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Phase transitions in the first-passage time of scale-invariant correlated processes
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A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The statistical
properties of FPT depend on the specifics of the underlying system dynamics. We present a unified approach to
account for the diversity of statistical behaviors of FPT observed in real-world systems. We find three distinct
regimes, separated by two transition points, with fundamentally different behavior for FPT as a function of
increasing strength of the correlations in the system dynamics: stretched exponential, power-law, and saturation
regimes. In the saturation regime, the average length of FPT diverges proportionally to the system size, with
important implications for understanding electronic delocalization in one-dimensional correlated-disordered
systems.
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I. INTRODUCTION

The dynamics of various complex systems are traditionally
investigated by mapping them onto one-dimensional (1D)
generalized random walks. The fundamental characteristics
of random walks are represented by the statistical properties
of first-passage time (FPT) [1], e.g., the functional form of
its probability distribution and its average length. Empirical
studies have reported a variety of forms for the probability
distribution of FPT, including (i) pure exponential forms for
random uncorrelated processes [2]; (ii) stretched exponential
forms for a diverse group of natural and social complex
systems ranging from neuron firing [3], climate fluctuations
[4], or heartbeat dynamics [5], to Internet traffic [6,7] and
stock market activity [8,9]; and (iii) a power-law form for
certain on-off intermittency processes related to nonlinear
electronic circuits [10] and anomalous diffusion [11–14]. Such
diverse behavior is traditionally attributed to the specifics of the
individual system. Identifying common factors responsible for
similar behaviors of FPT across different systems has not been
a focus of investigations. Indeed, these systems exhibit differ-
ent scale-invariant long-range correlated behaviors, and how
the degree of correlations embedded in the system dynamics
relates to the statistical properties of FPT is not known. Here,
we hypothesize that correlations are the unifying factor behind
a class of complex systems of a diverse nature exhibiting
similar statistical properties for FPT, and conversely, systems
that belong to the same class of FPT properties possess a
comparable degree of correlations. We investigate how the
degree of correlations in the system dynamics affects key
properties of FPT—the shape of the probability distribution
P (�) and the FPT average length 〈�〉.

To investigate how the statistical properties of FPT depend
on the degree of correlations in processes with scale-invariant
dynamics, we use the inverse Fourier filtering method [15]
to generate fractal signals with zero mean, unit standard
deviation and the desired degree of long-range power-law
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correlations. The algorithm first generates a random signal
in real space, then Fourier transforms it to the frequency (f )
domain to obtain a white noise, multiplies this noise by a power
law of the type f −(2α−1)/2, and, finally, Fourier transforms
the signal back into real space. Correlations in the resulting
real-space signal are quantified by the exponent α, which, by
construction, corresponds to the detrended fluctuation analysis
(DFA) [16] scaling exponent (Fig. 1). The power spectrum
S(f ) of the resulting signal will be a power law of the
form S(f ) = 1/f β , with β = 2α − 1. Given such a one-to-one
relationship between the power spectrum exponent β and the
DFA exponent α, we could have chosen any of them as our
reference. However, we prefer to use as our reference the DFA
exponent α, since the DFA method has become the standard
when studying such long-range correlated time series [17–22],
and can also be applied to real-world nonstationary signals.
For uncorrelated random signals, α = 0.5; for anticorrelated
signals, α < 0.5; and for positively correlated signals, α > 0.5.
Processes with 0 < α < 1 are fractional Gaussian noises
(fGns) and processes with 1 < α < 2 are fractional Brownian
motions (fBms). In particular, α = 1.5 corresponds to the
classical random walk. We will consider processes with α

in the range 0 < α < 3, and for all such processes, the
length � of the FPT is defined as the distance between two
consecutive zero crossings of the process (Fig. 1). Although,
strictly speaking, the terminology of FPT is reserved for fBms
(1 < α < 2), we will use it in the whole range of α (0 < α < 3)
for simplicity.

II. FPT DISTRIBUTIONS

We obtain three different regimes [Fig. 2(a)] for the
probability density p(�) of the FPT length � depending on
the degree of correlations in the signal.

