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Diffusion-mediated geminate reactions under excluded volume interactions
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In this paper, influence of crowding by inert particles on the geminate reaction kinetics is theoretically
investigated. Time evolution equations for the survival probability of a geminate pair are derived from the master
equation taking into account the correlation among all diffusing particles, and the results are compared with those
obtained by Monte Carlo simulations. In general, excluded volume interactions by the inert particles slow down
the diffusive motion of reactants. However, when the initial concentration of the inert particles is uniform and
high, we show that additional influence of interference between reaction and correlated diffusion accelerates the
transient decay of the survival probability in the diffusion-controlled limit. We also study the escape probability
for a nonuniform initial distribution of the inert particles by taking the continuous limit in space. We show that
reaction yield is increased when the reaction proceeds in the presence of a positive density gradient of the inert
particles which inhibits the escape of reactants. The effect can be interpreted as a cage effect.
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I. INTRODUCTION

The importance of molecular crowding on chemical reac-
tions has attracted great attention in connection with biochem-
ical reactions in living cells [1–7]. Living cells contain a high
volume fraction of macromolecules, in addition to reactants.
Although these macromolecules are not reactive, the excluded
volume interactions between reactants and macromolecules
significantly affect transport properties of reactants, and
therefore biochemical reactions.

In this paper, we consider a fundamental reaction process
called a geminate reaction, which is observed in many
systems including those encountered in biology. In a geminate
reaction, a pair of reactants is generated simultaneously and
subsequently diffuse and react when they encounter each other.
Geminate reactions are influenced by spatial diffusion of a
pair and the intrinsic recombination rates. The influence of
many-body interactions between inert species and reactants
on the geminate reaction kinetics can be very complicated and
difficult to treat theoretically. The simplest model could be to
assume that the reactants and the inert particles have the same
size. Even under such simplification, the many-body nature of
the problem remains since the migration of reactive species
correlates with the time-dependent positions of inert species;
the problem is still difficult to solve analytically.

To retain the many-body nature in the simplest situation,
we study the geminate reaction between a static species and a
diffusive species on a lattice. Reaction takes place according
to the distance between one of the pair of reactants at the
origin and the other. Inert particles perform random walks
on a lattice. The transition to neighboring lattice sites is
constrained by prohibiting the double occupancy; each lattice
site can be occupied at most by a single diffusive particle
regardless of whether it is reactive or inert. Particles are
assumed to move randomly on vacancy sites of a lattice.
However, the problem is still hard to solve analytically
without approximations. Therefore, we perform Monte Carlo
simulations to evaluate approximations and to elucidate effects
which cannot be studied analytically. To facilitate comparisons

between theoretical results and those of simulations, the
problem is further simplified; the origin is also allowed to
be occupied at most by a single diffusive particle regardless
of whether it is reactive or inert, and reaction takes place
according to the intrinsic reaction rate when the origin is
occupied by a reactant.

The excluded volume interactions were theoretically treated
by Nakazato and Kitahara in tracer diffusion on a lattice [8].
The Nakazato-Kitahara formula of tracer diffusion constant
interpolates between low and high concentrations of host
particles and its accuracy is confirmed by comparison to the
results of numerical simulations [8–11].

For target reactions where a static reactive particle (target)
is surrounded by many reactive counterparts (quenchers),
the Nakazato-Kitahara theory was successfully applied to
calculate the survival probability of a target with a constraint
of prohibited double occupancy of diffusing reactants [12,13].
It turned out that the decay of the target survival probability
is accelerated by prohibiting the double occupancy [12,13].
Similar acceleration of the decay was obtained by other
numerical and analytical approaches [14–25]. The acceleration
of the decay is understood by noticing that the number of sites
occupied by mobile reactants is generally larger at any time
under the constraint of prohibited double occupancy at each
lattice site [12,13]. Accordingly, the probability of reaction
between the target and a quencher is higher at any time when
multiple occupancy is not allowed.

