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Counting statistics: A Feynman-Kac perspective
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By building upon a Feynman-Kac formalism, we assess the distribution of the number of collisions in a given
region for a broad class of discrete-time random walks in absorbing and nonabsorbing media. We derive the
evolution equation for the generating function of the number of collisions, and we complete our analysis by
examining the moments of the distribution and their relation to the walker equilibrium density. Some significant
applications are discussed in detail: in particular, we revisit the gambler’s ruin problem and generalize to random
walks with absorption the arcsine law for the number of collisions on the half-line.
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I. INTRODUCTION

Many physical processes can be described in terms of a
random walker evolving in the phase space [1–4], and one is
often interested in assessing the portion of time tV that the
system spends in a given region V of the explored space when
observed up to time t [5–13]. This is key to understanding the
dynamics of radiation transport, gas flows, research strategies,
or chemical andbiological species migration in living bodies,
just to name a few, the time spent in V being proportional to
the interaction of the particle with the target medium [14–20].

For Brownian motion, a celebrated approach to character-
izing the probability density of the residence time tV has been
provided by Kac (based on Feynman path integrals) in a series
of seminal papers, and later extended to Markov continuous-
time processes [21–24]. For a review, see, for instance, [25].
The Feynman-Kac formalism basically allows us to write down
the evolution equation for the moment generating function of
tV for arbitrary domains, initial conditions, and displacement
kernels. This approach has recently attracted a renewed interest
[26–33], and it has also been extended to non-Markovian
processes [10,34–36]. As a particular case, imposing leakage
boundary conditions leads to the formulation of first-passage
problems [5,6,37]. However, for those physical systems that
are intrinsically discrete, the natural variable is the number of
collisions nV in V when the process is observed up to the nth
step, rather than time tV [33,38–41]. When nV is large, we
can approximate the number of collisions in V by nV ∝ tV
(the so-called diffusion limit), but this simple proportionality
breaks down when V is small with respect to the typical step
size of the walker and/or the effects of absorption are not
negligible, so the diffusion limit is not attained [32,42].

In this paper, we derive a discrete Feynman-Kac equation
for the evolution of the probability generating function of nV

for a broad class of stochastic processes in absorbing and
nonabsorbing media, and we illustrate this approach by explic-
itly working out calculations for some significant examples,
such as the gambler’s ruin problem or the arcsine law. For the
arcsine law, in particular, the Feynman-Kac formulas allow
us to generalize the well-known Sparre Andersen results to
random walks with absorption. Our analysis of the counting
statistics is then completed by examining the moments of nV ,
which can also be obtained by building upon the Feynman-Kac
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formalism, and their asymptotic behavior when n is large.
In particular, we show that the asymptotic moments can be
expressed as a function of the particle equilibrium distribution,
which generalizes analogous results previously derived in
terms of survival probabilities [32].

This paper is organized as follows. In Sec. II, we introduce a
discrete Feynman-Kac formula for a class of random walkers
in absorbing and nonabsorbing media. Then, in Sec. III we
discuss some applications where the generating function can
be explicitly inverted to give the probability of the number of
collisions. In Sec. IV, we extend our analysis to the moments
of nV , and in Sec. V we examine some examples of moment
formulas. A short digression on the diffusion limit is given in
Sec. VI. Perspectives are finally discussed in Sec. VII.

II. FEYNMAN-KAC EQUATIONS

Consider the random walk of a particle starting from an
isotropic point source S(r|r0) = δ(r − r0) located at r0. At
each collision, the particle can be either scattered (i.e., change
direction) with probability ps or absorbed with probability
pa = 1 − ps (in which case the trajectory terminates). We
introduce the quantity T (r′ → r), namely the probability
density of performing a displacement from r′ to r, between
any two collisions [43,44]. For the sake of simplicity, we
assume that scattering is isotropic and that displacements are
equally distributed.

Suppose that a particle emitted from r0 is observed up
to entering the nth collision. Our aim is to characterize the
distribution Pn(nV |r0), where nV is the number of collisions
in a domain V . We can formally define

nV (n) =
n∑

k=1

V (rk), (1)

where V (rk) is the marker function of the region V , which takes
the value 1 when the point rk ∈ V , and vanishes elsewhere. We
adopt here the convention that the source is not counted, i.e.,
the sum begins at k = 1. Clearly, nV is a stochastic variable
depending on the realizations of the underlying process and
on the initial condition r0. The behavior of its distribution,
Pn(nV |r0), is most easily described in terms of the associated
probability generating function,

Fn(u|r0) = 〈unV 〉n(r0) =
+∞∑
nV =0

Pn(nV |r0)unV , (2)
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which can be interpreted as the discrete Laplace transform (the
transformed variable being u) of the collision number distri-
bution. The derivation of an evolution equation for Fn(u|r0) is
made simpler if we initially consider trajectories starting with
a particle entering its first collision at r1. Random flights are
semi-Markovian (i.e., Markovian at collision points), which
allows splitting the trajectory into a first jump, from r1 to
r1 + � (the displacement � obeying the jump length density
T ), and then a path from r1 + � to rn, conditioned to the fact
that the particle is not absorbed at r1. If the collision is an
absorption, the trajectory ends and there will be no further
events contributing to nV . Hence,

