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Impact of boundaries on fully connected random geometric networks
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Many complex networks exhibit a percolation transition involving a macroscopic connected component, with
universal features largely independent of the microscopic model and the macroscopic domain geometry. In
contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary,
but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of
networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full
connectivity for diverse geometries in arbitrary dimension.
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I. INTRODUCTION

Random geometric network models [1,2] comprise a
collection of entities called nodes embedded in a region of
typically two or three dimensions, together with connecting
links between pairs of nodes that exist with a probability
related to the node locations. They appear in numerous
complex systems including in nanoscience [3], epidemiology
[4,5], forest fires [6], social networks [7,8], and wireless
communications [9–11]. Such networks exhibit a general
phenomenon called percolation [12,13], where at a critical
connection probability (controlled by the node density), the
largest connected component (cluster) of the network jumps
abruptly from being independent of system size (microscopic)
to being proportional to system size (macroscopic).

Percolation phenomena are closely related to thermody-
namic phase transitions where the number of nodes N goes to
infinity and the critical percolation density ρc is largely inde-
pendent of the system size, shape, and of the microscopic de-
tails of the model; the phenomenon of universality. At the crit-
ical point, conformal invariance in two-dimensional networks
leads to detailed expressions for the probability of a connection
across general regions [14] and more general connections with
conformal field theory [15] and Schramm-Loewner evolution
[16]. Here, we take a different approach and are concerned
with finite networks and with questions related to percolation,
but fundamentally different: What node density ensures a
specified probability Pf c that the entire network is a single
connected component (cluster), that is, fully connected? How
is this probability affected by the shape of the network domain?

These questions are crucial for many applications, in-
cluding, for example, the design of reliable wireless mesh
networks. These consist of communication devices (the nodes)
that pass messages to each other via other nodes rather
than a central router. This allows the network to operate
seamlessly over a large area, even when nodes are moved
or deactivated. A fully connected network means that every
node can communicate with every other node through direct
or indirect connections. Mesh networks have been developed
for many communication systems, including laptops, power
distribution (“smart grid”) technologies, vehicles for road
safety or environmental monitoring, and robots in hazardous
locations such as factories, mines, and disaster areas [10].

For many applications of random geometric networks
including those above, the direct connection between two
nodes i and j can be well described by a probability Hij =
H (rij ), a given function of the distance between the nodes
rij = |ri − rj |. Often, the nodes are mobile or otherwise not
located in advance, hence we assume N uniformly distributed
nodes confined in a specified d-dimensional region V with
area (d = 2) or volume (d = 3) denoted by V . The node
density is then defined as ρ = N/V . For reference, we will
later take H (rij ) = exp[−(rij /r0)η], where r0 is a relevant
length scale, and η determines the sharpness of the cutoff.
Note that when η → ∞ a step function corresponding to the
popular unit disk deterministic model [17] is obtained, where
connections have a fixed range r0. Our derivation, however, is
completely general and only requires that Hij is sufficiently
short-ranged compared to system size. Using this as a basis,
we find that, contrary to common belief and practice, the
geometrical details of the confined space boundaries (corners,
edges, and faces) dominate the properties of the percolation
transition. Moreover, the short-range nature of Hij allows us to
separate individual boundary components and obtain analytic
expressions for Pf c at high densities as a sum over their
contributions. We confirm this through computer simulations
and argue that the substantial improvement offered by our
main result Eq. (7) can be used to predict, control, optimize, or
even set benchmarks for achieving full network connectivity
in a wide variety of suitable models and applications involving
finite size geometries.

II. FULL CONNECTION PROBABILITY

As in conventional continuum percolation theory [18],
we start by utilizing a cluster expansion approach [19] to
derive a systematic perturbative method for determining the
full connection probability Pf c as a function of density ρ.
Formulation of the expansion can be summarized as follows.
The probability of two nodes being connected (or not) leads to
the trivial identity 1 ≡ Hij + (1 − Hij ). Multiplying over all
links expresses the probabilities Hg of all 2N(N−1)/2 possible
graphs g,

1 =
∏
i<j

[Hij + (1 − Hij )] ≡
∑

g

Hg. (1)
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Collecting the terms according to largest cluster size we get

1 =
∑
g∈GN

Hg +
∑

g∈GN−1

Hg + . . . +
∑
g∈G1

Hg, (2)

where Gn is the set of all possible graphs with the largest
cluster of size n ∈ {1, . . . ,N}. The first term on the right-hand
side is the probability of being fully connected given a
specific configuration of nodes. The average over all random
configurations 〈〉 ≡ V −N

∫
V dNr of this quantity is thus the

overall probability of obtaining a fully connected network
Pf c. Moreover, the main idea conveyed by Eq. (2) is that
at high densities, full connectivity is most likely to be broken
by a single isolated node (the GN−1 term); this is sufficient
detail for most applications. Further corrections incorporate
the probability of several isolated single nodes and smaller
clusters of nodes, for which a systematic expansion can be
developed [20].

