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Dynamics of competitive learning: The role of updates and memory
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We examine the effects of memory and different updating paradigms in a game-theoretic model of competitive
learning, where agents are influenced in their choice of strategy by both the choices made by, and the consequent
success rates of, their immediate neighbors. We apply parallel and sequential updates in all possible combinations
to the two competing rules and find, typically, that the phase diagram of the model consists of a disordered phase
separating two ordered phases at coexistence. A major result is that the corresponding critical exponents belong
to the generalized universality class of the voter model. When the two strategies are distinct but not too different,
we find the expected linear-response behavior as a function of their difference. Finally, we look at the extreme
situation when a superior strategy, accompanied by a short memory of earlier outcomes, is pitted against its
inverse; interestingly, we find that a long memory of earlier outcomes can occasionally compensate for the choice
of a globally inferior strategy.
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I. INTRODUCTION

The modeling of social behavior is of increasing concern
to statistical physicists [1]. Studies of social and biological
systems often reveal that, even when the interactions of
a given individual are very localized in time and space,
collective, regular behavior can emerge: this is analogous to
the cooperative behavior manifested by emergent systems in
the natural world. Such social regularities may well take the
form of learning, when individuals adopt the behavior of other
individuals. From the perspective of game theory [2], this can
be seen as an adoption of a particular strategy, whose result
may or may not be associated with a favorable outcome. It
is then quite reasonable to expect that the effectiveness of
a strategy in yielding favorable outcomes should influence
how likely it is to persist and spread through the population;
the resulting ideas of strategic learning [3] have found wide
application, from economics [4] to cognitive science [5].

Against the backdrop of the above ideas, a model of
strategic learning was introduced in [6], with one of two
possible strategies (denoted as + and − in the remainder of
this paper) being available to each agent on a lattice: the agents
were referred to as “myopic” (aware only of their immediate
neighbors) and “memoryless” (unaware of their own and
others’ past outcomes) in the paper on technology diffusion [4]
that inspired the above model [6,7]. The question on which
this body of work has centered is: despite these handicaps, can
agents overall learn to use the superior one of two available
technologies? Briefly, each agent changes (or does not change)
strategy based on two elementary rules at every time step:
a majority-based rule, reflecting its tendency to align with
its local neighborhood, followed by a performance-based
rule, where the agent adopts the strategy that “wins” in its
neighborhood. This (relative) success is measured in terms of
outcomes, where the probability of a successful outcome for
strategy + (−) is p+ (p−). Also, the model of [6] added to the
description of [4] by endowing the agents with memory: those
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agents who make their choices on the basis of the last payoff
alone are adjudged to be memoryless (with a corresponding
parameter ε near one), while those who allow for memories
of earlier outcomes may make decisions that run counter to
immediate evidence (ε small).

Some related ideas have been examined in recent work.
For example, the issue of consensus formation in a model of
threshold learning [8] shows close analogies: in this model, the
competition between the “noisy” signals from the immediate
neighbors of an agent (cf. the majority rule in [6]) and
the acceptance threshold that agents require to change their
state (cf. the memory threshold in the performance-based rule
of [6]), determine the phase diagrams obtained. Recent studies
of coevolving Glauber dynamics on networks [9] are also
relevant, since the model of [6] can be viewed as a competition
between the Glauber dynamics of two sets of Ising spins,
corresponding to strategy and outcome, respectively.

In the current paper, we take all these ideas further. First,
we explore the effect of different updates. If new information
propagates sequentially through the network, and the arrow
of time is discernible in the decisions of individual agents,
are the global phase diagrams any different from what they
would be if information was transmitted and all decisions were
taken simultaneously? Common sense tells us that sequential
or parallel updates should make a difference to the nature of the
phase diagram, and the results of the present paper confirm this.
Also (unlike the work of [6,7], which examined the situation
at coexistence) we look in this paper at the effects of disparate
strategies (p+ �= p−). The final and possibly most important
issue is that of memory, which acts as a threshold governing
change [8]: what is the effect of the threshold ε, which tells
the agent that longer-term inputs are significant and need to be
considered when making a decision? We will find that, indeed,
a longer memory of earlier outcomes can sometimes make up
for the choice of a globally inferior strategy.

The plan of this paper is as follows. In Sec. II, we review the
model of [6]. In Sec. III, we discuss the behavior of the model
for a range of updating schemes, in the presence of memory.
In Sec. IV, we examine the behavior of the model away from
coexistence, as a function of distinct parameter values for the
two strategies; in particular we discuss here the role of memory.
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In the concluding section, we discuss our results and put them
in the context of other recent work in the field.

II. DEFINITION OF THE MODEL

The model of [6] involves two types of strategies, − and +,
where the + strategy is globally superior [4] to the − strategy.
As mentioned above, agents tend to follow the strategy adopted
by the majority of their neighbors, modifying this choice in a
second step (if necessary) according to which of these have
proved to be the most successful.

Assuming that the agents sit at the nodes of a d-dimensional
regular lattice with coordination number z = 2d, the efficiency
of an agent at site i is represented by an Ising spin variable:

ηi(t) =
{+1 if i is + at time t,
−1 if i is − at time t.

(1)

The evolution dynamics of the lattice is governed by two rules.
The first is a majority rule, which consists of the alignment of
an agent with the local field (created by its nearest neighbors)
acting upon it, according to

ηi(t + τ1) =
⎧⎨
⎩

+1 if hi(t) > 0,

±1 w.p. 1
2 if hi(t) = 0,

−1 if hi(t) < 0.