F̃n+1(u|r1) = 〈psu
V (r1)+V (r1+�)+···+V (rn+1) + pau

V (r1)〉, (3)

where the term uV (r1) is not stochastic and can be singled out.
The tilde is used to recall that we are considering trajectories
starting with a single particle entering the first collision at r1.
By observing that 〈uV (r1+�)+···+V (rn+1)〉 = F̃n(u|r1 + �), we
have then the following equation for the generating function:

F̃n+1(u|r1) = uV (r1)[ps〈F̃n(u|r1 + �)〉 + pa], (4)

where expectation is taken with respect to the random
displacement �. We make use then of the discrete Dynkin’s
formula, which relates any sufficiently well behaved function
f of a stochastic process with the adjoint kernel T ∗(r′ → r)
associated to T (r′ → r) [45], namely

〈f (r1 + �)〉 =
∫

T ∗(r′ → r1)f (r′)dr′. (5)

Intuitively, the adjoint kernel T ∗ displaces the walker back-
ward in time. We therefore obtain the discrete Feynman-Kac
equation

F̃n+1(u|r1) = uV (r1)

[
ps

∫
T ∗(r′ → r1)F̃n(u|r′)dr′ + pa

]
,

(6)

with the initial condition F̃1(u|r1) = uV (r1). Finally, by observ-
ing that the first collision coordinates r1 obey the probability
density T (r0 → r1), it follows that

Fn(u|r0) =
∫

F̃n(u|r1)T (r0 → r1)dr1. (7)

Knowledge of Fn(u|r0) allows us to explicitly determine
Pn(nV |r0). Indeed, by construction the probability generating
function Fn(u|r0) is a polynomial in the variable u, the coef-
ficient of each power uk being Pn(nV = k|r0). In particular,
the probability that the particles never touch (or come back to,
if the source r0 ∈ V ) the domain V is obtained by evaluating
Fn(u|r0) at u = 0, i.e., Pn(0|r0) = Fn(0|r0).

III. COLLISION NUMBER DISTRIBUTION:
EXAMPLES OF CALCULATIONS

Direct calculations based on the discrete Feynman-Kac
formulas, Eqs. (6) and (7), are in some cases amenable to exact
results concerning Pn(nV |r0), at least for simple geometries

and displacement kernels. In this section, we shall discuss
some relevant examples.

A. The gambler’s ruin

Consider a gambler whose initial amount of money is
x0 � 0. At each (discrete) time step, the gambler either wins
or loses a fair bet, and his capital increases or decreases,
respectively, by some fixed quantity s with equal probability.
One might be interested to know the probability that the
gambler is not ruined (i.e., that his capital has not reached
zero, yet) at the nth bet, starting from the initial capital x0.
This well-known problem [46] can be easily recast in the
Feynman-Kac formalism by setting a particle in motion on
a straight line, starting from x0, with scattering probability
ps = 1 and a discrete displacement kernel T (x ′ → x) =
δ(x − x ′ − s)/2 + δ(x − x ′ + s)/2. Setting s = 1 amounts to
expressing the capital x0 in multiple units of the bet, and entails
no loss of generality. The counting condition is imposed by
assuming a Kronecker delta V (x) = δx,0 in Eq. (6): since
the walker cannot cross x = 0 without touching it, solving
the resulting equation for the quantity Fn(0|x0) gives, there-
fore, the required probability that the gambler is not ruined
at the nth bet. We integrate now Eq. (6) and use Eq. (7):
we start from the initial condition F̃1(u|x1) = uV (x1) = uδx1 ,0 .
Then, by observing that by symmetry T and T ∗ have the same
functional form, and performing the integrals Eq. (7) over
the δ functions, we obtain F1(u|x0) = (uδx0+1,0 + uδx0−1,0 )/2. By
injecting thus F̃1(u|x1) in Eq. (6) and integrating again over
the δ functions, we get F̃2(u|x1) = uδx1 ,0 (uδx1−1,0 + uδx1+1,0 )/2.
Finally, by integrating (7) we get F2(u|x0) = (uδx0−1,0uδx0−2,0 +
uδx0+1,0uδx0 ,0 + uδx0−1,0uδx0 ,0 + uδx0+1,0uδx0+2,0 )/4. Proceeding by
recursion and identifying the coefficient of the zeroth-order
term in the polynomial yields then the first terms in the series,

Pn(0|1) =
{

1

2
,
2

4
,
3

8
,

6

16
,
10

32
,
20

64
,

35

128
,

70

256
, . . .

}
,

Pn(0|2) =
{

2

2
,
3

4
,
6

8
,
10

16
,
20

32
,
35

64
,

70

128
,
126

256
, . . .

