particles. This
integral is a Gaussian integral, on account of the Hamiltonian
(2) being quadratic in the field, but its evaluation is not
straightforward. Though one can formally write the free
energy (3) as ∼ log detK, this does not help with explicit
computation, as the kernel K = −∇2 [see Eqs. (2) and (3)]
is hard to diagonalize in this constrained function space.1

One wishes to free the functional integral in Eq. (3) from
the finite-sized regions of constraint, such that the integral
becomes a “straightforward” Gaussian.

One possible means to this end involves extending the
validity of the Hamiltonian (2) to the entirety of R2 at
the expense of modifying the integration measure by delta
functions, appropriately chosen to make sure the functional
integral in Eq. (3) sifts out only permissible field shapes
h(r) [7–11,14,24,28]. In this article we follow another path,
which encodes the constraints in additional terms to the
free-surface Hamiltonian. This is different from the approach
taken in Refs. [28,29] in that it is not necessary to assume
these additional terms to be small, which corresponds to the
case when the constraints on the fluctuation of the particles
are not rigid. Even when one deals with rigid constraints,
one can compute the free energy in a convergent perturbation
expansion. This is achieved by means of an effective field
theory (EFT).

1The integration kernel in Eq. (2) involves a Laplacian op-
erator that acts on functions defined only over a subset
S of R2. Integrating by parts, Eq. (2) can be massaged
into σ

2

∫
S d2r h(−∇2)h + σ

2

∫
∂S d� n̂ih∂ih, which does not have the

form 1
2

∫
d2r d2r ′ h(r)K(r,r ′)h(r ′) with a translationally invariant

kernel K(r,r ′) = K(r − r ′), which could be diagonalized easily in
momentum space.
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C. The effective theory

As we have alluded to before, we want to describe the
system with an effective Hamiltonian such that we can
write the partition function as Z = ∫

Dh e−βHeff [h] with the
field variations unconstrained. This allows the evaluation
of the integral over a Gaussian measure with the familiar
translationally invariant harmonic kernel. To this end, we
construct the effective theory as Heff = H + �H where H
is the free surface Hamiltonian

H[h] = 1

2
σ

∫
R2

d2r h2
i (r), (4)

and the perturbation �H is a collection of local terms
specifically designed to capture the constraints, as we will
discuss shortly. In this form, the effective theory describes
a system of pointlike particles embedded in an otherwise
homogeneous surface.

The free energy, measured with respect to the free energy
of the unperturbed surface, is then calculated in a cumulant
expansion

βF = − log
∫

Dh e−βHe−β�H (5)

= − log〈e−β�H〉 = −
∞∑

q=1

1

q!
〈(−β�H)q〉c. (6)

The last step above can be taken as the definition of
the cumulants denoted as 〈. . .〉c, which involve many-point
connected correlation functions of the field. Since averages
are computed in the Gaussian ensemble determined by the
free Hamiltonian H, the many-point correlators break up into
a product of two-point correlators

〈h(r)h(r ′)〉 = 1

βσ
G(r,r ′) = − 1

4πβσ
log(r − r ′)2, (7)

due to Wick’s theorem. Here G(r,r ′) is the Green function or
inverse of operator −∇2, i.e., −∇2G(r,r ′) = δ(r − r ′).

The aim is that the effective theory reproduces the correct
free energy: that of the original system with finite-sized regions
of constraint, or the full theory as we will henceforth refer to
it. This is ensured by matching a set of physical observables
in the two theories, a procedure that will be explored in detail
further in Sec. III A.

In general, �H consists of all polynomials in the derivatives
of the field h consistent with the symmetries of the problem,
evaluated at the position of each particle. As such, it has
the form of an operator product expansion [30] involving
terms like Aah

2
i (ra), Bah

2
ij (ra), Cah

2
ij (ra)h2

i (ra), etc., where
the label a denotes a particle and ra its appropriately defined
position, e.g., the center of a circular disk. The prefactors A, B,
C, ... are called Wilson coefficients and have to be fixed by the
aforementioned matching procedure. An expansion of similar
spirit was employed in Ref. [31] for studying interactions
involving spherical objects in a critical fluid.

Let us briefly discuss the temperature dependence of the
free-energy expansion (6). Every cumulant, being the thermal
average of a power of β�H, will involve many-point corre-
lators that consist of a multiplicative combination of terms in
�H. Recalling from Eq. (7) that every pair of field occurrences
in these many-point correlators carries a factor β−1 = kBT ,

each quadratic term in β�H can be counted as a factor β0,
each quartic term as β−1, and so on, in the term of expansion
(6) they appear in. From this we see that the traditionally
encountered form F = kBTf ({ra}) of fluctuation-induced
interactions [7–11,24,28,29] stems from quadratic terms in
�H. This allows the interpretation of the interactions as those
between induced “capillary charges,” arising from thermal
fluctuations around each particle and subsequent polarizations
due to the deformation that propagates from those. Similarly,
one can see that higher-than-quadratic terms in �H give
rise to an excess of factors of kBT in the cumulants in
Eq. (6). Therefore, such terms in the effective theory produce a
free energy F ∼ (kBT )p�2. These are higher-order fluctuation
corrections to the interaction. However, to treat these nonlinear
corrections properly, one has to also consistently relax the
weak deformation assumption on the free-surface Hamiltonian
(2). This involves quartic (or higher-order) terms in the free
Hamiltonian that can also be treated perturbatively. While such
extensions do not affect the basic EFT formalism, they require
additional field theoretical sophistication that would distract
from the basic idea we wish to communicate here, and hence
we defer such nonlinear corrections to future work.

III. EFT OF FLAT DISKS ON A FILM

After briefly outlining the main idea of our formalism, we
will now proceed by applying it to a specific problem. We
want to compute the fluctuation-induced interaction between
colloids with a circular footprint on the base plane. For this, we
write the effective theory as �H = ∑

a �Ha , where a labels
the particles. For one particle located at ra , �Ha is a derivative
expansion of the form

�Ha = 1
2

(
C(0)

a h2 + C(1)
a h2

i + C(2)
a h2

ij + · · · )∣∣r=ra
, (8)

encoding a quadratic excess energy for deforming the field in
the vicinity of that particle. Denoting the radius of disk a by Ra ,
dimensional analysis shows that each Wilson coefficient C(�)

a

scales as σR2�
a , such that the limit Ra → 0 is well defined. It is

also worth pointing out that, applying a Hubbard-Stratonovich
transformation to the partition function in Eq. (5), the effective
Hamiltonian Heff = H + ∑

a �Ha can be brought into the
form of the effective action of Emig et al. [14]

As we mentioned earlier, the terms in Eq. (8) represent in-
duced charges localized at the points ra . Thus, the coefficients
C(�)

a will be referred to as polarizabilities. One can see this
clearly by considering a generic term in Eq. (8) around an
applied or background field. Choosing ra = 0 and dropping
the label a for convenience, one substitutes h → hbg + h into
the term (1/2)C(�)(∂�h)2 and observes the term linear in h:

C(�)∂�hbg(0)∂�h(0) =
∫

d2r h(r)C(�)(−∂)�[δ(r)∂�hbg(0)].

(9)

After integrating by parts, one can identify the localized
source:

J (r) = (−)�C(�)∂�[δ(r)∂�hbg(0)]. (10)
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FIG. 1. (Color online) The figure illustrates how a rigid, hori-
zontally fixed particle of radius R creates a local field deformation
when exposed to a tilted planar background, hbg = r cos ϕ. The
total deformation is the sum of the background and the induced
deformation, δh = −(R2/r) cos ϕ. The discontinuity of the (normal)
gradient of the total shape along the circumference of the particle is
a dipole-like (∼cos ϕ) “capillary polarization” that can be thought of
as sourcing the response δh.

This source is an �th-order multipole induced by the �th
derivative of the background, created by thermal fluctuations
or the field of another such charge.