A. Stretched exponential regime

For α < 1, we find that the probability density p(�) behaves
like a stretched exponential,

p(�) ∼ exp[−(�/�0)ε]. (1)
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FIG. 1. (Color online) Examples of three scale-invariant pro-
cesses (solid black line), each of system size N = 29, and with
different degree of correlations as quantified by the scaling exponent α
obtained using the DFA method [16]. Increasing values of α indicate a
higher degree of correlations. The first-passage time (FPT), defined as
the interval � between two consecutive zero crossings of the process,
is indicated as segments of constant sign +1 or −1 (gray line). Note
the change in the profile of the processes with increasing correlations
leading to longer � and to a corresponding change in the statistics of
FPT.

The stretching parameter ε depends on α: for the well-known
case α = 0.5 (white noise), we find that ε = 1, corresponding
to a pure exponential behavior. For α < 0.5, we find that
ε > 1, and increases as α decreases. In this case, p(�) decays
faster than exponentially. For α > 0.5, we find that ε < 1, and
decreases as α increases. In this case, p(�) is a real stretched
exponential and the tail of p(�) becomes fatter as α increases.
This result matches experimental observations for a great
variety of phenomena [4,5,8,9] in this range of correlations,
and is in agreement also with previous works in which fractal
processes within this range of correlations are simulated and
studied, as in Ref. [4], where the general result ε = 2 − 2α is
numerically derived. Although the exact analytical derivation
of the stretched exponential behavior in this regime is lacking,

in Ref. [23], it was found that the stretched exponential form
is an upper bound for the zero-level crossings (or the FPTs, as
we name them here) in fGns, i.e., in the range 0 < α < 1.

B. Power-law tail regime

For 1 < α < 2, the model (1) is not valid, and we find that
p(�) behaves as

p(�) ∼ f (�)

�δ
, (2)

where the function f (�) only affects the short-scale regime
(small � values), and tends to an unimportant constant as �

increases. Actually, f (�) is responsible for the curvature of
p(�), which is appreciable at very short scales [Fig. 2(b)], and
prevents the power-law divergence of (2) in the limit of small
�. However, the tail of the distribution behaves as a power law
of exponent δ. We find numerically that the exponent δ and
the correlation exponent α are related by δ = 3 − α. These
results are in agreement with previous findings for the FPT
distribution in this regime: although the exact analytical form
of p(�) is unknown, scaling arguments presented in [10], and
a heuristic derivation shown in [12] based on results about the
maximum value of a fBm [24], lead to a tail behavior such as
the one in (2).

We find that the form of p(�) and the relation between
δ and α for the regime 1 < α < 2 generalize the particular
well-known result corresponding to the FPT distribution of a
random walk [2] (α = 1.5), where

p(�) ∼ e−a/�

�3/2
. (3)

For α = 1, corresponding to 1/f noise, we find a transition
between both regimes, where p(�) presents an intermediate
behavior and decays slower than (1) but faster than (2), as
shown in Fig. 2(b).

C. Saturation regime

For α > 2, we should obtain δ = 3 − α < 1, and in this
situation the probability density p(�) cannot be normalized in

FIG. 2. (Color online) (a) Cumulative probability distribution 1 − P (�) of FPT intervals � for scale-invariant processes with system size
N = 224 and different degree of correlations quantified by the scaling exponent α. (b) Probability density p(�) for small values of � for processes
close to the transition point α = 1. Dashed lines correspond to fittings with model (1) for α = 0.9, and with model (3) for α = 1.5.
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FIG. 3. (Color online) Probability densities p(�) for processes
with different α values in the saturation regime. The results corre-
spond to a system size of N = 214 and have been obtained with 105

realizations for each α value. The shaded rectangle corresponds to
the uniform distribution p(�) = 1/N .

the limit of large system size N . In this regime, p(�) flattens
for increasing α (Fig. 3) and tends to the constant probability
density p(�) = 1/N , shown with a shaded rectangle in Fig. 3.
However, finite-size effects are very important, and a peak at
� = N/2 appears in p(�), which becomes more pronounced as
α increases. In practice, many of the FPTs are of the order of the
system size and, correspondingly, the cumulative probability
1 − P (�) is essentially flat independently of α [Fig. 2(a)].