}
,

(8)

Pn(0|3) =
{

2

2
,
4

4
,
7

8
,
14

16
,
25

32
,
50

64
,

91

128
,
182

256
, . . .

}
,

Pn(0|4) =
{

2

2
,
4

4
,
8

8
,
15

16
,
30

32
,
56

64
,
112

128
,
210

256
, . . .

}

for x0 = 1,2,3, . . ., respectively.1 After some rather lengthy
algebra, by induction one can finally recognize the formula

Pn(0|x0) =

(n+x0−1)/2�∑

k=0

[(
n

k

)
−

(
n

k − x0

)]
2−n, (9)


·� denoting the integer part. The quantity Pn(0|x0) is displayed
in Fig. 1 as a function of n for a few values of x0. The larger the
initial capital x0, the longer Pn(0|x0) � 1 before decreasing.
At large n, taking the limit of Eq. (9) leads to the scaling
Pn(0|x0) � √

2/πx0n
−1/2, in agreement with the findings in

1The quantity uδx,0 evaluated at u = 0 is equal to 1 when x = 0, and
vanishes otherwise.
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FIG. 1. (Color online) The probability Pn(0|x0) that the gambler
is not ruined at the nth bet, given an initial capital x0. Bets are modeled
by discrete random increments of fixed size s = ±1. Blue circles:
x0 = 5; red triangles: x0 = 10; green dots: x0 = 15. Lines have been
added to guide the eye. Dashed lines correspond to the asymptotic
result Pn(0|x0) � √

2/πx0n
−1/2. The interval 2x2

0/π is also shown
for each x0.

Ref. [47]. This means that asymptotically the gambler is
almost sure not to be ruined, yet, up to n � 2x2

0/π bets.
Note that Eq. (9) is the survival probability of the gambler:
the first-passage probability Wn(0|x0), i.e., the probability that
the gambler is ruined exactly at the nth bet, can be obtained
from Wn(x0) = Pn−1(0|x0) − Pn(0|x0). As a particular case,
for 0 < x0 � n and n + x0 even, we recover the result in
Ref. [46], namely

Wn(x0) = x0

2nn

(
n

n+x0
2

)
. (10)

Finally, observe that when x0 = 0,

Pn(0|0) =
{

1,
1

2
,
2

4
,
3

8
,

6

16
,
10

32
,
20

64
,

35

128
, . . .

}
(11)

for n � 1. This is easily recognized as being the series

Pn(0|0) =
(

n − 1⌈
n−1

2

⌉
)

21−n, (12)

which is, however, unphysical, since the gambler should not
be allowed to bet when lacking an initial amount of money.

B. The arcsine law with discrete jumps

Consider a walker on a straight line, starting from x0. We are
interested in assessing the distribution Pn(nV |x0) of the number
of collisions nV that the walker performs at the right of the start-
ing point when observed up to the nth collision. This amounts
to choosing V (x) = H (x − x0), H being the Heaviside step
function, in Eq. (6). To fix the ideas, without loss of generality
we set x0 = 0, and we initially assume that ps = 1, i.e., the
walker cannot be absorbed along the trajectory. This is a well
known and long-studied problem for both Markovian and non-
Markovian processes [10,13,46,48–51]: for Brownian motion,
the average residence time in V is simply 〈tV 〉t = t/2, whereas

tV itself is known to obey the so-called Lévy’s arcsine law
Pt (tV ) = 1/

√
tV (t − tV )π , whose U shape basically implies

that the particle will most often spend its time being always
either on the positive or negative side of the axis [46,47,52].
This counterintuitive result has been shown to asymptotically
hold also for discrete-time random walks without absorption,
for which one has Pn(nV |0) � 1/

√
nV (n − nV )π when n and

nV are large (see, for instance, [47]).
The Feynman-Kac approach allows us to explicitly derive

Pn(nV |0). Again, assume a displacement kernel with discrete
jumps T (x ′ → x) = δ(x − x ′ − s)/2 + δ(x − x ′ + s)/2, with
s = 1. Then, by integrating Eq. (6) and subsequently using
Eq. (7), we compute the coefficients of the polynomial, which
can be organized in an infinite triangle, whose first terms read

n nV = 0 1 2 3 4 5 6 7

0 1
1 1

2
1
2

2 1
4

1
4

2
4

3 2
8

1
8

2
8

3
8

4 3
16

2
16

2
16

3
16

6
16

5 6
32

3
32

4
32

3
32

6
32

10
32

6 10
64

6
64

6
64

6
64

6
64

10
64

20
64

7 20
128

10
128

12
128

9
128

12
128

10
128

20
128

35
128

Observe that this result is independent of s. To identify the
elements Pn(nV |0), we initially inspect the column nV = 1 of
the triangle, and we recognize the underlying series as being
given by terms of the kind ( n − 2
(n − 2)/2� )2−n. Then we realize
that columns with nV � 2 are related to the first column by a
shift in the index n. The column nV = 0 can be obtained from
normalization. Proceeding by induction, the elements in the
triangle can be finally recast in the compact formula

Pn(nV |0) =
(

n − nV − 1⌈
n−nV −1

2

⌉
) (

nV⌈
nV

2

⌉
)

2−n. (13)

Note that our result is slightly different from Ref. [46], where
collisions are counted in pairs. When both n and nV are large,
we obtain the limit curve Pn(nV |0) � 1/

√
nV (n − nV )π .