The constraints imposed on the motion of the particle
(typically by the experimental situation at hand) determine
whether a certain multipole charge can be induced or not. For
instance, if the particle is free to move vertically, there will
be no monopole induced, or C(0) = 0, because the particle can
accommodate a nonzero h(0) by moving up or down, without
an excess energy cost. Similarly, the dipole polarizability C(1)

vanishes if there are no constraints on the tilt degree of freedom
of the particle, as it can then adjust freely to a nonzero ∂ih(0).
We will reprise these arguments in due time when we discuss
the leading-order interaction between the particles.

The presence of a multipole like Eq. (10) on the surface
creates a deformation around it, which is simply the following
convolution of the charge with the Green function:

δh(r) = − 1

σ

∫
d2r ′J (r ′)G(r ′,r)

= −C(�)

σ
∂�hbg(0)∂�G(0,r). (11)

For example, Fig. 1 depicts the response of a horizontally fixed
disk to a dipole background, hbg = r cos ϕ. The fluctuation-
induced interaction can be viewed as the interaction between
these induced multipoles mediated by the surface.

Notice that the multipole responses of order � > 0 decay
as r−�, whereas the monopole response does not. In fact,
the monopole response is not even square integrable, i.e., its
energy Eq. (2) diverges logarithmically. However, this is not
a property of the EFT point-particle description, but of the

surface Hamiltonian itself. Therefore, calculating interactions
between objects with nontrivial monopole responses inR2, i.e.,
disks with pinned height, is intrinsically an ill-defined problem
and requires regularization of the surface Hamiltonian—
whether one is using EFT or not. The issue can be alleviated
by considering a finite subset of R2 or modifying the theory
with a damping term. However, since this would distract from
the main idea we want to communicate in this article, we will
defer this case to Appendix D and avoid monopoles in the
main text by restricting to particles that can fluctuate up and
down freely, i.e., particles for which C(0) = 0.

Having discussed the multipole responses, one more note
for completeness is in order. Although one must build �H
from all scalars that the symmetries of the problem allow,
terms involving repeated indices, such as h2

ii , h2
iij , etc., are

redundant. One way to see this is that the response Eq. (11) of
such a charge to a background would necessarily be local, as
Gii(0,r) ≡ δ(r), and hence such charges do not interact with
anything away from them.

A. Fixing the polarizabilities: Matching

Equation (8) is the most general quadratic Hamiltonian
compatible with the circular symmetry of one particle. The
only thing we have not established yet are the exact values of
the polarizability coefficients, which we will attend to in this
section. These values are fixed by matching a set of observables
in the effective (point-particle) and full (finite-sized particle)
theories. Although any suitably chosen set of observables
will do, we will consider the most obvious one here: the
polarization response to an applied field. If one is dealing
with more complicated physics and boundary conditions or
shapes, a different choice of observable may be more practical
(e.g., for numerical matching) or even necessary.

We gave the general expression for an �th-order induced
multipole response in Eq. (11). Clearly, the background that
will induce this response is one that is �th order in the
coordinates, and the deformation decays like ∂�G(0,r) ∼ r−�.
The polarizability C(�) should be fixed such that this EFT
response is identical to the response in the full theory of the
particle to the same background. Given the correspondence
between our present Hamiltonian and classical electrostatics
in two dimensions, the latter response is found analogously to
the problem of a conductor in an external electric field.

If we write the derivatives in Eq. (11) explicitly, this
expression involves the index contraction h

bg
i1···i� (0)Gi1···i�(0,r)

between partial derivatives of the incident background and
the Green function. The simplest choice of background is
hbg = αr� cos �ϕ. While a Cartesian index contraction is not
hard to do when the polarization is of order 1 or 2, a
general expression is difficult to come by in this way for high
orders. Luckily, if one carries out the contraction in complex
coordinates (z,z̄) instead of (x,y), a general expression is found
easily. The result is that the effective object will respond to
a background of the form hbg = αr� cos �ϕ by creating the
deformation

δh(r) = −C(�) 2��!(� − 1)!α

4πσ

cos �ϕ

r�
, (12)

which is derived in Appendix A.
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In the full theory, one has to solve the boundary value
problem ∇2δh = 0 for r > R with the boundary condition
h|r=R = (hbg + δh)|r=R = 0.2 The full set of harmonic func-
tions with square-integrable gradient has the form r−� cos �ϕ

with � ∈ {1,2, . . .}. Hence the solution in the case of a
background hbg = αr� cos �ϕ is found to be

δh(r) = −αR2� cos �ϕ

r�
. (13)

Comparison of Eqs. (12) and (13) yields the complete set of
polarizabilities

C(�) = 4πR2�σ

2��!(� − 1)!
, � = 1, 2, 3 . . . , (14)

for one object. For the sake of clarity, let us rewrite the
complete �H by restoring the particle labels a:

�H[h] = 1

2

∑
a

∞∑
�=1

C(�)
a [∂�h(ra)]2, (15)

where ∂� denotes ∂i1∂i2 . . . ∂i� . We now know the point-particle
EFT Hamiltonian which—to quadratic order in the field—is
rigorously equivalent to the full theory.

As stated earlier, we do not intend to address higher-than-
quadratic terms in the effective theory here. However, we
would like to stress that the matching procedure is essentially
the same even if such terms are considered. The steps taken
since the beginning of Sec. III do not rely on the responses
being linear. What has been presented boils down to computing
the one-point function 〈δh(r)〉 of the response δh(r) of
one isolated object to a background in the effective (point
particle) and full theories. Generally, one matches such n-point
functions, or other observables that are functions or functionals
of them, across both theories to fix the Wilson coefficients. For
the linear case, it turned out to be very straightforward to fix
the coefficients independently of each other by matching the
aforementioned one-point function. If nonlinearities are also
accounted for, one may need to match more n-point functions
to obtain a sufficient number of linearly independent matching
conditions to fix the values of the coefficients, and there
may not be a simple choice of background that automatically
decouples them. However, despite the tedium introduced by the
nonlinearities, the procedure is not intrinsically problematic.

B. Fluctuation-induced interactions

With the effective theory established, we can now turn our
attention to evaluating the cumulant expansion (6) explicitly.
Taking powers of Eq. (15) one observes that the qth cumulant
in Eq. (6) involves 2q-point connected correlation functions.
This can be represented as connected Feynman diagrams with
q vertices and two links coming out of each vertex (see Fig. 2,
for instance), as one can see by Wick contraction of the 2q point

2Strictly speaking, the boundary condition is h|r=R = a + b · r
where a and b are free parameters describing the height and tilt (if
applicable) fluctuations of the colloid. Their function is to satisfy the
boundary condition readily without the need for an induced response
for those backgrounds that the colloid can align with.

r1

r2

(1)

(2)

(1)

(3)

r1

r2

r3

(1)

(2)

(1)

(3)

r1

r2

r3

r4

(1)

(2)

(3)

(1)

(a) (b) (c)

FIG. 2. Diagrams depicting pair (a), triplet (b), and quadruplet
(c) interactions stemming from the fourth cumulant. Dashed lines
represent the world lines of particles and have been labeled by
the particle. The number in parentheses at each vertex shows the
multipole order at the associated point in the scattering process. Each
propagator is subject to �1 + �2 partial derivatives, where �1 and �2

are the multipole orders at the vertices it connects. Consequently all
these diagrams are interactions of order 2(1 + 2 + 3 + 1) = 14 in the
inverse interparticle separations. Also note that we show only one of
three possible four-body connections in (c), because our aim at this
stage is just to work an example and not to be complete.

correlator. Every vertex contributes a factor of βC(�)/2 while
every link affords a two-point correlator (or propagator) as in
Eq. (7), acted upon by derivatives stemming from Eq. (15).
Recalling that C(�) ∼ σ , one can see that there will be no fac-
tors of β or σ left in any cumulant; i.e., the dimensionless free
energy βF is purely a function of the spatial configuration of
particles. Each correlator 〈∂�h(ra)∂mh(rb)〉 ∼ ∂�∂mG(ra,rb)
brings a factor |ra − rb|−(�+m). Consequently, an interaction
among q multipoles of orders �1 to �q will scale with a total
of −2(�1 + �2 + · · · + �q) powers of the separations between
them. Accordingly, one knows how many multipole orders and
how many cumulants must be retained, in order to achieve any
given level of accuracy of an asymptotic expansion of the free
energy, expressed in inverse powers of interparticle distances.