(2)

w.p. stands for with probability. Here, the local field

hi(t) =
∑
j(i)

ηj(t) (3)

is the sum of the efficiencies of the z neighboring agents j of site
i and τ1 is the associated time step. Next, a performance rule
is applied. This starts with the assignment of an outcome σi

(another Ising-like variable, with values of ±1 corresponding
to success and failure, respectively) to each site i, according to
the following rules:

if ηi(t) = +1,

then σi(t + τ2) =
{+1 w.p. p+
−1 w.p. 1 − p+,

if ηi(t) = −1,

then σi(t + τ2) =
{+1 w.p. p−
−1 w.p. 1 − p−,

(4)

where τ2 is the associated time step and p± are the probabilities
of having a successful outcome for the corresponding strategy.
With N+

i and N−
i denoting the total number of neighbors of a

site i who have adopted strategies + and −, respectively, and
I+
i (I−

i ) denoting the number of successful outcomes within
the set N+

i (N−
i ), the dynamical rules for site i are

if ηi(t) = +1 and
I+
i (t)

N+
i (t)

<
I−
i (t)

N−
i (t)

,

then ηi(t + τ3) =
{−1 w.p. ε+
+1 w.p. 1 − ε+,

if ηi(t) = −1 and
I−
i (t)

N−
i (t)

<
I+
i (t)

N+
i (t)

,

then ηi(t + τ3) =
{+1 w.p. ε−
−1 w.p. 1 − ε−.

(5)

Here, the ratios Ii (t)
Ni (t)

are nothing but the average payoffs
assigned by an agent to each of the two strategies in its
neighborhood at time t (assuming that success yields a payoff
of unity and failure, zero). Also, τ3 is the associated time
step and the parameters ε± are indicators of the memory
associated with each strategy. In their full generality, ε and
p are independent variables: the choice of a particular strategy
can be associated with either a short or a long memory.
However, we would like in this paper to answer a question
which was posed but not answered in [6]: can the presence
of a good memory compensate for the choice of an inferior
strategy? We therefore examine the extreme situation when a
globally superior strategy (p+ � p−), combined with a shorter
memory (ε+ � ε−), is in competition with its inverse: this is
the situation that will be studied in Sec. IV.

Setting the time scales

τ2 → 0, τ1 = τ3 = 1, (6)

the above steps of the performance rule are recast as effective
dynamical rules involving the efficiencies ηi(t) and the
associated local fields alone:

if ηi(t) = +1,

then ηi(t + 1) =
{+1 w.p. w+[hi(t)]

−1 w.p. 1 − w+[hi(t)],

if ηi(t) = −1,

then ηi(t + 1) =
{+1 w.p. w−[hi(t)]

−1 w.p. 1 − w−[hi(t)].
(7)

The effective transition probabilities w±(h) are evaluated by
enumerating the 2z possible realizations of the outcomes σj

of the neighboring sites i and weighing them appropriately.
For a 2-d square lattice, the possible local-field values at the
interfacial sites are 0 and ±2. The corresponding transition
probabilities for these field values are [6]

w+(+2) = 1 − ε+p−(1 − p3
+),

w−(+2) = ε−(1 − p−)[1 − (1 − p+)3],

w+(0) = 1 − ε+p−(1 − p+)(2 − p− − 2p+ + 3p−p+),
(8)

w−(0) = ε−p+(1 − p−)(2 − p+ − 2p− + 3p−p+),

w+(−2) = 1 − ε+(1 − p+)[1 − (1 − p−)3],

w−(−2) = ε−p+(1 − p3
−).

In [6], the model was explored at coexistence with an ordered
sequential update applied to memoryless agents [4]:

p+ = p−, ε+ = ε− = 1. (9)

In the present paper, we go beyond this in two different ways.
First, still at coexistence, we explore the effect of different
updates on the p − ε phase diagram of the model: next, we
examine the model away from coexistence, for distinct values
of p± and ε±. The basic quantities considered hereafter are
the magnetization M , staggered magnetization Mstag, and the
energy E. These quantities are defined for a finite sample of
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N agents (or sites) and Nz/2 bonds (or links) as

M = 1

N

∑
i

ηi,

E = 1

Nz

∑
ij

(1 − ηiηj ), (10)

Mstag = 2

N

∑
i

ηi if i is odd or even.

In the following we shall usually consider mean values 〈M〉,
〈E〉, and 〈Mstag〉.

III. EFFECT OF FINITE MEMORY AND OF
DIFFERENT UPDATES

We begin this section with a review of the physical
significance of updating schemes. Most generally, updates can
be random or ordered as follows:

(1) Random: Here, sites are chosen at random for the
consecutive application of rules.

(2) Ordered: Here, sites are chosen in an ordered fashion,
i.e., after choosing every (i, j )th site, the (i, j + 1)th site is
selected.

Since the sociological basis for this work was the
propagation of innovation through connected societies [4], we
choose to deal only with ordered updates here. However, even
ordered updates have two subclasses: parallel and sequential.
Assume a condition A such that, when an agent satisfies A, it
changes strategy:

(1) Sequential update: In this type of update, we check the
condition A on the (i, j )th site, then update the efficiency of
the site and proceed to the (i, j + 1)th site using the updated
value of the (i, j )th site.

(2) Parallel update: In this type of update, we check the
condition A on the (i, j )th site, do not update the site but
instead save the update decision in memory, and proceed to
the next site. Once the whole lattice is swept, all the saved
update decisions are implemented “simultaneously.”

The choice of different updates generally corresponds to
different physical situations: it has been shown that it also leads
to a disparity in the convergence time of the systems concerned
[10,11]. We therefore examine all possible combinations for
our two update rules: (1) parallel updates for both majority rule
and performance rules (PP), (2) parallel update for majority
rule and sequential update for performance rule (PS), (3)
sequential updates for both majority rule and performance
rules (SS), and (4) sequential update for majority rule and
parallel update for performance rule (SP).