When the scattering probability can vary in 0 � ps � 1,
the triangle can be generated as above, and the first few terms
read

n nV = 0 1 2 3 4

0 1
1 1

2
1
2

2 2−ps

4
2−ps

4
2ps

4

3 4−2ps

8
4−2ps−p2

s

8
2ps (2−ps )

8
3p2

s

8

4 8−4ps−p3
s

16
8−4ps−2p2

s

16
2ps (4−2ps−p2

s )
16

3p2
s (2−ps )

16
6p3

s

16

Now, the identification of the polynomial coefficients
Pn(nV |0) becomes more involved, because each coefficient
is itself a polynomial with respect to ps . The strategy in the
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identification is the same as above. By induction, the column
for nV = 1 can be identified as being

Pn(1|0) = 1 − ps + √
1 − p2

s

4
+

(
ps

2

)4+2y (
2 + 2y

1 + y

)

× 2F1
(
1, 3

2 + y,3 + y,p2
s

)
2(2 + y)

(14)

for n � 2, with y = 
(n − 3)/2�, and P1(1|0) = 1/2. Once
Pn(1|0) is known, by inspection one realizes that the other
columns Pn(nV |0) are related by

Pn(nV |0) =
(

ps

2

)nV −1
(

nV⌈
nV

2

⌉
)

Pn−nV +1(1|0) (15)

for nV � 2. The probability Pn(0|0) is finally obtained from
normalization, and reads

Pn(0|0) = ps − 1 + √
1 − p2

s

2ps

+
(

ps

2

)2+2z (
2z

z

)

× 2F1
(

1
2 + z,1,2 + z,p2

s

)
ps(1 + z)

, (16)

with z = 
n/2�. These results generalize Eq. (13), and are
illustrated in Fig. 2, where we compare Pn(nV |0) as a function
of nV for n = 10 and different values of ps . When ps = 1,
the distribution approaches a U shape, as expected. As soon
as ps < 1, the shape changes considerably, and in particular
Pn(nV |0) becomes strongly peaked at nV = 0 as the effects of
absorption overcome scattering. The presence of a second peak
at nV = n is visible when ps � 1 and progressively disappears
as ps decreases: when ps is small, Pn(nV |0) has an exponential

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

nV

P
n
(n

V
|x

0
)

FIG. 2. (Color online) The arcsine law Pn(nV |x0) with discrete
jump lengths, as a function of nV . The starting point is x0 = 0, and
n = 10. Blue dots: ps = 1; red stars: ps = 3/4; green circles: ps =
1/2; black triangles: ps = 1/4. Lines have been added to guide the
eye. Dashed curves are the asymptotic Eq. (17) for the corresponding
value of ps .
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−3

10
−2

10
−1

10
0

nV

P
n
(n

V
|x

0
)

FIG. 3. (Color online) The arcsine law Pn(nV |x0) with discrete
jump lengths, as a function of nV . The starting point is x0 = 0, and
n = 50. Blue dots: ps = 1; dashed line: the asymptotic distribution
1/

√
nV (n − nV )π . Red triangles: ps = 0.95; dashed asymptotic

Eq. (17).

tail. When n is large, Pn(nV |0) approaches the asymptotic
curve

P∞(nV |0) =
(

ps

2

)nV −1
(

nV⌈
nV

2

⌉
)

1 − ps + √
1 − p2

s

4
(17)

for nV � 1, and P∞(0|0) = (ps − 1 + √
1 − p2

s )/2ps . Re-
mark that when ps = 1, this means that the U shape for
large n collapses on the two extremes at nV = 0 and nV = n.
Equation (17) is an excellent approximation of Pn(nV |0)
when the scattering probability is not too close to ps � 1: as
expected, the discrepancy between the exact and asymptotic
probability is most evident when nV � n, as shown in Fig. 2.
Figure 3 displays Pn(nV |0) as a function of nV for n = 50
in order to emphasize the effects of ps : when ps = 1, the
probability Pn(nV |0) is almost superposed to the asymptotic
curve Pn(nV |0) � 1/

√
nV (n − nV )π , whereas a deviation in

the scattering probability as small as ps = 0.95 is sufficient to
radically change the shape of the collision number distribution.
Finally, observe that when nV is also large, which implies
pa � 1, Eq. (17) behaves as

P∞(nV |0) �
√

1 − ps

πnV

e−(1−ps )nV . (18)