It is instructive to consider one example term from the
cumulant expansion, to make these ideas clearer. The fourth
cumulant will serve well since it contains pair, three-body, and
four-body interactions, while the expressions are still not very
cluttered. Let us first write the fourth cumulant directly from
Eqs. (6) and (15):

βF (4) := −β4

4!

∑
a,b

c,d

∑
�a,�b

�c,�d

C
(�a )
a C

(�b)
b C

(�c)
c C

(�d )
d

24
〈[∂�ah(ra)]2

× [∂�bh(rb)]2[∂�ch(rc)]2[∂�d h(rd )]2〉c. (16)

The summations are over the particles and the multipoles on
each. In this section we will discuss only a few terms embodied
in these sums, chosen as instructive examples (shown in Fig. 2).

We will begin by considering the pair interaction between
particles 1 and 2, depicted in Fig. 2(a). There are two factors
one needs to compute: (1) the number of times the relevant
product of polarizabilities, namely, C(1)

1 C
(1)
1 C

(2)
2 C

(3)
2 , occurs in

the sum (16), and (2) the multiplicity of the Wick contraction
of the eight-point connected correlation function. The first of
these factors is simply the multinomial coefficient

( 4
2,1,1

) =
4!/2!1!1!, since what we are looking for is the factor in front
of a2bc in the expansion of (a + b + c + · · · )4. Next, the
multiplicity of the Wick contraction, or the diagram Fig. 2(a),
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is 24 due to the possibility of flipping the legs of each vertex.3

Thus the pair interaction of Fig. 2(a) can be written as

βF [Fig. 2(a)] = − 1

4!

(
4

2,1,1

)
C

(1)
1

2
C

(2)
2 C

(3)
2

(2σ )4

× 24G12
ijkG

21
jklG

12
lmnpG21

mnpi, (17)

where the shorthand Gab = G(ra,rb) has been introduced. For
completeness, we also present the result after doing the index
contraction (see Appendix A) and substituting polarizabilities
from Eq. (14):

βF [Fig. 2(a)] = −6
R4

1R
10
2

r14
12

, (18)

where rab = |ra − rb|.
The triplet interaction depicted in Fig. 2(b) requires consid-

eration of terms in Eq. (16), which involve the polarizabilities
C

(1)
1 , C

(2)
2 , C

(3)
2 , and C

(1)
3 . This combination occurs

( 4
1,1,1,1

)
times in Eq. (16), which means, also recalling that the
multiplicity of the connection is 24, that we obtain for the
triplet interaction,

βF [Fig. 2(b)] = − 1

4!

(
4

1,1,1,1

)
C

(1)
1 C

(2)
2 C

(3)
2 C

(1)
3

(2σ )4

× 24G12
ijkG

23
jklG

32
lmnpG21

mnpi . (19)

After index contraction and substituting the polarizabilities,
we have

βF [Fig. 2(b)] = +12 cos ϕ 2
13

R2
1R

10
2 R2

3

r7
12r

7
23

, (20)

where ϕ 2
13 is the angle between r1 − r2 and r2 − r3, or in this

case, the exterior angle of the triangle formed by the particles
at r2. The quadruplet interaction of Fig. 2(c) is similarly
found as

βF [Fig. 2(c)] = − 1

4!

(
4

1,1,1,1

)
C

(1)
1 C

(2)
2 C

(3)
3 C

(1)
4

(2σ )4

× 24G12
ijkG

24
jklG

43
lmnpG31

mnpi

= −12 cos
(
3ϕ 2

41 + 4ϕ 3
14

)R2
1R

4
2R

6
3R

2
4

r3
12r

3
24r

4
43r

4
31

, (21)

with an analogous definition of the angles.
In this section we have tried to illustrate the Feynman rules

of our expansion by specific examples. It should be clear
that computing interactions is a straightforward exercise in

3It is generally 2q with q being the cumulant order, except for q = 2,
where it is 2.

FIG. 3. Example diagrams with unphysical divergent self-energies.

counting powers and diagrams relevant for the desired order
in the inverse separation. The Green function products are
easy to evaluate using complex coordinates as discussed in
Appendix A, and they turn out to be proportional to a product
of powers of the distances and the cosine of a combination of
angles associated with the geometry of the particle configura-
tion, determined by the multipole orders involved.

The reader may have realized that there seem to be divergent
pair and triplet interactions in Eq. (16) due to one or more
self-links in the form ∂nG(0) (see Fig. 3). These divergences
are all power-like (∼r−n as r → 0 where n � 2) and carry no
physical information, as there is no nontrivial renormalization
group (RG) flow. The rigorous way to deal with them is to add
counterterms to the Hamiltonian, aiming to cancel the unphys-
ical divergences from the free-energy expansion. However,
since one can find all these counterterms by renormalization
techniques, and the sole purpose of them is to remove the
divergences from the free-energy expansion, the upshot of this
systematic RG treatment is that the divergences can simply be
dismissed. We have included Appendix C where the removal of
one such divergence by a counterterm is explicitly illustrated.

1. Pair interactions

Although every multibody order is included in the cumulant
expansion (6), a systematic enumeration of all relevant
diagrams lies beyond the scope of this article. However, if
only two particles are involved, the solution can be worked
out without too much trouble, and one can write the complete
asymptotic expansion of the free energy.

Let us first establish that only even-numbered cumulants
are relevant for pair interactions. The reason is that there is
no physical (i.e., finite) pair term in odd-numbered cumulants.
The easiest way to see this is to consider a pair diagram,
i.e., one with connections between two world lines such as
Fig. 2(a), with an odd number of vertices distributed along
them: There is no possible connection (Wick contraction)
without at least one self-link. As we discussed above, such
contributions to the free energy are unphysical artifacts that can
be removed rigorously. Hence, pair interactions exclusively
stem from even-numbered cumulants.

To write the full expansion of the pair free energy, one must
be able to do two things at an arbitrary cumulant order 2s:
(1) enumerate all contributing pair diagrams with 2s vertices
and (2) evaluate the diagrams, which involves doing the
product of 2s propagators [such as in Eq. (17), (20), or (21)]
with any collection of multipole orders at the vertices. Luckily,
both of these can be done. The propagator product is calculated
in Appendix A. As for the enumeration of relevant diagrams,
it is most suitable to again illustrate it with an example: The
sixth cumulant contains the diagrams depicted in Fig. 4. These
are all the connected pair diagrams with six vertices, free
of unphysical self-energies. As one can see by starting from
any one of the vertices and “stitching” the vertices in all
possible ways, there are 3!2!/2 = 6 of these diagrams, which
generalizes to gs := s!(s − 1)!/2 for the (2s)-th cumulant
(except that g1 = 1). With each given collection of multipole
orders at the vertices, the contribution of each diagram to the
cumulant, or the propagator product, will be different (not
in terms of power of r but its prefactor) since the partial
derivatives will generally be distributed differently on the
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r1

r2

r1

r2

r1

r2

FIG. 4. Different “stitches” of the sixth cumulant pair interaction.

propagators. While this might seem to complicate things,
remember that there is a sum over all possible collections
of multipole orders out front [see Eq. (16)]. Thus, the effect
of these gs different topologies is to repeat each scattering
process gs times in the sum. Hence one can consider only one
of the gs possible diagrams and multiply the result by gs .

Taking everything together, the entire pair interaction can
be written as

βF = −
∑
{�i }

[
1

2!

(
2

1

)
g1 + 1

4!

(
4

2

)
g2

+ 1

6!

(
6

3

)
g3 + · · ·

]
, (22)

where
∑

{�i } denotes a sum over all possible collections of
multipoles at the vertices. Using the exact expressions for the
polarizabilities, Eq. (14), and propagator products, Eq. (A11),
to evaluate the diagrams, the pair interaction can be expressed
in the following asymptotic expansion:

βF = −
∞∑

s=1

1

s

∑
�1,...�2s

2s∏
i=1

(�i + �i+1 − 1)!

�i+1!(�i − 1)!