III. BEHAVIOR OF THE MEAN FPT

An important property that characterizes the distribution
P (�) is the average FPT, 〈�〉. The behavior of 〈�〉 as a function
of the system size N is also different in the three regimes
reported above (Fig. 4).

In the stretched exponential regime (α < 1), 〈�〉 tends
asymptotically to a finite constant value in the limit of large
system size N [Fig. 4(a)]. In this regime, the behavior of 〈�〉 as
a function of N is well fitted [Fig. 4(a)] by a model of the type

〈�〉 = 〈�〉∞
(

1 − 1

cNb

)
(4)

where b and c are positive constants, and 〈�〉∞ represents the
asymptotic value. Note that for increasing α, the convergence
to the asymptotic value 〈�〉∞ is slower with the system size
N , and the values of 〈�〉∞ also increase with α.

In the power-law tail regime (1 < α < 2), we find, in
contrast [Fig. 4(b)], that 〈�〉 diverges with the system size
N as a power law,

〈�〉 ∼ Nγ . (5)

This is in agreement with the fact that the tail of p(�) follows
a power law (2). Indeed, if (2) holds, then

〈�〉 =
∫ N

1
�p(�)d� ∼

∫ N

1
��−δd� ∼ N2−δ. (6)

FIG. 4. (Color online) (a) Convergent behavior of 〈�〉 as a function
of the system size N in the stretched exponential regime (α < 1).
Dashed lines represent fittings with (4). (b) Dependence of 〈�〉 on N

for scale-invariant processes with different correlations for the three
regimes we identified for P (�) in Fig. 2. Note that panel (a) is a
magnification of the bottom part of panel (b). Dashed lines in the
power-law tail regime correspond to power-law fittings 〈�〉 ∼ Nγ ,
with γ = α − 1.

Thus, γ = 2 − δ, and since δ = 3 − α, we obtain γ = α − 1.
Our numerical fits to the power laws in Fig. 4(b) provide γ

values in agreement with this relation.
A phase transition from a convergent to a divergent behavior

in the mean FPT 〈�〉 is observed at α = 1 (Fig. 4). At this
transition point, 〈�〉 neither converges to a finite value, as in
the stretched exponential regime, nor diverges as a power law
with N , as in the power-law tail regime. We find that 〈�〉
diverges logarithmically in the thermodynamic limit N → ∞:
〈�〉 ∼ log N .

In the saturation regime (α > 2), 〈�〉 also diverges with the
system size N as a power law, but with a constant exponent
γ = 1 for all α values [Fig. 4(b)], i.e., 〈�〉 ∼ N . Note that 〈�〉
cannot grow faster than the system size N , thus precluding
γ > 1 values.

At the transition point between the power-law tail and the
saturation regime (α = 2), we find that 〈�〉 ∼ N/ log N . This
behavior is intermediate between both regimes: 〈�〉 increases
faster than any power law with γ < 1, but slower than a power
law with γ = 1 [Fig. 4(b)].
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FIG. 5. (Color online) Phase diagram of the transitions from
stretched exponential to power-law tail to saturation regime. Symbols
correspond to numerical results, and the dashed line corresponds to
the curve γ = α − 1. For α < 1 (left panel), the order parameter is
the asymptotic value 〈�〉∞ [Fig. 3(a)], while for α > 1 (right panel),
the order parameter is the exponent γ of Eq. (5).

The behavior of 〈�〉 in the thermodynamic limit can be
summarized in a phase diagram as shown in Fig. 5. In the
stretched exponential regime (left panel in Fig. 5), where 〈�〉
converges in the thermodynamic limit, the natural choice of the
order parameter is the asymptotic value 〈�〉∞, which increases
with α and diverges when α → 1−. In the other two regimes
(right panel in Fig. 5), as 〈�〉 diverges with N as 〈�〉 ∼ Nγ , a
convenient order parameter to describe the behavior of 〈�〉 is
the exponent γ , which tends to zero as α → 1+ and converges
to γ = 1 as α → 2−. In the saturation regime α > 2, the order
parameter remains constant: γ = 1. The main properties of 〈�〉
and the probability density p(�) in the three regimes are also
summarized in Table I.