In the following subsections, we explore the phase dynam-
ics at coexistence for each of these update rules in turn, for
both parameters p and ε. We state at the outset that all the
updates (except for the SP update) which we consider result
in models which are in the general university class of the
voter model [12]: the inverse energy 1/E(t) is thus always
proportional to the logarithm of time, ln t . When, as in the
case of the SS update, the value of the slope is exactly 2/π [6],
the exact universality class of the voter model is retrieved.

FIG. 1. (Color online) (SS update) Phase diagram of the model
with an SS update. Plot of the inverse energy 1/E(t) at time t = 512
for a square lattice of size N = 642 in the p-ε plane. The black
region shows the disordered phase and the yellowish (light gray)
region shows the frozen phase.

A. SS update

This is the update that was used throughout [6]; however
the phase behavior of the model was there only explored for
the parameter p, whereas here we extend it to the parameter ε.
In Fig. 1, we plot the inverse energy 1/E(t) in the p-ε plane at
time t = 512 for a square lattice of size N = 642. This phase
diagram shows clearly the existence of a disordered paramag-
netic phase embedded in a largely frozen phase elsewhere. The
disordered phase exists for pc1(= 0.56 ± 0.01) < p < pc2(=
0.70 ± 0.01) when ε � 0.980. Our results agree with those
of [6] for ε = 1, and we extend them all across the rest of the
p-ε plane. We mention here that the average time required to
reach consensus increases exponentially as p decreases in the
frozen phase, leading to the presence of striped states [13] at
limiting values of p. Figure 1 also makes it clear that the effect
of increasing memory wipes out the disordered phase: this is
as it should be, since the disordered phase is generated by
the competition between the majority and performance-based
rules, which is dulled by increasing memory.

Figure 2 shows snapshots of the dynamics of the model
using a lattice of size N = 5122 at times t = 8, 64, and 512
with random initial configurations and parameter values p =
0.72 (very close to the critical point pc2) and ε = 1.0. The plots
reveal characteristically voterlike [12] coarsening behavior.

In Fig. 3, we have plotted the inverse energy 1/E(t) against
the natural logarithm of time ln t for values of p around the
critical point pc2 = 0.70 ± 0.01. Each of the curves is obtained
by averaging over 200 independent samples of size 2562. At
the critical point, we obtain a straight line with a slope close to
2/π [6], a behavior characteristic of the exact voter model [12]
that corresponds to

E(t) ≈ π/2

ln t
. (11)

Similar behavior is obtained at the other critical point pc1, in
agreement with [6].

B. PP update

In this case, both environmental majority and performance-
based rules are applied using parallel updates. As we will see,
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FIG. 2. (Color online) (SS update) Snapshots of the dynamics
of the SS-updated model. Each plot is a portion (of size 1002) of a
square lattice of N = 2562 for p = 0.72 and ε = 1.0 at times t = 8
(top left), t = 64 (top right), and t = 512 (bottom).

although the universality class of the model is qualitatively
unchanged, this update results in the appearance of novel
ordered phases compared to the SS update. As before, we first
plot the phase diagram for all values of p and ε, then show
snapshots of the dynamics, and finally get a more quantitative
feel for the behavior of key quantities as a function of p.

Accordingly, Fig. 4 (top and bottom) shows plots of the
absolute values of magnetization |M| and staggered magneti-
zation |Mstag|, at time t = 512 for a lattice size N = 1002, in
the p-ε plane using PP updates. In these phase diagrams, we
see clear evidence of the existence of two distinct frozen phases
separated by a disordered phase. Looking along the line ε =
1, disorder prevails for pc1 < p < pc2 with pc1 = 0.43 ± 0.01
and pc2 = 0.57 ± 0.01. Notice the symmetry of the two critical
points about p = 0.5: we shall have more to say about this later
on.

2 3 4 5 6 7 8
ln t 

4

6

8

10

1/
E

(t
)

0.72

0.71

0.70

0.69

0.68

FIG. 3. (Color online) (SS update) Plot of the inverse energy
1/E(t) vs the natural logarithm of time ln t for different values of p

close to pc2 = 0.70, with ε set to 1.0. The lattice size N = 2562 and
the p values are indicated on the curves. The curve corresponding
to p = pc2 = 0.70 (shown in red) has slope 2/π approximately [see
Eq. (11)].

FIG. 4. (Color online) (PP update) Plot of the absolute value of
the magnetization |M| (top) and the absolute value of the staggered
magnetization |Mstag| (bottom) at time t = 512 for a lattice of N =
1002 in the p-ε plane. In the top figure, the yellowish (light gray)
region refers to the parallel frozen phase (PFP), while the black region
includes both the antiparallel frozen phase (AFP) and the disordered
region. In the bottom figure, the black region represents the disordered
phase characterized by very low |Mstag|.

For p below pc1, there is a frozen phase characterized by
overall alignment of spins: we call this the parallel frozen
phase (PFP). For p above pc2, the frozen phase that appears
is characterized by an antiparallel ordering of spins: we call
this the antiparallel frozen phase (AFP). We mention also that
in the AFP the lattice may have more than one antiparallel
domain, with thin frustrated chains running in between them.
This frustration can be attributed to the inability of the
different domains to align with each other under periodic
boundary conditions. The disturbances caused by these chains
(in quantities such as |M| or E) due to misalignment decrease
as 1/

√
N and also appear to vanish for large times. Again, we

notice that the phase transition disappears for low ε; in fact, at
very low values of ε the evolving lattice may get trapped into
striped states [13] at long times.