R
2Lo
1 R

2Le
2

r2(Lo+Le)
, (23)

where �2s+1 = �1, Lo = ∑
odd i �i and Le = ∑

even i �i . As-
suming identical particle radii to reduce clutter, the first few
terms of this expansion are

βF = −
(

R

r

)4

− 4

(
R

r

)6

− 31

2

(
R

r

)8

− 60

(
R

r

)10

− 697

3

(
R

r

)12

+ · · · . (24)

Note that obtaining these numbers does not involve anything
more complicated than elementary algebra. The interaction up
to order r−70 has been plotted in Fig. 5. A cursory observation
of the plot reveals that for (center-to-center) distances larger
than r ≈ 4, the lowest-order term in Eq. (24) suffices. How-
ever, for closer separations, the number of higher-order terms
one should include increases rapidly. We demonstrate this in
the inset to Fig. 5 where r5%(P ) is defined as the separation
where the series (24) terminated at O(r−P ) achieves an
accuracy of 5%. As the dimensionless distance d = r/R − 2
between the edges of the particles is decreased, the power

8.2
P

P

r 0
.0

5
(P

)/
R
−

2

4 5 10 20 50 100 200

10

1

0.1

r/R

|f
(r

)|
[

k
B
T

/
R

]

2 3 4 5 6 7 8 9 10
10−5

10−4

10−3

10−2

10−1

100

101

102

un
it

s 
of

FIG. 5. Comparison to numerical results of Ref. [8] on the attrac-
tive force f (r) = −∂F/∂r . The dotted and solid curves correspond,
respectively, to Ref. [8] and our results (truncated at order r−70 in the
free energy). The dashed line represents the lowest-order asymptotic
solution, i.e., the dipole-dipole interaction. The inset depicts how the
power P of the highest-order term included in the expansion and the
distance at which a 5% accuracy is achieved depend on each other.

where the series can be truncated and still achieve less than 5%
error appears to asymptotically obey P ≈ 8.2d−1. From this
we see, for instance, that if the surface-to-surface separation is
a tenth of the particle radius, i.e., d = 0.1, then one must retain
all terms up to O(r−82) in order to achieve 5% accuracy.

The first two terms of Eq. (24) are the dipole-dipole
and dipole-quadrupole interactions also computed earlier by
Lehle and Oettel [8]. The same publication also contains a
quadrupole-quadrupole interaction of order r−8, for the case
of tiltable colloids, of magnitude −9. Since the expansion
(24) was developed under the assumption of frozen tilt degree
of freedom, the magnitude of the r−8 term includes additional
interactions and is therefore different. Namely, these additional
interactions are the quadrupole-octupole and dipole-dipole-
dipole-dipole interactions (Fig. 6) with respective magnitudes
−6 and −1/2, such that the resulting total magnitude of
the r−8 term is −9 − 6 − 1/2 = −31/2. Had we instead
assumed the colloids to be free to tilt, their dipole polarizability
C(1) would vanish—hence so would diagrams Fig. 6(b) and
6(c)—and the expansion (24) would have started with the
quadrupole-quadrupole term −9(R/r)8.

Lehle and Oettel also compute a numerical solution
to the interaction for intermediate and close distances, where

(2)

(2)

(1)

(3)

(1) (1)

(1) (1)

(a) (b) (c)

FIG. 6. (a) The quadrupole-quadrupole interaction −9(R/r)−8.
(b) The dipole-octupole interaction −6(R/r)−8. (c) The dipole-
dipole-dipole-dipole interaction −(1/2)(R/r)−8.
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the first few terms of the asymptotic expansion do not suffice
[8]. As a confirmation of our result, we show in Fig. 5 the
interaction found in Ref. [8] by performing the functional
integrals numerically, with our expansion (23) up to order
r−70. The agreement is excellent, except upon approaching the
contact distance r = 2R, where our truncated series remains
finite while the numerical solution appears to grow without
limit. The exact solution indeed diverges as

−βF = π2

24
√

d
+ 1

4
log

(
4d

π2

)
− 96 − π2

576

√
d + O(d),

(25)

where d = (r − 2R)/R is a scaled surface-to-surface distance.
The dominant term has previously been predicted by combin-
ing the exact result for two parallel lines with the Derjaguin
approximation [8,32]; the subleading contributions cannot
be extracted in this way but follow by expanding the exact
analytical solution that one of us recently found by using
conformal field theory techniques [33].

Since our formalism by construction produces an asymp-
totic expansion in the inverse separation, it is clearly not
the preferred method when it comes to near-contact separa-
tions (see also inset in Fig. 5). However, it turns out that
even our large distance expansion (23) is in a sufficiently
manageable form to permit extraction of the leading order
of (25)—including the prefactor—by some further analytical
manipulation. We illustrate this in Appendix B. This, of course,
constitutes an application of our expansion outside its region
of highest analytical convenience, but it vividly illustrates that
(1) our expansion can indeed be driven up to arbitrarily high
order and that (2) the resulting predictions are correct up to
the point where the exact solution diverges.

2. Beyond the pair interaction

When there are more than two particles involved, the free
energy of interaction generally does not decompose into a sum

of pair interactions but contains multibody interactions like
the ones discussed in Sec. III B. As illustrated earlier, simple
power counting reveals to what order in the separations a
certain multibody interaction might contribute, and evaluating
the interaction poses little difficulty.

Let us now discuss the leading-order triplet interaction.
A dipole-dipole-dipole term from the third cumulant is the
lowest-order triplet interaction conceivable. It is easy to see by
power counting that this interaction would scale as r−2

12 r−2
23 r−2

31 .
However, the strength of this interaction turns out to be
identically zero. This is due to the harmonicity of the Green
function of the problem and applies to any diagram in an odd-
numbered cumulant (see Appendix A). Therefore, with this
choice of surface Hamiltonian, many interactions that would
seem to exist based on scaling arguments actually disappear.4

Since no triplet interaction exists in the third cumulant,
one must look for the leading triplet term in the next. The
lowest-order interaction is between induced dipoles and stems
from the diagrams depicted in Fig. 7(a). We have already
computed a subleading correction to this as an example in an
earlier section, which involved higher-order multipoles. The
leading order is similarly computed and found to be

βF
trip
lead = − 1

4!

(
4

1,2,1

)
C

(1)
1 C

(1)
2

2
C

(1)
3

(2σ )4
24G12

ij G23
jkG

32
kl G

21
li

+ cyclic permutations of (123), (26)

which becomes, after evaluating the propagator product—by
either direct computation or using Eq. (A11)—and substituting
the polarizabilities from Eq. (14),

βF
trip
lead = −R2

1R
4
2R

2
3

r4
12r

4
23

− R2
1R

2
2R

4
3

r4
23r

4
31

− R4
1R

2
2R

2
3

r4
31r

4
12

. (27)

The fourth cumulant is also where the leading-order
quadruplet interaction resides. This results from the diagrams
shown in Fig. 7(b) among four induced dipoles. It follows as

βF
quad
lead = − 1

4!

(
4

1,1,1,1

)
C

(1)
1 C

(1)
2 C

(1)
3 C

(1)
4

(2σ )4
24

(
G12

ij G23
jkG

34
kl G

41
li + G12

ij G24
jkG

43
kl G

31
li + G13

ij G32
jkG

24
kl G

41
li

)

= 2R2
1R

2
2R

2
3R

2
4

[
cos

(
ϕ 2

13 − ϕ 3
24 + ϕ 4

31 − ϕ 1
42

)
r2

12r
2
23r

2
34r

2
41

+ cos
(
ϕ 2

14 − ϕ 4
23 + ϕ 3

41 − ϕ 1
32

)
r2

24r
2
43r

2
31r

2
12

+ cos
(
ϕ 3

12 − ϕ 2
34 + ϕ 4

21 − ϕ 1
43

)
r2

32r
2
24r

2
41r

2
13

]
. (28)

Depending on the desired level of accuracy, corrections to
these interactions as well as further multiplets may be required.
In this case, one simply identifies the relevant diagrams or
interactions by power counting, and the computation that
follows is fairly straightforward as shown.