The results we obtain for the behavior of 〈�〉 in the three
regimes can also be understood in terms of the finite-size
effects of the distribution P (�) (Fig. 6). For processes with
α < 1, P (�) is essentially independent of the system size
N . Thus, the mean FPT 〈�〉 is well defined and, for large
enough N , there are no appreciable size effects, giving rise to a
finite asymptotic value 〈�〉∞ [Fig. 4(a)]. At the transition point
α = 1, where the 〈�〉 diverges logarithmically [Fig. 4(a)], the
system-size effects on P (�) become more pronounced (Fig.
6, middle panel). Above the transition point α > 1, for any
finite realization, there is a cutoff in the power-law tail of
P (�) which scales with the system size N (Fig. 6, bottom
panel), ensuring the power-law tail of the distribution even in
the thermodynamic limit N → ∞, and thus 〈�〉 diverges as a
power law of N [Fig. 4(b)].

FIG. 6. (Color online) Dependence of the cumulative distribu-
tions 1 − P (�) on the system size N . The transition from the stretched
exponential to the power-law regime is stable and independent of N .
The distributions shown in all panels are obtained by Monte Carlo
simulations with 232/N realizations.

Another important quantity related to the dependence of the
FPT statistics with the system size N is the average number
of FPT segments, 〈n〉. Segments are defined as continuous
parts of the process with constant sign, the borders of which
are the zero crossings (Fig. 1). We find that the behavior of
〈n〉 in the three regimes (not shown) is essentially the inverse
of 〈�〉: in the stretched exponential regime, 〈n〉 diverges as
〈n〉 ∼ N independently of α. In the power-law tail regime, 〈n〉
diverges more slowly 〈n〉 ∼ Nλ, where the exponent λ = 2 −
α decreases when α → 2−. Finally, in the saturation regime
(α > 2), 〈n〉 converges with N → ∞ to an asymptotic constant
value 〈n〉∞, which decreases with increasing α.

In conclusion, correlations can be seen as the unifying
factor controlling the statistical properties of FPTs in a large
class of fractal processes, irrespective of the specifics of the
particular dynamical system considered. When correlations
are in the range α < 1 (such as in climate records [4] or
stock market activity [8,9]), FPTs probability density p(�)
behaves as stretched exponentials, with a finite mean value
even for diverging system sizes. In contrast, when correlations
are in the range 1 < α < 2, as, for example, in anomalous
diffusion processes [11–14], p(�) follows a power law in the
tail, p(�) ∼ �−δ with δ = 3 − α, generalizing the results for
the classical random walk (α = 3/2), for which δ = 3/2. In
this case, the FPT mean value increases as a power law of the

TABLE I. Properties of the probability density p(�) and the average FPT length 〈�〉 in the three different
regimes that we find as a function of the DFA correlation exponent α.

α p(�) 〈�〉
Regime I (stretched exp.) ∼exp[−(�/�0)2−2α] limN→∞〈�〉 = 〈�〉∞, constant for fixed α

0 < α < 1 〈�〉∞ increases with α

Regime II (power-law tail) ∼1/�3−α ∼Nα−1

1 < α < 2

Regime III (saturation) flattens with α ∼N

2 < α < 3 strong size effects at � = N/2
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system size with an exponent smaller than one. For the case of
processes with extreme correlations (2 < α < 3), which can
be seen as integrations of fBms, the probability densities p(�)
are essentially flat, and the FPT mean value diverges with the
system size.

IV. IMPLICATIONS TO CORRELATED-DISORDERED
SYSTEMS

The results obtained here are closely related to the behavior
of binary signals: a standard technique to generate binary
correlated fractal processes is to simply consider the sign of
the underlying continuous fractal process. In this way, binary
sequences are obtained that are composed of segments of only
two possible values, either +1 or −1. The sizes of these
segments are the FPTs of the original signal (Fig. 1). This
kind of binary sequence occurs in systems of diverse nature,
such as seismic signals [25], membrane transport [26], DNA
chains [19,27], and disordered binary solids [28,29].