C. The arcsine law with continuous jumps

When the displacement kernel T (x ′ → x) is continuous and
symmetric, ps = 1, and x0 = 0, the distribution of the number
of collisions nV falling in x � x0 is universal, in that it does not
depend on the specific functional form of T (x ′ → x) (see [47]
and references therein). This strong and surprising result stems
from a Sparre Andersen theorem [53], whose proof is highly
nontrivial (and does not apply to discrete jumps) [47]. This
leaves the choice on the form of kernel T (x ′ → x), as far
as it satisfies the hypotheses of the theorem. For the sake
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of simplicity, we have assumed an exponential distribution
of jump lengths, i.e., T (x ′ → x) = s exp(−s|x − x ′|)/2, with
s = 1. Starting from Eqs. (6) and (7), we can generate the
infinite triangle.

n nV = 0 1 2 3 4 5 6 7

0 1
1 1

2
1
2

2 3
8

2
8

3
8

3 3
16

5
16

5
16

3
16

4 35
128

20
128

18
128

20
128

35
128

5 63
256

35
256

30
256

30
256

35
256

63
256

6 231
1024

126
1024

105
1024

100
1024

105
1024

126
1024

231
1024

7 429
2048

231
2048

189
2048

175
2048

175
2048

189
2048

231
2048

429
2048

It is easy to verify that the triangle indeed does not depend
on s, and that other functional forms of T (x ′ → x) would
lead to the same coefficients for the polynomials Pn(nV |0).
This holds true also for Lévy flights, where T (x ′ → x) is
a Lévy stable law and jump lengths are unbounded [47].
We start from the column nV = 1, observe the relation
with the subsequent columns nV � 2, and finally derive the
case nV = 0 from normalization. Proceeding therefore by
induction, we recognize that the elements of the triangle
obey

Pn(nV |0) =
(

2n − 2nV

n − nV

)(
2nV

nV

)
2−2n. (19)

We recover here the celebrated results of the collision number
distribution for discrete-time walks with symmetric continuous
jumps in the absence of absorption [46,47]. When both n and
nV are large, it is possible to show that Eq. (19) converges to
the U shape 1/

√
nV (n − nV )π .

When the scattering probability is allowed to vary in 0 �
ps � 1, it turns out that the polynomial coefficients Pn(nV |0)
are the same for several different continuous symmetric kernels
T (x ′ → x) (Lévy flights included), and we are therefore led
to conjecture that the universality result for the case ps = 1
carries over to random walks with absorption. This allows us
to generalize the Sparre Andersen theorem for the collision
number distribution on the half-line to a broader class of
Markovian discrete-time processes. The first few terms in
the triangle [which, for practical purposes, we have generated
by resorting to T (x ′ → x) = s exp(−s|x − x ′|)/2, with s = 1]
read

As above, identification of the terms Pn(nV |0) becomes
more involved, because each coefficient is itself a polynomial
with respect to ps . By induction, the column for nV = 1 can
be identified as being

Pn(1|0) =
√

1 − ps

2
+

(
ps

4

)n (
2n − 2

n − 1

)

× 2F1
(− 1

2 + n,1,1 + n,ps

)
n

(20)

for n � 1. Once Pn(1|0) is known, the subsequent columns
Pn(nV |0) are observed to obey

Pn(nV |0) =
(

ps

4

)nV −1 (
2nV − 1

nV

)
Pn−nV +1(1|0) (21)

for nV � 2. The probability Pn(0|0) is finally obtained from
normalization, and reads

Pn(0|0) = ps − 1 + √
1 − ps

ps

+
(

ps

4

)n (
2n

n

)

× 2F1
(

1
2 + n,1,2 + n,ps

)
2(1 + n)

. (22)

These results are illustrated in Fig. 4, where we compare
Pn(nV |0) as a function of nV for n = 10 and different
values of ps . The findings for continuous jumps closely
resemble those for discrete displacements. When ps = 1,
the distribution approaches a U shape, as expected. As
soon as ps < 1, the shape again changes abruptly, and in
particular Pn(nV |0) becomes strongly peaked at nV = 0 when
absorption dominates scattering. When ps is small, Pn(nV |0)
decreases exponentially at large nV . When n is large, Pn(nV |0)
approaches the asymptotic curve

P∞(nV |0) =
(

ps

4

)nV −1 (
2nV − 1

nV

) √
1 − ps

2
(23)

for nV � 1, and P∞(0|0) = (ps − 1 + √
1 − ps)/ps . Again,

Eq. (23) is an excellent approximation of Pn(nV |0) when the
scattering probability is not too close to ps � 1, as shown
in Fig. 4. Figure 5 displays Pn(nV |0) as a function of nV

for n = 50 in order to emphasize the effects of ps : when
ps = 1, the probability Pn(nV |0) is almost superposed to the
asymptotic curve Pn(nV |0) � 1/