C. On anisotropic and flexible objects

We have carried out our discussion under the assumption
of rigid and circular particles. An obvious extension is toward

4This is not the case for a membrane, where the surface energy
stems from bending elasticity [35].

particles with internal flexibility or nonaxisymmetric shapes.
Although a thorough treatment of these extensions can be quite
involved, there are nevertheless certain simple but rigorous
remarks we can make at this stage.

Not much changes when the particles considered are
flexible (or the constraints on their motion are not completely
rigid). Since the boundary conditions at the circumference
of the particles change accordingly, fixing the polarizabilities
will require the solution of a different boundary value problem
on the full theory side of the matching procedure, but the
form of the effective Hamiltonian is exactly the same. The
subsequent change in the values of the polarizabilities will
result in different interaction strengths. However, this does not
affect one’s ability to identify features of the interaction, such
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r3
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(1)

(1)
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FIG. 7. (a) The fourth cumulant diagrams contributing to the lead-
ing triplet interaction. (b) The fourth cumulant diagrams contributing
to the leading quadruplet interaction.

as what the leading power of inverse separations in a given
multibody interaction is.

If the elastic properties of the particles are ever so slightly
different from the surface, then the free-energy expansion
acquires another smallness parameter intrinsic to the polar-
izabilities. This renders high cumulants in βF negligible
compared to the second, a so-called weak coupling [17]
approximation. In such a case, being able to obtain a closed-
form result is more likely since only the second cumulant has
to be taken into account. This is one of the limits considered in
Ref. [19]. These authors restrict to two scatterings, analogously
to truncating the cumulant expansion after the second, which
is justified by the weakness of the perturbations.

In the case of an anisotropic particle, the response of the
particle to incident backgrounds depends on its orientation,
which is clearly not the case for the response given in Eq. (11).
One now needs to consider polarizability tensors to describe
the anisotropic response of a noncircular particle. The first few
terms in the derivative expansion of a particle read

�Ha = 1
2

(
hiC

(1)
ij hj + hijC

(2)
ijklhkl + · · · )∣∣r=ra

. (29)

Fixing the polarizability tensors will require solving more
complicated boundary value problems, but the lowest-order
interaction will still stem from a pair of induced dipoles
(tensor C

(1)
ij ) and therefore scale as r−4, no matter what the

shape of the particle might be. Or if the particle is free to
tilt, then the polarizability of any term involving an hi will
vanish, thereby making the leading asymptotic interaction a
quadrupole-quadrupole at order r−8. These are indeed in line
with the findings of Ref. [9], where explicit calculations of the
leading order interactions between rigid ellipsoidal particles
were presented.

IV. ON CORN FLAKES

So far, we have focused on interactions initiated by thermal
fluctuations and have thus restricted our study to particles
that do not deform the film in its ground state. However, it is
straightforward to include such effects in our formalism. This
kind of situation naturally arises from an irregular three-phase

contact line between a colloid and the fluid-fluid interface it is
trapped at [34]. Macroscopically, we see corn flakes perturbing
the surface of a bowl of milk in a similar way. Again, one would
expect (and can indeed observe) that once these deformations
overlap, they give rise to aggregation of the flakes.

These perturbations are treated as “permanent charges” in
the effective theory, beside the induced charges arising from
constraints. The effective theory incurs local linear terms in
addition to the quadratic ones upon this modification. The
easiest way to determine these linear terms is again through
an argument involving the response of each particle to a
background. Consider a particle whose contact line height
profile has a nontrivial multipole hcl(ϕ) = η� cos(�ϕ − �α�)
around its center with a phase angle α�. When a background
hbg(r) = η�R

−�r� cos(�ϕ − �α�) is incident on this particle,
the boundary condition (hin = hout)|r=R is automatically sat-
isfied by the fact that hbg(R,ϕ) = hcl(ϕ), and hence no net
response will be triggered. Another way to phrase this is that
the field of the permanent charge and the induced response to
this specific background eliminate each other. Therefore, if this
“preferred background” is denoted by p(�)(r), the local linear
terms representing the permanent charges can be encoded into
the quadratic induced charge terms as a shift:

�H[h] = 1

2

∑
a,�

C(�)
a [∂�h(ra) − ∂�p(�)(ra)]2. (30)

Note that the values of the polarizability coefficients are the
same, whether the preferred shape of the particles are flat
or curved, as long as the constraints are the same. Notice
that in the absence of (vertical) external forces, the vertical
movement of a particle is free and hence C(0) = 0. Similarly,
in the absence of (horizontal) external torques, the tilt motion
is free and C(1) = 0. In the following, we will assume that
this is the case, and therefore the multipole expansion starts at
� = 2.

From Eq. (30) one sees that the linear terms in the effective
Hamiltonian are

−
∑
a,�

C(�)
a ∂�p(�)(ra)∂�h(ra), (31)

which encode the permanent sources

−
∑
a,�

(−)�C(�)
a ∂�[δ(r − ra)∂�p(�)(ra)]. (32)

In the diagrammatic expansion, the linear terms correspond to
vertices with only one link attached. Therefore, interactions
involving permanent charges are open diagrams initiating and
terminating at these. Such diagrams have one link less but the
same number of vertices compared to the fluctuation-induced
interactions, and power counting shows the free energy due
to them will scale as F ∼ σR2, i.e., with no temperature
dependence. These ground-state contributions together with
the fluctuation part, ∼kBT , of the previous section result in
a free energy of the form F = a0 + a1T , which allows us to
view this separation into ground-state energy and fluctuation
correction as equivalent to a separation into the energy and
entropy terms in F = E − T S. Observe that this equivalence
would not hold had we considered anharmonicities in the

011140-9



CEM YOLCU, IRA Z. ROTHSTEIN, AND MARKUS DESERNO PHYSICAL REVIEW E 85, 011140 (2012)

(2)

(2)

(2)

(2) (2)

(2)

(2)

(2)

(a) (b) (c)

FIG. 8. (a) The direct interaction E(4) ∼ r−4 between two per-
manent quadrupoles. (b) The pair interaction E(8) ∼ r−8 between a
permanent quadrupole and the quadrupole it induces on the other
particle. This is the lowest-order energetic pair interaction that
involves scattering from an induced charge. (c) At the same order
as diagram (b), there also exists a triplet interaction E

(8)
trip involving

two separate permanent charges and one induced charge.

theory and thus furnished the free energy with contributions
higher than linear order in the temperature.

For the sake of clarity, let us consider a pair of particles
with a saddle-shaped contact line deformation. That is, each
particle will have a preferred background of the form p(r) =
(1/2)kr2 cos(2ϕ − 2α) around its center, where the angle α

describes the orientation of the saddle. For a colloid under no
external vertical force (e.g., gravity) or horizontal torque, this
quadrupole deformation is the lowest-order multipole contact
line irregularity that can occur. The linear part of the effective
theory follows as −∑

a C(2)
a pij (ra)hij (ra), where

pij (ra) = ka

[
cos 2αa − sin 2αa

− sin 2αa − cos 2αa

]
. (33)

Notice the simple geometric interpretation of ka as the
magnitudes of each principal curvature of the saddles.

The leading interaction stems from the second cumulant as
a direct interaction between the two permanent quadrupoles,
Fig. 8(a), easily found as

E(4) = − 1

2!

(
2

1,1

)
C

(2)
1 C

(2)
2

σ
pij (r1)G12

ijklpkl(r2)

= −3πσ cos(2α1 + 2α2)
k1R

4
1R

4
2 k2

r4
, (34)

where the pair was assumed to lie on the x axis to declutter
the expression. The functional dependence of the interaction
implies both an attractive force and vertical torques on the
saddle-like particles. The same potential was found by Stamou
et al. [34]. We have seen earlier that, between colloids that are
free to tilt and fluctuate vertically, the leading fluctuation-
induced interaction is of order r−8, which can compete with
the interaction (34) only at close separations.