In particular, our findings for the statistical properties
of FPTs can explain earlier observations for the electronic
properties of correlated 1D disordered systems. It has been
observed that the strength of the long-range correlations
in such systems can control their electronic properties, as
the localization length [30–32] or the level statistics [33].
For 1D binary systems, α = 0.5 corresponds to the random
binary alloy [34], where the electronic states are exponentially
localized. However, when positive correlations (α > 0.5)
are introduced in binary systems, a delocalization effect is
observed [29]. This latter effect can be understood in terms of
our results presented here, as we explain below.

In 1D binary systems, the FPTs correspond to the sizes of
ordered regions —patches with the same type of atoms. Since
electrons are typically able to move within these patches, we
expect the average localization length 〈λ〉 to be proportional
to the average patch size 〈�〉: 〈λ〉 ∼ 〈�〉. Therefore, in the
stretched exponential regime α < 1, the localization length
〈λ〉 ∼ 〈�〉∞ is essentially constant and independent of the
system size N , which is a typical feature of localized
electrons in disordered systems corresponding to insulating
behavior [29]. In the power-law tail regime (1 < α < 2), we
expect 〈λ〉 ∼ Nγ , where γ = α − 1. Since the localization
length increases as a power law of the system size N , there
is a correlation-induced delocalization effect. However, the
fraction of the system occupied by the state, 〈λ〉/N , behaves
as 〈λ〉/N ∼ Nα−2 and tends to zero (1 < α < 2) in the ther-
modynamic limit, i.e., the wave functions are still localized.

In contrast, in the saturation regime α > 2, we find � ∼ N

[Fig. 3(b)]. In this case, the system consists of a finite number
of patches 〈n〉∞, which is independent of the system size N ,
and the patches are macroscopically large in the thermody-
namic limit, N → ∞. In this regime, we expect 〈λ〉 ∼ N , and
the electronic wave function to be extended (typically within
one of the macroscopic patches), giving rise to a conducting
behavior. Thus, at the critical point α = 2, we expect a
transition from a localized to an extended electronic behavior.

Such a localized-extended transition was presented in [29],
where the localization length λ as a function of the corre-
lations present in the binary sequence was studied. In [29],
correlations were measured with the DFA scaling exponent

FIG. 7. (Color online) We show the DFA scaling exponent αbinary

(red circles) obtained in binary sequences mapped from real-valued
long-range correlated processes as a function of the α values of the
latter. For the case α > 2, we also show the asymptotic average
number of patches (black squares) forming the system, 〈n〉∞ (right
axis). All the numerical results have been obtained for a system size
of N = 222, and with 1024 realizations. The vertical dotted lines
show the transition between the three different regimes, at α = 1 and
α = 2. The horizontal dashed line close to αbinary = 1.5 corresponds
to αbinary = 1.45, and is the value reported in [29] at which a
metal-insulator transition was observed. Note how the dependence
of αbinary on α is different in the three regimes presented here.

calculated directly in the binary sequences (αbinary), and not
with the scaling exponent α of the underlying continuous
fractal process. The transition presented in [29] was reported to
occur at αbinary � 1.45, and was interpreted as a metal-insulator
transition driven by the degree of correlations in disordered
1D binary systems, which is in contradiction to the Anderson
localization theory that asserts that 1D disordered solids can
behave only as insulators.

However, a value of αbinary � 1.45 as measured by the DFA
method in the binary sequence corresponds to a value of α = 2
that is embedded in the underlying continuous fractal process
from which the binary sequence has been obtained (Fig. 7).
Thus, the critical point reported in [29] corresponds to the
transition presented here at α = 2 from the power law to
the saturation regime (Fig. 5), and thus the conducting phase
reported in [29] obtained for αbinary > 1.45 corresponds to the
saturation regime presented here (α > 2), where the system is
actually not disordered but is composed of a finite and fixed
number (〈n∞〉; see Fig. 7) of patches, which will be macroscop-
ically large in the thermodynamic limit, giving rise to an or-
dered state with conducting behavior. Therefore, at the critical
point α = 2 (or αbinary = 1.45), the system is not a disordered
system undergoing an insulator-metal transition driven by the
correlations (as claimed in [29]), but a system which undergoes
a disordered-ordered transition driven by the correlations.
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