√
nV (n − nV )π , whereas a

deviation in the scattering probability as small as ps = 0.95 is
sufficient to radically change the shape of the collision number
distribution. Finally, observe that when nV is also large,
which implies pa � 1, Eq. (23) yields the same scaling as
Eq. (18). All analytical calculations discussed here have been

n nV = 0 1 2 3 4 5

0 1
1 1

2
1
2

2 4−ps

8
4−2ps

8
3ps

8

3 8−2ps−p2
s

16
8−4ps−p2

s

16
3ps (2−ps )

16
5p2

s

16

4
64−16ps−8p2

S
−5p3

s

128
64−32ps−8p2

s −4p3
s

128
6ps (8−4ps−p2

s )
128

20p2
s (2−ps )
128

35p3
s

128

5 128−32ps−16p2
s −10p3

s −7p4
s

256
128−64ps−16p2

s −8p3
s −5p4

s

256
6ps (16−8ps−2p2

s −p3
s )

256
10p2

s (8−4ps−p2
s )

256
35p3

s (2−ps )
256

63p4
s

256
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FIG. 4. (Color online) The arcsine law Pn(nV |x0) with expo-
nential jump lengths, as a function of nV . The starting point is
x0 = 0, and n = 10. Blue dots: ps = 1; red stars: ps = 3/4; green
circles: ps = 1/2; black triangles: ps = 1/4. Lines have been added
to guide the eye. Dashed curves are the asymptotic Eq. (23) for the
corresponding value of ps .

verified by comparison with Monte Carlo simulations with 106

particles.

IV. MOMENTS FORMULAS

A complementary tool for characterizing the distribution
Pn(nV |r0) is provided by the analysis of its moments. Toward
this end, it is convenient to introduce the function G̃n(u|r1) =
F̃n(1/u|r1). By construction, G̃n(u|r1) is the (rising) factorial

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

nV

P
n
(n

V
|x

0
)

FIG. 5. (Color online) The arcsine law Pn(nV |x0) with exponen-
tial jump lengths, as a function of nV . The starting point is x0 = 0, and
n = 50. Blue dots: ps = 1; dashed line: the asymptotic distribution
1/

√
nV (n − nV )π . Red triangles: ps = 0.95; dashed line: asymptotic

Eq. (23).

moment generating function for trajectories entering their first
collision at r1, which implies〈

ñ
(m)
V

〉
n
(r1) = (−1)m

∂m

∂um
G̃n(u|r1)|u=1, (24)

x(k) = x(x + 1) · · · (x + k − 1) being the rising factorial [54].
The tilde is used to recall that the moments refer to trajectories
starting from the first collision at r1. Combining Eqs. (6) and
(24) yields the recursion property〈

ñ
(m)
V

〉
n+1(r1) − ps

∫
T ∗(r′ → r1)

〈
ñ

(m)
V

〉
n
(r′)dr′

= mV (r1)
〈
ñ

(m−1)
V

〉
n+1(r1) (25)

for m � 1, with the conditions 〈ñ(0)
V 〉n(r1) = 1 and

〈ñ(m)
V 〉1(r1) = m!V (r1). Finally, the factorial moments

〈n(m)
V 〉n(r0) for particles emitted at r0 are obtained from

〈
n

(m)
V

〉
n
(r0) =

∫ 〈
ñ

(m)
V

〉
n
(r1)T (r0 → r1)dr1. (26)

When trajectories are observed up to n → +∞, we can set
〈n(m)

V 〉 = limn→+∞〈n(m)
V 〉n, and from Eq. (25) we find

〈
ñ

(m)
V

〉
(r1) − ps

∫
T ∗(r′ → r1)

〈
ñ

(m)
V

〉
(r′)dr′

= mV (r1)
〈
ñ

(m−1)
V

〉
(r1) (27)

for m � 1, provided that 〈ñ(m)
V 〉(r1) is finite. It turns out

that the asymptotic moments 〈ñ(m)
V 〉(r1) are related to the

equilibrium distribution of the particles [32,39,40]. To see
this, we introduce the incident propagator �n(r|r0), i.e., the
probability density of finding a particle emitted at r0 entering
the nth collision (n � 1) at r. We have

�n+1(r|r0) = ps

∫
T (r′ → r)�n(r′|r0)dr′, (28)

with �1(r|r0) = T (r0 → r). We introduce then the incident
collision density

�(r|r0) = lim
N→∞

N∑
n=1

�n(r|r0), (29)

which can be interpreted as the particle equilibrium distri-
bution [32,33,43,44]. Now, by making use of the formal
Neumann series [43], from Eq. (28) it follows that the collision
density satisfies the stationary integral transport equation

�(r|r0) = ps

∫
T (r′ → r)�(r′|r0)dr′ + T (r0 → r). (30)

The transport equation (30) can be understood as follows: at
equilibrium, the stationary particle density entering a collision
at r for a source emitting at r0 is given by the sum of all
contributions entering a collision at r′, being scattered and
then transported to r, plus the contribution of the particles
emitted from the source and never collided up to entering r.
Now, by resorting to the relation between T and its adjoint T ∗
in Eq. (A4), and observing that at equilibrium (for isotropic
source and scattering)∫