Although we have restricted to a toy problem where the only
permanent deformation is quadrupolar, it should be obvious
how one would handle higher-order multipoles of the contact
line irregularity for accuracy at closer separations. However,
one should note that the true interaction potential is not merely
a superposition of direct interactions between permanent
charges, similar to Fig. 8(a), but includes scatterings from
induced charges, such as Fig. 8(b). The former is equivalent
to assuming the total shape of the surface is given by a
superposition of the deformations caused by each particle

independently of every other, i.e., neglecting their boundary
conditions, which is why it misses induced charges. Such
a superposition approximation is captured by the second
cumulant and holds up to the order the next cumulant begins
to contribute. This is the order r−8, where the third cumulant
contributes the diagram in Fig. 8(b), evaluating to the repulsion

E(8) = 9

2
πσ

(
k2

1R
4
1 + k2

2R
4
2

)R4
1R

4
2

r8
, (35)

which is the lowest-order pair interaction that involves a
scattering from an induced charge. At the same order, one
observes the first multibody interaction as well, which is
depicted in Fig. 8(c), and evaluates to E

(8)
trip = E

(8)
123 + E

(8)
231 +

E
(8)
312, where

E
(8)
123 = 9πσ

k1R
4
1R

4
2R

4
3 k3

r4
12r

4
32

cos
(
4ϕ 2

13 + 2α1 − 2α2
)
, (36)

and so on. If the particles possess higher multipole order
contact line irregularities, merely taking these into account
within a superposition approximation does not capture
every possible correction systematically, since it misses
contributions such as Fig. 8(b) and 8(c) by construction.

To summarize, although we primarily use the EFT for-
malism to facilitate the evaluation of a partition function, the
ground-state interactions mediated by the surface can easily
be calculated as well. One can readily encode the permanent
deformations imposed by the colloids as linear terms in the
effective theory, upon which the ground-state energy strictly
separates from the fluctuation correction. Computations of this
energy that rely upon the superposition of perturbations caused
by the particles only hold for direct interactions of the second
cumulant.

V. CONCLUSION

We have presented and discussed a formalism to compute
the surface-mediated forces between rigid disks trapped at
an interface, based on effective field theory. This formalism
reduces each finite-sized particle to a point, which greatly
simplifies computations. Still, these points are by explicit
construction equipped with all the information necessary to
capture their finite-sized counterpart’s behavior, and hence the
treatment is not approximate. In particular, their size is not
simply recovered as the continuum theory’s ad hoc ultraviolet
cutoff—an approach that can neither conceptually satisfy nor
be plausibly extended to more than one particle radii.

The extension from the free-surface theory to the effective
theory is achieved by the addition of a derivative expansion
�H, with extra terms localized at the centers of the particles,
encoding the constraints they enforce on the fluctuations as
induced capillary multipoles. Symmetries determine the form
of this extension to the Hamiltonian, while one still has to
fix the values of undetermined polarizability coefficients via
a matching procedure. However, one gains insight into the
interaction free energy even without fixing these coefficients,
such as the leading-order distance dependence of the force
or the vanishing of certain many-body interactions due to the
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kernel of the theory. In this article we focused on circularly
symmetric particles, which allowed us to determine the
effective Hamiltonian completely, i.e., to all derivative orders.
However, in cases where this is not possible and a certain
level of accuracy—in powers of r—is desired, knowing only
a fraction of all the polarizability coefficients will suffice.

After the effective theory has been established, the interac-
tion free energy is then computed in a cumulant expansion. N -
body interactions are identified as Feynman diagrams linking
N world lines and are computed in a fairly straightforward
manner. The two expansions, the cumulant expansion and that
in the local derivatives of the field at the inclusions, afford a
transparent interpretation of every term that contributes to the
interaction as a scattering process between various multipole
moments of the induced charges, similar in spirit to Ref. [14].
Unless both of these expansions are performed, consistent
results cannot be achieved. Also, owing to simplifications due
to the harmonicity of the theory, the number of dimensions,
and the symmetry of the particles, a general expression for
any possible diagram was obtained in Appendix A. We have
used this expression to develop a full asymptotic expansion
of the pair interaction. It was possible to partially sum up the
expansion. We believe a complete summation of the series
to obtain a closed-form expression may be possible as well,
though we have not succeeded here.

As we have discussed, an extension to nonrigid and
noncircular objects entails no major change in the formalism.
The former only affects the strength of the polarizability
coefficients and therefore the interactions, while the latter re-
quires consideration of tensor polarizabilities, and both fixing
their values and computing interactions become a bit more
involved.

Moreover, we have presented results on ground-state inter-
actions between the particles as well as the fluctuation-induced
interactions. This required us to add permanent charges to the
effective theory, which is simply achieved by shifting the zero
of the induced charge terms. The ground-state interactions then
strictly separate from the fluctuation corrections and can be
computed in the same manner we discussed for the fluctuation-
induced forces. In addition to deriving the lowest-order pair
interaction, in agreement with known results, we illustrated
how corrections—higher order or multibody—are computed.

Note that the same formalism can be used to treat surfaces of
different characters, i.e., different free-surface Hamiltonians.
A relevant example is the problem of surface-mediated
interactions between inclusions on a biological membrane,
which we will treat in a future publication [35]. Additionally,
fluctuation corrections of higher-than-linear order in kBT can
be systematically studied by increasing the anharmonicity of
the theory, e.g., relaxing the weak deformation assumption on
the interface or the constant footprint of the particles.

APPENDIX A: INDEX CONTRACTIONS
IN COMPLEX COORDINATES

In this Appendix we will go into details of how to perform
the index contractions encountered in computing induced
fields and propagator products by transforming to complex
coordinates, z = x + iy and z̄ = x − iy. We first note that in
Cartesian coordinates, covariant and contravariant elements of

tensors are identical; i.e., the metric is the identity. Therefore
we have not distinguished between them and have written all
indices as subscripts in the main body of the article. However,
now that we are considering a change of coordinates, we will
use a covariant notation instead. For example, Eq. (11) will
read

δh(r) = −C(�)

σ
h

bg
i1···i� (0)Gi1...i�(0,r)

= −C(�)

σ
gi1j1 · · · gi�j�h

bg
i1···i�(0)Gj1···j�

(0,r), (A1)

where gij is the (inverse) metric tensor.
From the embedding x = (1/2)(z + z̄),y = (1/2i)(z − z̄)

the tangent vectors �ez = (1/2)(1, − i) and �ez̄ = (1/2)(1,i)
follow. Then the metric tensor gij = �ei · �ej and its inverse
are found as

gij = 1

2

(
0 1

1 0

)
, gij = 2

(
0 1

1 0

)
. (A2)

Since the metric is constant, the Christoffel symbols vanish,
and therefore covariant derivatives are just partial derivatives
(and hence also commute).

The reason why it is useful to go to complex coordinates
is as follows. The index contractions needed for our compu-
tations all involve partial derivatives of the harmonic Green
function, which is

G(z,z′) = − 1

4π
log(z − z′)(z̄ − z̄′) (A3)

in complex coordinates. It is easily seen that

∂z∂z̄G = 0, (A4)

which is equivalent to the harmonic property of the Green
function since ∇2G = gijGij = 4∂z∂z̄G. This is a useful
property because, when expressed in complex coordinates,
all index combinations involving an alternation of indices on
G vanish from the contraction, leaving only terms that involve
either

∂nG

∂zn
= (n − 1)!

4π

1

(z′ − z)n
(A5)

or its complex conjugate. This property and the simple form
of the metric tensor (A2) simplify things greatly, allowing us
to express products involving an arbitrary number of indices
and factors.

The computation of the induced deformation, Eq. (11) or
Eq. (A1), is now as follows: The background hbg = αr� cos �ϕ

can be rewritten in complex coordinates as hbg = (α/2)
(z� + z̄�). Using Eqs. (A2) and (A4) we find

δh(r) = −C(�)

σ
h

bg
i1···i� (0)Gi1···i� (0,z)

= −C(�)

σ
gi1j1 · · · gi�j�h

bg
i1···i� (0)Gj1···j�

(0,z)

= −C(�)

σ
2�∂�

z̄ h
bg(0)∂�

z G(0,z) + c. c. (A6)
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Note that the index contraction, which generally has 2� terms,
was reduced to only two terms, owing to the property ∂z∂z̄G =
0. Now, using Eq. (A5) the result we used in Eq. (12) can be
found:

δh(r) = −C(�)

σ
2� α�!