Averaging Eq. (2) over all configurations and noting that to
leading order the N − 1 cluster is fully connected, and that all
nodes are identical, the first-order approximation becomes

Pf c ≈ 1 −
〈 ∑

g∈GN−1

Hg

〉

= 1 − N

〈
N∏

j=2

(1 − H1j )

〉
(3)

= 1 − ρ

∫
V

(
1 − M(r1)

V

)N−1

dr1,

where the “connectivity mass” accessible from a node placed
at r1 is given by

M(r1) =
∫
V

H (r12)dr2. (4)

Assuming that the volume V 	 ρM(r1)2 for any r1, which
is reasonable if the system is significantly larger than r0 at
moderate densities and that the number of nodes N is large,
Eq. (3) simplifies to

Pf c ≈ 1 − ρ

∫
V

e−ρM(r1)dr1. (5)

This equation is equivalent to Eq. (8) in Mao and
Anderson [21], which was derived for the specific case
of a square domain. Following numerous studies by
probabilists and engineers [1,2], these authors, however,
assumed an exponential scaling of system size V with
ρ which essentially renders boundary effects negligible.
Scaling the system in such a way is a common approach as it
corresponds to the limit of infinite density at fixed connection
probability, however, in practice this limit is approached only
for unphysically large volumes. In contrast, we do not assume
the exponential growth of V , and also consider far more
general geometries in any dimension d � 1.

Without an exponentially growing volume V , the behavior
of the full connection probability at high densities is qualita-
tively different: It is controlled by the exponential in Eq. (5),
and hence node positions r1 where the connectivity mass is
small, that is, near the boundary of V . Thus in contrast to the
usual situation in statistical mechanics, the boundaries (and

FIG. 1. (Color online) Isolated nodes shown as black balls
concentrate at the boundaries of the domain and particularly near
corners at higher densities. Nodes are placed randomly in a cube, with
lighter colors indicating a higher probability of being in the largest
connected component. We use η = 2, while the side length of the
cube is L = 10r0. There are 500 nodes in (a) and 700 nodes in (b).

in particular corners) are important, and we will see they in
fact dominate. We illustrate this in Fig. 1 where nodes are
placed randomly inside a cube and an average over a large
number of possible graphs gives the connectivity of each
node. Notice that isolated and hard-to-connect nodes shown as
dark balls concentrate near the boundaries of the domain and
particularly near corners at higher densities. This observation
forms the basis of our work, and has led to a radically different
understanding of connectivity in confined geometries which
we now detail further.

III. BOUNDARY EFFECTS

The contributions to the integrals in Eq. (5) come from
r1 at boundary components B ⊂ V of dimension dB , for
example, the bulk, the faces, and right angled edges and
corners of a cube, with dB = 3,2,1, and 0, respectively. The
short-range nature of Hij allows us to isolate each boundary
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component, while to leading order the connectivity mass splits
into independent radial and angular integrals, depending only
on the local geometry of B and hence

MB = M(rB) = ωB

∫ ∞

0
H (r)rd−1dr, (6)

where ωB is the angle (d = 2) or solid angle (d = 3) subtended
by B. For example, if rB is near a corner of the cube then
ωB = (4π )/8, while near an edge ωB = (4π )/4, near faces
ωB = (4π )/2 and ωB = (4π ) for the bulk interior. Hence, from
Eq. (5) we see that corner contributions to Pf c as a function of
ρ are exponentially larger than edge contributions which are
themselves exponentially larger than face contributions and so
on. This simple argument shows that the dominant contribution
to Pf c at high densities comes from the “pointiest” corners.

Expanding H (r12) about r2 near the corresponding bound-
ary component we obtain a next-to-leading-order expansion
for M(rB) which we can then use to approximately evaluate the
integral in Eq. (5). Ignoring exponentially smaller correction
terms and combining all boundary contributions we arrive at
our main result

Pf c ≈ 1 − ρ
∑
B

GBVBe−ρMB , (7)

where VB is the dB-dimensional “volume” of each component
(equal to 1 in the case of a zero-dimensional corner and V

when dB = d), GB is a geometrical factor depending on B

and implicitly on H and MB is as in Eq. (6); see the examples
below. Notice that Eq. (7) is completely general as we have
only assumed a short-ranged Hij and not used its specific
form. Moreover, it also does not depend on using Euclidean
distance and holds in any dimension d � 1 and geometry
where the lack of connectivity is dominated by a situation
involving an N − 1 cluster and a single disconnected node.
Hence Eq. (7) is a powerful and useful multipurpose tool for
analyzing full network connectivity at high densities in a wide
variety of suitable models and applications involving finite size
geometries.