This can be understood as follows: the effect of a long
memory (ε small) strongly reduces the relative impact of the
performance-based rule. Depending on the value of ε, the
performance rule may not be effective for several time steps,
whereas the majority rule is implemented at every time step.
In the limit of vanishing ε, then only the (zero-temperature)
majority rule will be effective, leading to stripe formation as
predicted by [13] for this situation.

Figure 5 comprises snapshots of the dynamics of the model
for a 2d square lattice of size N = 5122 and at time t = 256,
with random initial configurations. The plots show a portion
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FIG. 5. (Color online) (PP update) Snapshots of the dynamics
of the PP-updated model on a square lattice, for p = 0.41 (left),
p = 0.50 (center), and p = 0.59 (right) at time t = 512, with ε = 1.0.
The yellow (light gray) and black colors represent the two strategies,
while the grayish grid corresponds to antiparallel arrangements of
yellow (light gray) and black. The left picture represents the PFP (see
text), the center picture represents the disordered phase, and the right
picture represents the AFP (see text).

of size 1002 of the square lattice for three values of p:
p = 0.41 (near the critical point pc1 between the PFP and
the paramagnetic phase), p = 0.50 (within the paramagnetic
phase), and p = 0.59 (near the critical point pc2 separating the
paramagnetic phase from the AFP), with ε = 1. The snapshot
at p = 0.41 shows the lattice evolving toward consensus
(parallel alignment) with the formation of domains of one
type only. The snapshot at p = 0.50 shows the lattice in its
disordered phase, while the one at p = 0.59 shows that the
nature of the lattice ordering is antiparallel.

To investigate this more quantitatively, we plot the absolute
value of magnetization |M|, the absolute value of staggered
magnetization |Mstag|, and energy E(t) against p, with ε = 1.0,
in Fig. 6. These measurements were recorded using a square
lattice of size N = 802 at time t = 106. All the curves are
averaged over 100 independent samples for each value of
p. In the region p � pc1, the values of magnetization |M|
and staggered magnetization |Mstag| are both equal to unity at
saturation, implying a parallel alignment of the sites, whereas,
for p above pc2, the magnetization |M| is zero and the
staggered magnetization |Mstag| equals unity at saturation,
indicating an antiparallel alignment of the sites. The energy
graph is consistent with this interpretation, given the definition
of the energy in Eq. (10): zero in the PFP, middling in the
paramagnetic phase, and unity in the AFP.

0 0.2 0.4 0.6 0.8 1p

0

0.2

0.4

0.6

0.8

1

| M
stag

 |

| M |
E

FIG. 6. (Color online) (PP update) Plot of the absolute value of
magnetization |M|, the absolute value of staggered magnetization
|Mstag|, and energy E against p, with ε = 1 and lattice size N = 802.
Each curve is drawn using symbols (and color) as indicated in the
legend.

1 2 3 4 5 6 7
ln (t)

2

2.5

3

3.5

4

4.5

5

1/
E

(t
)

0.41

0.42

0.43
0.44
0.45

FIG. 7. (Color online) (PP update) Plot of the inverse energy
1/E(t) vs ln t for different values of p close to pc1 = 0.43 and ε = 1,
for a lattice of size N = 1002. The p values are indicated on the
curves. The straight line corresponding to pc1 = 0.43 (shown in red)
has slope 1/2π approximately.

In order to confirm the voter-like nature of the critical
points, we plot the inverse energy 1/E(t) against the natural
logarithm of time ln t , choosing p values near both critical
points (see Figs. 7 and 8). Each curve is an average over 200
independent samples. Exactly at the critical points pc1 = 0.43
and pc2 = 0.57, a linear behavior of inverse energy with
respect to ln t is found, with slopes of 1/2π and −1/5π ,
respectively. While the critical exponents are those of the voter
model [12], the values of the slope are different from 2/π :
we find therefore that the PP update of the model belongs to
the universality class of the generalized, rather than the exact,
voter model [12].

To conclude this subsection: the main effect of the PP
update is to change the nature of the ordering in one of the
two frozen phases, so that antiparallel ordering is found in
the high-p frozen phase. As before, the effect of increasing
memory (going to low ε) is to smear out the phase transitions
to the disordered phase, by undermining the effect of the
outcome-based rule whose competition with the majority
rule causes the appearance of disorder. Such instances of
mixed domains have been found in recent work on coevolving

1 2 3 4 5 6 7
ln (t)

1.4

1.6

1.8

2

1/
E

(t
)

0.55

0.56

0.57

0.58

0.59

FIG. 8. (Color online) (PP update) Plot of the inverse energy
1/E(t) vs ln t for different values of p close to pc2 = 0.57, with
ε = 1, for a lattice of size N = 1002. The p values are indicated on
the curves. The straight line corresponding to pc2 = 0.57 (shown in
red) has slope −1/5π approximately.
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FIG. 9. (Color online) (PS update) Phase diagram in the p-ε plane
of the PS-updated model, with a plot of the absolute value of staggered
magnetization |Mstag| at time t = 512, for a lattice size of N = 1002.
The black region represents the disordered phase (very low |Mstag|),
while the yellowish (light gray) region represents frozen phases with
high |Mstag|.

(parallel) dynamics [9]; some features of these results also
appear in studies of threshold dynamics of societal systems [8].
For a real-life example of the AFP in the case of technology
diffusion, we cite the results of [14], where the authors
conclude that “in technology clusters where direct competitors
are right next door, leading firms generate innovations that are
technologically very distant from their neighbors” [14].

C. PS update

The behavior of the PS-updated model is qualitatively
similar to that of the PP-updated model above. Again, there
are two frozen phases PFP and AFP, separated by a disordered
phase: the values of the critical points pc1 and pc2 are however
shifted, such that the disordered region extends between
pc1 = 0.31 ± 0.01 and pc2 = 0.69 ± 0.01 at ε = 1.0. We find
once again that the two critical points are symmetrically placed
with respect to p = 0.5, as in the PP update: we will give an
argument for why this is so, in the following subsection.