T (r0 → r′)�(r|r′)dr′ =
∫

�(r′|r0)T (r′ → r)dr′, (31)

011132-6
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Eq. (27) can be inverted (see Appendix), and gives

〈
ñ

(m)
V

〉
(r1) = mps

∫
V

�(r′|r1)
〈
ñ

(m−1)
V

〉
(r′)dr′

+mV (r1)
〈
ñ

(m−1)
V

〉
(r1) (32)

for m � 1, where � is the solution of Eq. (30). Thus, by using
Eqs. (26) and (31), from Eq. (32) it follows that

〈
n

(m)
V

〉
(r0) = m

∫
V

�(r′|r0)
〈
ñ

(m−1)
V

〉
(r′)dr′. (33)

Hence, by induction we finally get the desired relation between
the factorial moments and the equilibrium distribution, namely

〈
n

(m)
V

〉
(r0) =

m∑
k=1

Lm,kp
k−1
s Ck(r0), (34)

where

Ck(r0) = k!
∫

V

· · ·
∫

V

k∏
i=1

dri�(ri |ri−1) (35)

are k-fold convolution (Kac) integrals over the equilibrium dis-

tribution �(r|r0), and the coefficients Lm,k = ( m

k
)(m − 1)!/

(k − 1)! are the Lah numbers [54]. Observe that a result
analogous to Eq. (34) has been derived in Ref. [32] building
upon survival probabilities.

V. FIRST AND SECOND MOMENT OF COLLISION
NUMBER: EXAMPLES OF CALCULATIONS

To illustrate the approach proposed in the preceding section,
we compute here the average collision number 〈n(1)

V 〉n(x0) and
the second factorial moment 〈n(2)

V 〉n(x0) in a bounded domain
V in one dimension. We choose an exponential displacement
kernel T (x ′ → x) = s exp(−s|x − x ′|)/2, with s = 1, which
is often adopted as a simplified random-walk model (the so-
called exponential flights) to describe gas dynamics, radiation
propagation, or biological species migration [55–60]. In this
respect, the average 〈n(1)

V 〉n(x0) is a measure of the passage
of the particles through the region V (the deposited energy,
for instance), whereas the second moment 〈n(2)

V 〉n(x0) is
proportional to the incertitude on the average [32,33].

The calculations stemming from Eqs. (25) and (26) are
rather cumbersome, so it is preferable to visually represent
our results instead of writing down the explicit formulas. In
Fig. 6, we display the behavior of the moments 〈n(1)

V 〉n(x0) and
〈n(2)

V 〉n(x0) for the volume V being the interval [−R,R], with
R = 1. When ps = 1, the moments diverge as n increases,
since exponential flights in one dimension are recurrent
random walks, and revisit their starting point infinitely many
times. In particular, we observe that for large n, the average
grows as n1/2, and the second moment as n1, which is coherent
with the results in Ref. [35] for Brownian motion. When
ps < 1, they converge instead to an asymptotic value, which
can be computed based on Eq. (34) by observing that the
collision density for this example is

�(x|x0) = e−√
1−ps |x−x0|

2
√

1 − ps

, (36)
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n
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n
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FIG. 6. (Color online) One-dimensional exponential flights in
V = [−1,1]. Upper half: First (left) and second factorial moment
(right) of nV as a function of n and x0, with ps = 3/4. The asymptotic
values for x0 = 0 are shown as dashed lines for reference. Lower half:
First (left) and second factorial moment (right) of nV in the same
domain, when ps = 1.

as discussed in Ref. [32]. Moreover, Fig. 6 shows that the
moments decrease as the distance of the source x0 from the
region V increases, as expected. As we have chosen here a
symmetric interval, we have 〈n(m)

V 〉n(x0) = 〈n(m)
V 〉n(−x0), so we

can plot the moments only for positive values of x0. All results
presented in this section have been verified by comparison
with Monte Carlo simulations with 106 particles. Other kinds
of boundary conditions (leakage, for instance, which implies
that particles are lost upon crossing the frontier of V [32,33])
have also been successfully tested, but will not be presented
here.

VI. DIFFUSION LIMIT

To conclude our analysis, in this section we comment on
the scaling limit of the discrete Feynman-Kac equation, which
is achieved when nV is large, and at the same time the typical
jump length ε is vanishingly small. We set tV = nV dt and
t = ndt , where dt is some small time scale, related to ε by the
usual diffusion scaling ε2 = 2Ddt , the constant D playing the
role of a diffusion coefficient. When T is not symmetric, so
that displacements have mean μ, we further require μ = vdt ,
where the constant v is a velocity. By properly taking the limit
of large nV and vanishing dt , tV converges to the residence
time in V . The quantity nV can only be large if the absorption
probability pa is small, and it is natural to set pa = λadt , the
quantity λa being an absorption rate per unit of dt . Observe
that when both ε and μ are small for any displacement kernel,
we have the Taylor expansion∫