2

(� − 1)!

4π

(
1

z�
+ 1

z̄�

)

= −C(�) 2��!(� − 1)!α

4πσ

cos �ϕ

r�
. (A7)

Note that one has to pay attention to which argument of the
Green function is differentiated so as to avoid sign errors.

The other point where we encounter index contractions is
in propagator products such as

∂�a ∂�bGab∂�b∂�cGbc∂�c∂�d Gcd∂�d ∂�aGda, (A8)

where ∂� is a shorthand for ∂i1∂i2 . . . ∂i� . To make the under-
lying algebra more transparent, let us first look at this product
of four propagators, before we generalize to an arbitrary
number. Similarly to the derivation of Eqs. (A6) and (A7),
and defining zab = za − zb, this product can be written as

(A8) = 2�a+�b+�c+�d ∂�a

z ∂�b

z G(zab)∂�b

z̄ ∂
�c

z̄ G(zbc)

× ∂�c

z ∂�d

z G(zcd )∂�d

z̄ ∂
�a

z̄ G(zda) + c. c. (A9)

Now we substitute from Eq. (A5) to find

(A8) = (�a + �b − 1)!

4π

(�b + �c − 1)!

4π

(�c + �d − 1)!

4π

(�d + �a − 1)!

4π

(−2)�a+�b+�c+�d

z
�a+�b

ab z̄
�b+�c

bc z
�c+�d

cd z̄
�d+�a

da

+ c. c.

= (�a + �b − 1)!(�b + �c − 1)!(�c + �d − 1)!(�d + �a − 1)!

(4π )42−(�a+�b+�c+�d+1)

cos
(
�bϕ

b
ac − �cϕ

c
bd + �dϕ

d
ca − �aϕ

a
db

)
r

�a+�b

ab r
�b+�c

bc r
�c+�d

cd r
�d+�a

da

, (A10)

where zab =: rabeiϕab and ϕ b
ac := ϕab − ϕbc is the angle

between ra − rb and rb − rc, etc. It is obvious how this
result generalizes to the product of an arbitrary number q of
propagators:

2 Re
q∏

i=1

2�i (�i + �i+1 − 1)!

4π

ei(−)i �iϕ
ai
ai−1ai+1

r
�i+�i+1
aiai+1

(A11)

with �q+1 = �1. We use this formula to evaluate many
interactions in Sec. III B, most noticeably in Eq. (23) where
a pair interaction is considered and thus the angles are zero.

Last, we would like to revisit a statement we made in
Sec. III B 2, namely, that the free-energy expansion (6) for
the surface tension Hamiltonian has identically vanishing odd
cumulants. This is easily seen to hold by observing that it is not
possible to write a nonzero expression analogous to (A9) for
an odd number of propagators, due to the property (A4) and
the off-diagonal form of the metric. As it rests on Eq. (A4),
or ∇2G = 0, this property of all odd-numbered cumulants
vanishing is special to the harmonic free-surface Hamiltonian.

APPENDIX B: NEAR-CONTACT ASYMPTOTICS

In problems where the field equation, the boundary con-
ditions, etc., are more complicated than those considered in
this article, one generally does not expect to calculate the
cumulant expansion in its entirety. However, in this specific
case, it is possible to obtain an exact and complete expansion:
Eq. (23). While finding a closed form for the whole series or at
least the expansion coefficients is a difficult task, considerable
simplifications turn out to be possible. The inner 2s-fold sum
of Eq. (23) has the form of a so-called binomial cycle [36],
and it is possible to perform all but one of the sums adapting

from Ref. [36]. Defining u = R2/r2 for the case of identical
radii, Eq. (23) reduces to

βF = −
∞∑

s,n=0

(
2n

n

)
u2s+n+2 F

( −n,1; −2n; f2s (u)
f2s+1(u)

)
(s + 1)f2s+1(u)f2s(u)

, (B1)

where F(a,b; c; x) is the hypergeometric function [37] and the
polynomials fq(u) have the recursion relation

fq(u) = fq−1(u) − ufq−2(u), (B2)

with f0 = f−1 = 1, related to continued fractions. Also note
that the summation index s merely labels cumulants and is
related to the cumulant order q as q = 2(s + 1). This already
amounts to a big practical improvement over Eq. (23), because
Eq. (B1) can be much more efficiently expanded in powers of
inverse distance.

From the recursion relation of fq , one can also derive the
expression

fq(u) =
� q+1

2 �∑
i=0

(
q + 1 − i

i

)
(−u)i , (B3)

where �·� denotes the integer part, or better still, recognize (in
our case, MATHEMATICA did this for us) its closed form as

fq(u) = χq+2 − 1

(χ2 − 1)(χ2 + 1)q
, (B4)

where χ (u) = (1 − √
1 − 4u − 2u)/2u. Thanks to the closed-

form expression for fq , one can show that in the interval
0 < u < 1/4 (i.e., from asymptotically separated to osculating
disks, recalling u = R2/r2), the ratio f2s(u)/f2s+1(u) < 2,
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which is the condition for the hypergeometric function in
Eq. (B1) to converge as n → ∞:

lim
n→∞F(−n,1; −2n; x) =

(
1 − x

2

)−1

. (B5)

One can then use Eq. (B5) to isolate the leading divergence in
each cumulant q = 2(s + 1) in Eq. (B1) as the n → ∞ tail of
the inner sum and obtain the resulting divergence in βF as

βF∞ ∼ −
∞∑

s=0

u2s+2 ∑∞
n=0

(2n

n

)
un

(s + 1)f2s(u)
[
f2s+1(u) − f2s (u)

2

] . (B6)

The symbol “∼” reminds us that this captures only the leading-
order asymptotic divergence.

After noting that
∑∞

n=0( 2n

n )un = (1 − 4u)−
1
2 , we will de-

fine the (scaled) surface-to-surface separation d between the
disks as u = 1/(d + 2)2 and reexpress Eq. (B6) for d � 1
using Eq. (B4) in order to obtain the leading divergence in
βF∞:

βF∞ ∼ − 1

4
√

d

∞∑
s=1

1

s2
= − ζ (2)

4
√

d
= − π2

24
√

d
, (B7)

in agreement with Eq. (25).
The crudeness of isolating the divergent part only allows

one to obtain the leading-order proximity asymptotics. In a
recent preprint [33] one of us used conformal field theory to
exactly compute the partition function of a bosonic field on
a plane with two holes. This is isomorphic to the problem of
two disks on a film studied in this article, and the interaction
can in fact be written in closed form (it involves a Dedekind η

function). Its expansion at large distances reproduces our EFT
series, while an expansion at contact leads to Eq. (25).

We again point out that computing the close distance
divergence is not the most obvious application for our specific
EFT implementation (which is built on a large distance
expansion), but it nevertheless illustrates the power of the
formalism quite vividly.

APPENDIX C: CANCELLATION OF DIVERGENCES
BY COUNTERTERMS

In this Appendix we will illustrate how self-energy diver-
gences can be removed by counterterms. While this is, to some
extent, a standard textbook affair, we include it in order to
illustrate the mechanism in the presently relevant context for
readers not necessarily familiar with (quantum) field theory.

First, let us clarify which divergences are of interest here.
Purely numerical divergences, such as those of the first
cumulant, get absorbed in the definition of the free-surface
energy (i.e., no particles); they do not refer to the relative
positions of the particles and thus do not affect interaction
energies. Similar trivial divergences occur in every cumulant
order and do not require any further discussion. The more
interesting divergences are those that multiply interactions
between particles and thus cannot be lumped together with
the free-surface energy.

The appearance of these divergences is due to the very
construction of an effective field theory. The self-interactions
necessarily involve the short-distance (high-energy) physics,

through G(0), where the theory is inadequate; especially
in field theories of condensed matter, we know that the
continuum description breaks down below a lattice spacing
or an equivalent short length scale. But the effect of the
short distance physics on large length scale (low-energy)
observables, such as the polarizabilities C(�), is to renormalize
(or “dress”) their values. The values we obtained for these
polarizabilities, through a procedure that has nothing to do
with the short distance physics of the field, are therefore
renormalized values. On the other hand, if a field theory is to
make finite predictions on (low-energy) physical observables,
the renormalized couplings must be accompanied by countert-
erms, or equivalently the coupling constants must be restored
to their “bare” values. However, since the counterterms exist
for the sole purpose of canceling these ultraviolet divergences
in the values for physical observables, it is legitimate not to
explicitly write the counterterms, but discard such divergences
on these grounds when encountered, as we did in this article.
We will nevertheless provide an example below.