To avoid repetition, we present only the phase diagram
for the staggered magnetization as a function of p and ε:
Fig. 9 shows the absolute value of the staggered magnetization
|Mstag| of the system at time t = 512 for a square lattice of
size N = 1002. The paramagnetic region, with low values of
|Mstag|, is colored black in the figure, whereas the frozen
regions (containing either parallel or antiparallel ordering)
with high values of |Mstag| are colored yellow (light gray).
These phases are investigated more quantitatively in Fig. 10,
where we plot the absolute value of magnetization |M|, energy
E, and the absolute value of staggered magnetization |Mstag|
against p, with ε equal to 1.0; each curve is an average over 100
independent runs. The region where both the magnetization
|M| and staggered magnetization |Mstag| curves saturate to
one corresponds to parallel alignment, whereas |M| ≈ 0 with
|Mstag| ≈ 1 implies an antiparallel alignment of the spin types.
The energy graph is consistent with this interpretation, given
the definition of the energy in Eq. (10): zero in the PFP,
middling in the paramagnetic phase, and unity in the AFP.

Finally, we present the variation of inverse energy with the
natural logarithm of time, ln t , near the critical points pc1

0 0.2 0.4 0.6 0.8 1p

0

0.2

0.4

0.6

0.8

1 | M
stag

 |

E
| M |

FIG. 10. (Color online) (PS update) Plot of the absolute value of
magnetization |M|, energy E, and the absolute value of staggered
magnetization |Mstag| against p with ε set to 1.0 for a lattice size N =
1002. Each curve is drawn using symbols (and color) as indicated in
the legend.

and pc2 in Figs. 11 and 12, respectively. Each of the curves
is an average over 200 independent runs. At criticality, both
plots show a linear proportionality between 1/E(t) and ln t ,
with slopes of 4/3π and −4/15π at pc1 = 0.31 and pc2 =
0.69, respectively. Again, this indicates that the PS update of
the model belongs to the generalized, rather than the exact,
universality class of the voter model [12].

To conclude, the PS update yields qualitatively similar
results to the PP update, with the appearance of two frozen
phases PFP and AFP. Again, small values of ε indicating
longer memories of outcomes lead to a smearing out of the
phase transition, because of the decreasing effectiveness of
the outcome-based rule.

D. Explanation of the nature of phase diagrams
for different updates

In this subsection, we give arguments for the three most
important features of the phase diagrams presented above: (1)
the appearance of antiparallel ordering in both PP and PS
updates, (2) the symmetry of the PFP and the AFP phases
in both PP and PS updates, and (3) the positioning of the
disordered phase in SS, PP, and PS updates.

1 2 3 4 5 6 7
ln (t)

2

4

6

8

1/
 E

(t
)

0.29

0.30

0.31

0.32
0.33

FIG. 11. (Color online) (PS update) Plot of the inverse energy
1/E(t) vs ln t for different values of p close to pc1 = 0.31, with ε set
to 1.0 for a lattice size N = 2562. The p values are indicated on the
curves. The straight line corresponding to pc1 = 0.31 (shown in red)
has a slope of approximately 4/3π .
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FIG. 12. (Color online) (PS update) Plot of the inverse energy
1/E(t) vs ln t for different values of p close to pc2 = 0.69, with ε set
to 1.0, for lattice size N = 2562. The p values are indicated on the
curves. The straight line corresponding to pc2 = 0.69 (shown in red)
has slope −4/15π approximately.

The clue which explains all of the above is the formation
of “active” or disparate bonds by the rules of the model
under different updates: these are clearly the units of an-
tiparallel ordering. Consider, thus, configurations where a
site is surrounded by a majority of its own kind: this would
correspond to a local field of +2 for a + and −2 for a
−. Here the majority of the bonds are “like” or “inactive.”
The transition probability for the increase of active bonds
from such configurations is 1 − w+(+2) [or 1 − w−(−2)] [see
Eq. (8)]. The transition probabilities for the decrease of active
bonds are given by an opposite scenario, yielding w−(+2)
[or w+(−2)] [see Eq. (8)]. We plot two of these transition
probabilities in Fig. 13, corresponding, respectively, to an
increase and a decrease of active bonds: the former peaks
at p = 0.63 while the latter peaks at p = 0.37.

The net probability of having active bonds is the difference
between these two transition probabilities and is plotted in
Fig. 14. We see from this that the probability of having active
bonds is greatest at p = 0.79 and least at p = 0.21. The last
ingredient that we need to explain the AFP phase in the PP
and PS updates is the fact that, once clusters with many active
bonds, i.e., antiparallel ordering, are formed, the majority rule
applied via the parallel update preserves such ordering. With
all this in place we see that, as expected, the AFP phase in
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w
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FIG. 13. (Color online) Transition probabilities [1 − w+(+2)]
drawn as a solid line [in green (gray)] and w−(+2) drawn as a dashed
line (in black) against p [from Eq. (8)].
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FIG. 14. (Color online) The difference in the transition probabil-
ities [1 − w+(+2)], with w−(+2) plotted against p [see Eq. (8)].

both PP and PS updates shows up in qualitatively the same
regions as predicted by Fig. 14, with a peak, in both cases,
at around p = 0.79. Correspondingly, the PFP in both PP and
PS updates shows up in the region predicted in this figure,
with a peak in both cases at around p = 0.21. Notice (Fig. 14)
that the peak and the dip in the probability of active bonds are
symmetric about p = 0.5, thus explaining the symmetry that
we have observed in Figs. 4 and 9; p = 0.5 is thus the natural
point for the appearance of the disordered phase in both PP and
PS updates, as will be confirmed by an inspection of Figs. 4,
9, and 14.