For example, in the context of single input single output
(SISO) wireless communication channels and a Rayleigh
fading model [22], information theory predicts H (rij ) =
exp[−(rij /r0)η] with η an environment and wavelength-
dependent decay parameter equal to 2 for free propagation,
increasing to η ≈ 4 for a cluttered environment, while r0

depends on the minimum outage rate threshold. For nodes
confined to a cube of side length L and η = 2 we find VB =
LdB , GB = (23−dB−1/πρr2

0 )3−dB , and MB = (r0
√

π )32dB−3

with contributions from each of the 8 corners, 12 edges, 6
faces, and bulk. However, the derivation is general: Once GB

and MB have been evaluated for these boundary components
(right angled edges, etc.) by standard asymptotic analysis of
the relevant integrals, they apply to any geometry with these
features and length scales significantly larger than r0. This
independence on the large-scale geometry follows from the
short-range nature of Hij and is a type of universality allowing
for the calculation of Pf c in complex high-dimensional
geometries without increased difficulty.

The substantial improvement offered by Eq. (7) becomes
clear when compared with the “bulk” contribution cor-
responding to the current conventional wisdom shown in

FIG. 2. (Color online) (a) Comparison of the full analytic pre-
diction of Eq. (7) (solid curve) with direct numerical simulation of
the random network in a cube of side length 7r0 (jagged curve). The
dashed line corresponds to the bulk contribution (previous theory). (b)
Contributions from the bulk (dotted blue line, left), faces (red line),
edges (yellow line), and corners (green line, right), together with the
total (solid blue line) and numerical simulation (black jagged curve),
showing the dominance of the corners at the highest densities and
good agreement between the theory and simulation at moderate to
high densities. Here it is convenient to plot the outage probability
Pout = 1 − Pf c.

Fig. 2(a) for a network confined to a cube. Figure 2(b) further
demonstrates the inaccuracy of the bulk model as well as the
benefits of including boundary effects when analyzing network
connectivity in confined geometries.

We can go beyond simple geometries restricted to right-
angled corners. Consider the case of a two-dimensional trian-
gle with general angles 0 < ωB < π . The relevant integrals for
this case come to MB = r2

0 ωB/2, with GB = 4/πρ2r2
0 sin ωB

for the corners and GB = (22−dB−1/πρr2
0 )2−dB for the edges

and bulk and can be generalized easily to higher dimensions.
Figure 3 shows two triangles chosen to have identical perime-
ters and areas; the connectivity at a given density differs only
due to the corner angles and agrees perfectly with the full
theory of Eq. (7). A bulk theory, even supplemented with edge
contributions, is clearly incapable of explaining the difference
between the connectivities of networks in these two triangles.
Moreover, such a situation motivates inverse problems, similar
to “hearing the shape of a drum” [23] by attempting to
determine the size and shape details of an unknown domain
containing a random network.

IV. DISCUSSION

An important aspect of the theory presented here is how
it affects the design of real life random geometric networks.
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FIG. 3. (Color online) Corner contributions in triangles with
equal area and perimeter: Comparison of theory with direct sim-
ulation, as in Fig. 2. The red triangle has side lengths of 26.88,
15.44, and 15.44 in units of the connectivity length scale r0, while
the blue triangle has side lengths of 8.40, 24.68, and 24.68. The black
dashed lines correspond to the equal bulk (left curve) and bulk + edge
(right curve) contributions while neglecting corner contributions. The
colored curves give the total (including crucial corner) contributions
for each triangle. Both theory and simulation are plotted, showing
excellent agreement with the numerical simulations (jagged curves)
which cover them completely for ρ > 4.

For wireless mesh networks, the lack of connectivity near
the boundaries can be mitigated by increasing the signal
power, the number of spatial channels, or by constructing a

hybrid network with a regular array of fixed nodes along the
boundaries as well as randomly placed nodes in the interior.
In each of these cases, the design can now be analyzed given
information about the cost and connectivity function H (r)
and of course the desired connectivity region. Conversely,
boundary effects can be harnessed to avoid full connectivity
if desired. For example, in the case of forest fires [6] we have
a prediction for the number of unburnt regions as a function
of the geometric landscape and environment parameters (for
example, angles between fire lanes and/or natural boundaries),
again given a specific model for connectivity that depends
on the type of vegetation, temperature, moisture content, and
so on. Similar models could be devised for the spread of
epidemics [4] or mobile phone viruses [11] where boundaries
are embedded in a more complex (possibly non-Euclidean)
space yet Hij is still short-ranged.

We examined connectivity in confined geometries and
illustrated the importance of the often neglected boundary
effects. We then derived a general high density expansion
Eq. (7) for the probability of full connectivity Pf c assuming
only a short-ranged connectivity function relative to system
size and showed that it displays universal features allowing
for its easy calculation in complex geometries. This we have
confirmed through computer simulations and argued that our
approach is well placed to facilitate efficiency in design
in a variety of physical applications ranging from wireless
networks to forest fire-lanes. Appropriate modifications of our
theory can aid the understanding of small boundary-dominated
systems such as, for example, the electrical conduction through
carbon nanotubes in a polymer matrix [3], but possibly
larger systems such as highly connected social and financial
networks [7,8].
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