For the sake of simplicity, let us assume two particles
possessing only a dipole polarizability described by the
Hamiltonian

�H = 1

2
C1h

2
i (r1) + 1

2
C2h

2
i (r2). (C1)

It is not hard to see that the divergences in the first and
second cumulants, 〈β�H〉c and −(1/2)〈(β�H)2〉c, are of the
trivial sort; i.e., those that do not involve the distance between
particles. However, in the third cumulant we encounter a
divergent pair free energy

1

3!

(
3

2

)
C2

1C2

(2σ )3
8G11

ij G12
jkG

21
ki , (C2)

as well as a similar term with the labels 1 and 2 interchanged.
Using the fact that ∂i∂jG(0) = (1/2)δij∇2G(0), we can rewrite
(C2) as

1

2

[
C2

1

2σ 2
∇2G(0)

]
C2

σ
G12

jkG
21
kj , (C3)

where it is apparent that this energy scales as δ(0)/r4. The way
the factors were arranged in (C3) makes it easy to identify what
counterterm should be added to the Hamiltonian to negate this
unphysical divergence: One might check that the physical pair
energy between these two particles at the second cumulant
has exactly the form of (C3), except that the factor in square
brackets is C1/σ . This means that if one adds to �H the
counterterm

Hcounter = 1

2

C2
1

2σ
∇2G(0)h2

i (r1), (C4)

it produces a divergent term in the second cumulant that
exactly cancels the aforementioned divergence, (C2) or (C3),
in the third cumulant. In fact, this counterterm removes all
divergences caused by a single occurrence of G11

ij in the
entire cumulant expansion, but it is beyond the scope of this
article to prove this. Also note that adding this counterterm
to the Hamiltonian is equivalent to redefining the dipole
polarizability C1 as

C1 → C1

[
1 + C1

2σ
∇2G(0)

]
. (C5)
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This was a simple example that exhibits an induced dipole
charge that produces a divergence due to interacting with
itself once. Considering other multipole orders will introduce
new counterterms involving different divergences, such as
∇4G(0). Removing divergences due to one charge interacting
with itself more than once is achieved by counterterms of
higher orders in the divergences, such as [∇2G(0)]2. Regarding
these counterterms as restoring the polarizabilities to their
(divergent) bare values C

(�)
bare from the renormalized C(�), one

can write

C
(�)
bare = C(�) +

∞∑
n=1

b(�)
n

[
C(�)

σ
∇2�G(0)

]n

, (C6)

where the coefficients b(�)
n are pure numbers appropriately

chosen to cancel the offending diagrams. In this Appendix,
for instance, we have explicitly found out that b

(1)
1 = 1/2.

APPENDIX D: INDUCED MONOPOLES

In our treatment we avoided induced monopole terms in the
effective theory, i.e., terms of the form

1

2

∑
a

C(0)
a h2(ra), (D1)

since the field of these charges—each proportional to log |r −
ra|—violates square integrability of its gradient in R2. Such
terms would describe particles with frozen vertical fluctua-
tions. We will discuss a possible work-around for this issue.

Consider the regularized free-surface Hamiltonian

H[h] = 1

2
σ

∫
d2r

(
h2

i + λ−2h2
)
, (D2)

which approaches the tension Hamiltonian (2) in the limit
of large λ. For an interface between two fluids subject to
gravity (horizontal in its unperturbed state), λ is the capillary
length and is given by λ = √

σ/gρ, where g and ρ are the
gravitational acceleration and mass density difference between
the fluids, respectively. The addition of the “mass” term damps
correlations over distances larger than λ, hence regularizing the
infrared divergence of monopole fields. The Green function for
this choice of surface energy is

G(r,r ′) = 1

2π
K0(|r − r ′|/λ), (D3)

instead of (−1/2π ) log |r − r ′|, where K0(x) is a modified
Bessel function of the second kind. After this regularization,
we can safely consider particles that are completely pinned.

The effective theory of such particles involves the same
induced charges as before, Eq. (15), with the addition of the
monopole (� = 0) terms (D1). The reader could object that,
with the new choice of kernel, there may be new terms such
as h2

ii or hijkkhij , etc., but these terms can be eliminated using
the equation of motion, (−∇2 + λ−2)h = 0 (for a proof, see
e.g., Ref. [20]). The matching of the polarizability coefficients
is done similarly by comparing the response of the induced
charges to backgrounds of the form hbg = αr� cos �ϕ in the

full and effective theories. One finds

δhfull(r) = − R�

K�(R/λ)
K�(r/λ) cos �ϕ (D4)

and

δheff(r) = −C�

σ

�!

2πλ�
K�(r/λ) cos �ϕ, (D5)

respectively, yielding

C(�) = 2πR�λ�σ

�!K�(R/λ)
. (D6)

Expanding the Bessel functions, one observes that for � > 0
these polarizabilities converge to those in Eq. (14) as λ → ∞,
whereas the massless limit of the monopole polarizability is

C(0) → − 2πσ

log
(

eγ R
2λ

) as λ → ∞, (D7)

where γ is the Euler-Mascheroni constant.
We observe that the monopole polarizability vanishes

like 1/ log(R/λ) in the massless limit of infinite capillary
length that we eventually want to take. This means diagrams
involving monopoles could vanish as well, unless every
factor of 1/ log(R/λ) due to a monopole polarizability is
canceled by a similar factor in the numerator. Factors of
this form indeed exist: They come from monopole-monopole
links in the propagator product, since in the massless limit
G(r) = −(1/2π ) log(eγ r/2λ). Due to the closed topology of
the diagrams, there are enough monopole-monopole links to
balance the vanishing monopole polarizabilities only when
there are no higher-order multipoles in the diagram; replac-
ing one monopole polarizability in the diagram costs two
monopole-monopole links. In other words, the only monopole
interactions that do not vanish in the massless limit are
those with other induced monopoles and nothing else. This
elucidates and generalizes the findings of Lehle and Oettel
that monopole-dipole and monopole-quadrupole interactions
indeed vanish [8].

We can now write the pair interaction between two pinned
particles, on a capillary surface for which the capillary length
tends to infinity. The interaction will consist of Eq. (23)
due to induced multipoles of order � > 0 and, based on the
discussion of the previous paragraph, a part βF mon that is due
solely to monopole polarizabilities. Observe that in the latter,
propagators do not carry any derivatives, and therefore all the
cumulants are of the same order in the interparticle separation.
Hence, all cumulants must be summed for the monopole
interactions. To evaluate this, one can refer to Eq. (22), keeping
in mind that there is no sum over multipole orders �i now; only
the monopoles are taken. Assuming identical particle radii R

to declutter expressions, one finds

βF mon = −1

2

∞∑
s=1

1

s

[
C(0)G(r)

σ

]2s

= −1

2

∞∑
s=1

1

s

[
K0(r/λ)

K0(R/λ)

]2s

. (D8)
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Owing to the damping of the regularized theory, this series
converges for all r (�λ → ∞) to

βF mon = 1

2
log

[
1 − K2

0 (r/λ)

K2
0 (R/λ)

]

= 1

2
log[K0(R/λ) − K0(r/λ)]

+ 1

2
log [K0(R/λ) + K0(r/λ)] + const. (D9)

When the massless limit λ → ∞ is taken, the first term on the
right-hand side of the last equality gives

βF mon = 1

2
log log

r

R
, (D10)

in agreement with Ref. [8]. The second term is propor-
tional to log log(λ2/Rr), which is associated with a force
∼ 1/r log(Rr/λ2) → 0 as λ → ∞. We note that extension to
particles of unequal radii results in the change R → √

R1R2

in Eq. (D10).
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