The only remaining point to be explained is the appearance
of the disordered phase in the SS update. In this case too,
the analysis leading to Fig. 14 for the probabilities of having
active bonds remains valid. However, the sequential update
of the majority rule always favors strictly parallel ordering,
so that typically clusters of active bonds are destroyed once
formed. When the probability of their formation is strongest,
i.e., at p = 0.63 (see Fig. 13), the competition between the
majority and outcome-based rules is at its most intense, and
a disordered phase may be expected to appear. Indeed, the
midpoint of the disordered phase for the SS update is shown in
Fig. 1 to be in exact agreement with this predicted peak, given
as it is by (pc1 + pc2)/2 = 0.63.

E. SP update

In the case of this update, the phase diagram, Fig. 15,
shows nothing but a frozen phase. As is evident from the
plot of inverse energy 1/E(t) versus ln t (Fig. 16), there is a
continuous increase in 1/E(t) for all values of p at ε = 1.0
(where the phase transition is expected to be the most visible).
This suggests that the two rules, majority and performance
based, do not compete with each other at all (this is what had
led to the appearance of the disordered phase in all the other
updates). We suggest that this might be because the sequential
update (with its more immediate conversions) in the case of the
majority rule completely dominates the slower parallel update
for the outcome-based rule: this in turn leads to an increasing
tendency for consensus, independent of the value of p, with
which our results are consistent.
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FIG. 15. (Color online) (SP update) Phase diagram of the SP-
updated model. Plot of the absolute value of magnetization |M| at
time t = 512 for lattice size N = 642 in the p-ε plane. No phase
transition is visible.

IV. AWAY FROM COEXISTENCE: WHEN STRATEGIES
ARE DISTINCT

Evidently, the real use of a competitive learning model
such as this one is when the agents have a choice of distinct
strategies. The full exploration of the behavior of the model
at coexistence as carried out in this paper as well as in earlier
work [6,7] was aimed at an understanding of its phase diagram.
However, in the exploration of the behavior of the model
away from coexistence, we hope to gain an understanding
of the relative importance of parameters such as superiority
of strategy (modeled by p) and memory (modeled by ε),
when these are in competition. The behavior in asymmetric
conditions (using p+ > p− and ε+ > ε−) is formulated in
terms of the application of two biasing “fields” [6]:

H = p+ − p−, B = ε+ − ε−, (12)

such that one strategy is favored over the other.
In the following subsection, we look at a linear-response

formulation of our question in terms of unequal p’s, viewed
as a biasing field, keeping ε the same for both strategies. In
the final subsection, we look at unequal strategies as well
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FIG. 16. (Color online) (SP update) Plot of the inverse energy
1/E(t) vs ln (t) for different values of p and ε = 1, for a lattice size
N = 2562. The value of p for each curve is given by a different color
as indicated. No phase transition is visible.
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FIG. 17. (Color online) (SS update) Plot of magnetization M

against biasing field H for different values of p. Each curve is drawn
using different symbols (and color) as shown in the legend, at time
t = 2000 with N = 1002 and ε = 1.0.

as unequal memories, to find out whether inferior strategies
applied with a good memory of past outcomes can win overall.

A. Linear-response theory: strategies with unequal p

Linear-response theory is premised on the basis that an
order parameter such as the magnetization undergoes a sharp
change in the neighborhood of a critical point. In both the
SS and PP updates of this model, there are two critical points
pc1 and pc2 separating a paramagnetic phase from two frozen
phases. In this subsection, we look at the linear-response
behavior of the model in the vicinity of both critical points,
starting from the disordered phase: clearly the response will
depend both on the value of p as well as on the value of
the biasing field H [defined in terms of the difference of the
p’s in Eq. (12)]. In the following, we examine the response
by choosing a given value of p and writing p± = p ± H/2,
keeping ε fixed.

We first consider the SS-updated model. Figure 17 shows a
plot for magnetization M against the biasing field H at various
values of p, that are within the paramagnetic phase at ε =
1.0. Each curve is obtained after averaging over 100 initial
configurations using a square lattice of size N = 1002. For
each p in the paramagnetic phase, we see a linear behavior
of M against H around H ∼ 0, with all subsequent increases
in the field strength leading to saturation, as expected. For a
given p value we observe a functional dependence of the form

M = tanh(bH ),

where

b ∝ (pcentral + p)2,

taking

pcentral = (pc1 + pc2)/2.

The quality of the fit to tanh(bH ) is seen Fig. 18: the black
fitting curve almost completely coincides with a sample curve
taken from Fig. 17.

These results also admit of an alternative representation,
shown in Fig. 19, where it is clear that the relative values of
the bias correspond to different regions of domination of each
strategy in phase space.
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FIG. 18. (Color online) (SS update) Plot of magnetization M

against field H for p = 0.58 and ε = 1.0 at time t = 2000 with
N = 1002. The fit of a tanh(bH ) curve almost completely overlaps
with our numerical results.

We next examine the linear-response behavior of the PP-
updated model, again in the vicinity of the two critical points.
Figure 20 is a plot showing the variation in magnetization
M along the field H for different p values at ε = 1.0. For
the lower values of p, in the vicinity of pc1, we see very
similar behavior to that presented in Fig. 17, corresponding to
an expected tanh(bH ) behavior as shown in Fig. 18: the PFP
phase lying to the left of pc1 is, after all, identical to the frozen
phases in the SS update. As we approach the vicinity of pc2,
the curves are markedly different: the nature of the ordered
phase is one that corresponds to magnetization values of 0
(see the orange curve drawn using plus symbols in Fig. 20),
which is again consistent with the AFP phase that lies to the
right of pc2.