T (r′ → r)f (r′)dr′ � f (r) − μ∂rf (r) + 1

2
ε2∂2

r f (r), (37)

where the first-order derivative vanishes if the kernel is
symmetric. A similar expansion holds for the kernel T ∗,
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namely ∫
T ∗(r′ → r0)f (r′)dr′

� f (r0) + μ∂r0f (r0) + 1

2
ε2∂2

r0
f (r0). (38)

It is expedient to introduce the quantity Qt (u|r0) = Ft (e−u|r0),
which is the moment generating function of tV = nV dt , i.e.,〈

tmV
〉
t
(r0) = (−1)m

∂m

∂um
Qt (u|r0)|u=0, (39)

when trajectories are observed up to t = ndt . Under the
previous hypotheses, combining Eqs. (6) and (7) yields

Qt+dt (u|r0) − Qt (u|r0)

� L∗
r0
Qt (u|r0)dt − uV (r0)Qt (u|r0)dt + λadt, (40)

where we have neglected all terms vanishing faster than dt ,
and L∗

r0
= D∂2

r0
+ v∂r0 − λa . Taking the limit dt → 0, we

recognize then the Feynman-Kac equation for a Brownian
motion with diffusion coefficient D, drift v, and absorption
rate λa , namely

∂Qt (u|r0)

∂t
= L∗

r0
Qt (u|r0) − uV (r0)Qt (u|r0) + λa. (41)

In other words, in the diffusion limit the statistical properties
of the hit number in V behave as those of the residence time of
a Brownian motion, as is quite naturally expected on physical
grounds [27,28,33]. Finally, from Eq. (39) stems the recursion
property for the moments

∂
〈
tmV

〉
t
(r0)

∂t
= L∗

r0

〈
tmV

〉
t
(r0) + mV (r0)

〈
tm−1
V

〉
t
(r0), (42)

in agreement with the results in Refs. [29,30] for Brownian
motion.

VII. CONCLUSIONS

In this paper, we have examined the behavior of the
distribution Pn(nV |r0) of the number of collisions nV in
a region V for a broad class of stochastic processes in
absorbing and nonabsorbing media. Key to our analysis
has been a discrete version of the Feynman-Kac formalism.
We have shown that this approach is amenable to explicit
formulas for Pn(nV |r0), at least for simple geometries and
displacement kernels. The moments of the distribution have
also been detailed, and their asymptotic behavior for large
n has been related to the walker equilibrium distribution.
Finally, the diffusion limit and the convergence to the
Feynman-Kac formulas for Brownian motion have been
discussed.

We conclude by observing that a generalization of the
present work to more realistic transport kernels, including
anisotropic source and scattering, would be possible, for
instance by resorting to the formalism proposed in Ref. [61].
Moreover, while in this paper we have focused on counting
statistics, and therefore chosen V (r) to be the marker function
of a given domain in phase space, the Feynman-Kac formalism
can be adapted with minor changes to describing the statistics
of other kinds of functionals, such as, for instance, hitting
probabilities [5,35,62].
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APPENDIX: THE STATIONARY MOMENT EQUATION

We want to solve an integral equation

f (r1) − ps

∫
T ∗(r′ → r1)f (r′)dr′ = g(r1) (A1)

for the function f (r1), where g(r1) is known. We propose a
solution in the form

f (r1) = ps

∫
g(r′)�(r′|r1)dr′ + g(r1) (A2)

and ask which is the equation satisfied by the integral kernel
�(r′|r1). By injecting Eq. (A2) into Eq. (A1), one obtains∫

g(r′)�(r′|r1)dr′

= ps

∫ ∫
�(r′′|r′)T ∗(r′ → r1)g(r′′)dr′dr′′

+
∫

T ∗(r′ → r1)g(r′)dr′. (A3)

Recall that the adjoint and direct displacement kernels are
related to each other by the scalar products∫

g(r)
∫

T (r′ → r)f (r′)dr′dr

=
∫

f (r)
∫

T ∗(r′ → r)g(r′)dr′dr (A4)

for any test functions f and g [43]. From the definition of the
scalar product in Eq. (A4), it follows that the second term on
the right-hand side of Eq. (A3) is given by∫

T ∗(r′ → r1)g(r′)dr′ =
∫

T (r1 → r′)g(r′)dr′. (A5)

From Eqs. (A4) and (31), the first term on the right-hand side
of Eq. (A3) becomes∫ ∫

�(r′′|r′)T ∗(r′ → r1)g(r′′)dr′dr′′

=
∫ ∫

�(r′|r1)T (r′ → r′′)g(r′′)dr′dr′′. (A6)

Therefore, �(r′|r1) obeys∫
g(r′)�(r′|r1)dr′

= ps

∫ ∫
�(r′|r1)T (r′ → r′′)g(r′′)dr′dr′′

+
∫

T (r1 → r′)g(r′)dr′, (A7)

which for the arbitrariness of g(r′) finally implies Eq. (30), i.e.,
the required kernel � satisfies the integral transport equation.
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