To establish this more firmly we look at plots of the absolute
value of the staggered magnetization |Mstag| as a function of
bias H , in Fig. 21. The green (triangle), blue (square), and
black (plus) lines denote increasing values of p < pc2, where
the staggered magnetization increasingly approaches zero, as
expected in the disordered phase: however the red (star) line,
corresponding to p > pc2 shows an abrupt jump in the value
of |Mstag| to unity. Combined with the analysis of the previous
paragraph, this shows convincingly that the phase we refer to
as AFP indeed corresponds to antiparallel ordering.

FIG. 19. (Color online) (SS update) Plot of magnetization M in
the p+-p− plane at time t = 7000, for a lattice of size N = 1002 with
ε = 1.0. The + strategy dominates in the yellow (light gray) region,
while the − strategy dominates in the brown (black) region.
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FIG. 20. (Color online) (PP update) Plot of magnetization M

against field H for different values of p, each curve indicated by a
different symbol (and color) as shown in the legend, at time t = 2000
with N = 1002 and ε = 1.0.

We present below an alternative representation of the above
results for ease of visualization. In Fig. 22, the magnetization
M is plotted in the p+-p− plane: as before, the regions of
brown (black) [respectively, yellow (light gray)] correspond to
domination by − strategies (respectively, + strategies). Notice,
however, that the coexistence line has an island of very low
magnetization: in actual fact, this corresponds to the regions
of both the paramagnetic and AFP phase. This is clearer in
the plot of the absolute value of the staggered magnetization
|Mstag|, shown in Fig. 23, where the black portion of the island
along the coexistence line corresponds to the disordered phase,
while the faintly brown (gray) portion corresponds to the AFP.

These plots allow us to go beyond the previous analysis
in defining the domain of stability of the AFP phase: we see
clearly from Figs. 22 and 23 that the AFP phase exists for
p > pc2 only if the biasing field is within the bounds defined
by H = |p+ − p−| � 0.19 ± 0.02. In qualitative terms, this
implies that, at least in the absence of memory, when the two
strategies have nearly equal success rates, neighboring agents
may adopt different strategies [14] in equilibrium.

Having thoroughly investigated the linear-response regime
for the SS- and PP-updated models, we will now examine the
effect of the memory parameter ε in the next subsection.
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FIG. 21. (Color online) (PP update) Plot of the absolute value of
staggered magnetization |Mstag| against field H for different values
of p, each curve indicated by a different symbol (and color) as shown
in the legend, at time t = 2000 with N = 642 and ε = 1.0.
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FIG. 22. (Color online) (PP update) Plot of magnetization M in
the p+-p− plane for a lattice of size N = 1002 at time t = 7000,
with ε = 1.0. As before, the regions of + and − strategy domination
are colored yellow (light gray) and brown (black); the orange (gray)
region corresponds to both the paramagnetic and the AFP region (see
text).

B. Role of memory parameters: the case of unequal ε

The principal competition in this model is between two
strategies with different global success rates p, which deter-
mines the relative dominance of each one in phase space.
The memory parameter ε plays a more subtle role in this
competition: although it cannot be a determinant of phase
behavior in the way that the success rates are [as a consequence
of the rules elucidated in Eq. (8)], it can, as we will show, cause
a surprising change in the dominance of an ostensibly superior
strategy. In [6], it had been suggested that agents with inferior
strategies and good memories might indeed win against agents
who had better strategies but worse memories. Here, we will
make this prediction more quantitative.

The phase diagram of the model away from coexistence
involves four parameters, p±,ε±, so that its representation is
a nontrivial problem. In the following, we choose to fix p+
to 0.5 and to vary the other three parameters: a sample three-
dimensional plot is shown in Fig. 24. We analyze the three
visible faces in detail, before remarking on the phase behavior
within the cube: the color coding is such that green (gray)
represents dominance of + strategies, blue (black) represents

FIG. 23. (Color online) (PP update) Plot of staggered magneti-
zation |Mstag| in the p+-p− plane, for a lattice of size N = 1002 at
time t = 7000, with ε = 1.0. Here, yellow (light gray) represents the
region of parallel ordering, black represents the disordered phase, and
the light brown (gray) represents AFP order.

FIG. 24. (Color online) (PP update) A three-dimensional plot of
magnetization M with parameters ε+ (along x), ε− (along y) and
p− (along z), setting p+ = 0.50 for a lattice of size N = 642 at time
T = 2000. Green (gray) denotes the dominance of the +’s, while
blue (black) denotes that of the −’s. The other colors represent cases
of intermediate ordering.

dominance of − strategies, and other colors represent mixed
states:

(1) The leftmost face of the cube corresponds to the plane
ε+ = 0; this implies that the agents using + strategies will
never convert, no matter what the outcome-based rule says. The
minimum occupancy of + strategies for random configurations
should thus be of the order of N/2, which can only increase
depending on the conversions of agents using − strategies into
the camp of the +’s. The bottom line corresponds to p− = 0,
which is when such conversions are maximal (so that all N sites
are +): the green (light gray) color is at its most pronounced
here, changing gradually over to other colors only as ε− → 0
to the right of the line, when agents using − strategies too
begin to refuse to convert, irrespective of the outcome rules.
As the values of p− increase beyond 0.5 (the fixed value for
p+), we note that the dominance of the + strategy gradually
gives way to states with a mixture of strategies; when ε− → 0,
this tendency is at its most pronounced, while, when ε− → 1,
this is at its least pronounced, since local conversions can
sometimes go against global success rates.

(2) The front face of the cube corresponds to ε− = 0; this
implies that agents using − strategies will never convert, no
matter what the outcome-based rule says. This is a reflection
of the previous case, where the minimum number of − sites
is once again N/2, which can only be increased as the
conversions from the +’s add to it.

(3) The top face of the cube corresponds to p− = 1, where
globally a predominance of the − strategy is expected. This
is found over almost all the range of ε− except at low values
of ε+, where agents using the + strategy refuse to convert,
despite their globally poorer performance.

The interior of the cube can show markedly different
behavior, which we illustrate via a sample slice shown in
Fig. 25. In this figure, red (lower black) and blue (upper black)
regions correspond to the dominance of + and − strategies,
respectively. Here we set the value of p+ to 0.7 and look at
a slice of its phase space cube, as before: choosing ε+ to be
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FIG. 25. (Color online) (PP update) A three-dimensional plot of
magnetization M for the parameters ε+ (lying between 0.7 and 0.8),
ε− and p−, with p+ = 0.70, for a lattice of size N = 642 at time
T = 2000. The red (lower black) region represents the dominance
of the + strategy and the blue (upper black) region represents the
dominance of the − strategy. The green (light gray band) region
represents AFP.

between 0.7 and 0.8, we look at the dominating strategy as a
function of the variables ε− and p−. If the memory parameters
had not existed, we would have expected the − strategy
[blue (upper black) region in the figure] to predominate
only for p− > 0.7; the red (lower black) region would have
been covering the entire slice below this, corresponding to
the dominance of the + strategy. However, the reality is
rather different. The + strategy does indeed predominate for
p− < 0.7, provided that agents using the − strategy have
imperfect memory, but there is a striking predominance of
the − strategy (even for very low values of p−) provided that
the memory of the agents employing this strategy is much
better than those of the other kind (ε− � ε+).

A last feature to mention is the green (gray) region in
Fig. 25: here, there is a region of alternating + and − ordering
(AFP), corresponding to ongoing competition between the two
strategies. This phenomenon is most pronounced when the two
strategies are equally successful and are both accompanied by
weak memories of earlier outcomes. In Fig. 26, the structure
of the full AFP is shown (by selecting phase points with
low values of absolute magnetization |M| and high absolute
staggered magnetization |Mstag|) as a function of p− and ε±,
fixing p+ = 0.5.

V. DISCUSSION

The work of this paper extends work done on a problem
of strategic learning [6,7] which, although originally sug-
gested by a problem on technology diffusion [4], has much
wider ramifications (e.g., in relation to threshold learning
dynamics [8]).

In any agent-based modeling scheme, it is important to
know whether agents react sequentially or collectively to the
spread of information. Our results show that these issues make
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FIG. 26. (Color online) (PP update) A three-dimensional plot of
absolute staggered magnetization |Mstag| with parameters ε+(along
x), ε−(along y), and p−(along z) for p+ = 0.50 and lattice size N =
642, at time T = 2000. The graph delineates the region of AFP for
these parameter values.

a quantitative as well as a qualitative difference to the results,
changing not just exponents but also the entire nature of
the phase diagram in most cases. Given that, typically, the
propagation of technologies through well-connected societies
is of interest [4], we choose ordered rather than random updates
and examine the response of the model of [6] to all possible
combinations of sequential and parallel updating. From the
viewpoint of theoretical physics, a major result is that this
model is robustly in the universality class of the voter model
[12], for all but one of the updates. This strong relationship
with the voter model results from the model of [6,7] being
driven by interfacial noise alone, i.e., the absence of surface
tension [12].

Another major result, still to do with updates, is the
appearance of a phase of antiparallel ordering (AFP) in the
high-performing limits of p, for both the PP and the PS
updates. While the technicalities behind this are explained
in the text, we give here a more intuitive reason for this, from
the perspective of strategic learning. The parallel scheme can
be viewed as a more “equilibrated” update than the sequential
one, since it gives a chance for the entire lattice to be updated
“simultaneously.” It is then natural that in the regime that both
agents are high-performing they should be equally preferred:
this lies behind the “alternating” order inherent in the AFP
regime. By contrast, since the sequential paradigm corresponds
to a “nonequilibrium” update, where every agent responds to
the updated value of its neighbors, the above logic leads to
a disordered phase where every prescription of the outcome-
based rule is countermanded by the following majority rule.
Using once again the illustration of propagating technologies
[4], when all the populace have equal and simultaneous access
to information about two high-performing technologies, we
will see the coexistence of both [14] (as predicted by the AFP
phase), whereas when information about each one is passed
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on sequentially, the conflicting information so obtained can
result in sheer disorder. Finally, we mention here that our
investigation of different updates on this game-theoretic model
has been applied to related game-theoretic models of cognitive
learning and synaptic plasticity [15,16], where updates relate
to the directionality of synapses in a network.

Moving away from the domain of critical behavior at
coexistence, we have looked at the behavior of the competitive
learning model when the two strategies have distinct attributes
(this, after all, is truer to the title of competitive learning).
To begin with, we have examined the response of the model
to unequal strategies p±, and have found in general that
the smarter strategy wins (for equal values of the memory
parameter ε), as might be expected. An interesting feature is
that the region of antiparallel ordering (AFP) found earlier still
persists in the presence of bias, provided that the difference
in p is below a well-defined bound: in other words, when

two distinct strategies are almost equally successful, one will
typically find that they can coexist in society. Finally, we
have looked at the effect of memory: we have found that
while memory has a secondary role in determining the phase
behavior of the model, it has a particularly striking effect in
turning around the results of any bias in p. A major result of
our paper is thus that decisions based on a good memory of
earlier outcomes can, within limits, compensate for the choice
of inferior strategies.
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