Contrary to the target reaction, only a pair of reactants
should be considered for geminate reaction. In other words,
the number of sites occupied by reactants is not affected by
prohibiting the double occupancy. However, the site blocking
effects among diffusing particles influence the kinetics of the
geminate reaction through different mechanism from that in
the case of target reactions. First, crowding of inert particles
slows down diffusion of reactive particles and retards the
reaction between the pair. Indeed, numerical simulations show
that the reaction between a pair proceeds slowly by the
crowding of inert particles [26].
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In this paper, we study more comprehensively the reaction
of a pair of reactants performing diffusion under the constraint
of prohibited double occupancy in the presence of inert
particles. On the basis of results derived, the mechanism
of site blocking effects by inert particles in the geminate
reaction is investigated in detail when the initial distribution
of inert particles is uniform. We show that reactions are
influenced through excluded volume interactions not only
through slowing down of diffusion of reactants but also by
an interference between reaction and correlated diffusion in
the diffusion-controlled limit. We also study the influence
of inhomogeneous initial distributions of inert particles by
taking the continuum limit in space. We show that the
overall reaction yield is increased (decreased) from that
assuming homogeneous initial distribution of inert parti-
cles by a positive (negative) density gradient of the inert
particles.

In Sec. II we formulate the problem in the case when
the initial distribution of inert particles is uniform and
derive the solution within the mean-field approximation. In
Sec. III higher order corrections to the mean-field results are
presented. The calculation details are given in Appendix A.
In Sec. IV, we compare the analytical results to simula-
tion results. In Sec. V, the influence of nonuniform initial
distribution of inert particles is investigated. The escape
probability is derived for this case by using the continuous

limit derived in Appendix B. Section VI is devoted to
conclusions.

II. GEMINATE PAIR REACTION UNDER THE PRESENCE
OF INERT PARTICLES

For simplicity, we formulate the problem on a lattice where
a reactive particle and inert particles perform random walks.
The particles are assumed to move randomly on the vacant
sites of a lattice. One of the reactants of the pair does not
move and its position is taken as the origin of the coordinate
system. The reactive particle undergoes reaction according to
the distance from the origin, r . We denote the intrinsic reaction
rate by k(r).

The tracer diffusion in concentrated lattices was studied
by Nakazato and Kitahara in the absence of reaction [8]. The
diffusion of the tagged particle in the presence of site blocking
by other particles has been studied [8–11]. Following them,
we introduce ket vectors to show occupancy of a site by
diffusing particles. The ket vector |�r,•〉 denotes the occupation
of site �r by a reactive particle, the ket vector |�r,◦〉 denotes the
occupation of site �r by an inert particle, and |�r,φ〉 represents
that site �r is empty. The conditional probability of finding inert
particles at ( �f1, �f2, . . . , �fN ) and the reactant at �n at time t when
the initial configuration of inert particles is (�i1,�i2, . . . ,�iN ) and
that of the reactant is �m is written as

P ( �f1, �f2, . . . , �fN,�n,t ;�i1,�i2, . . . ,�iN , �m) =
(

N∏
�=1

〈 �f�, ◦ |
) (

M∏
�=N+1

〈 �f�,φ|
)

〈�n, • | exp(Lt)| �m,•〉
(

N∏
�=1

|�i�,◦〉
) (

M∏
�=N+1

|�i�,φ〉
)

, (1)

where N and M denote the numbers of inert particles and lattice sites, respectively. L is given by the sum of the term describing
diffusion Lw and that describing reaction Lrc, L = Lw + Lrc. Lw is explicitly expressed as [8–10]

Lw = γB

∑
〈n,m〉

(|�rn,•〉〈�rn,φ| · |�rm,φ〉〈�rm, • | − |�rn,•〉〈�rn, • | · |�rm,φ〉〈�rm,φ|)

+ γw

∑
〈n,m〉

(|�rn,◦〉〈�rn,φ| · |�rm,φ〉〈�rm, ◦ | − |�rn,◦〉〈�rn, ◦ | · |�rm,φ〉〈�rm,φ|) , (2)

where the sum is taken over all nearest neighbor pairs of the
accessible lattice sites by the diffusing particles. γB is given by
γB = �B/(2d), where �B is the jump frequency of a reactive
particle and d denotes the lattice dimension. Similarly, we
define γw = �w/(2d) where �w is the jump frequency of inert
particles. Lrc describes the reaction from an occupied site �rn

with the rate k (�rn) [27–29]

Lrc = −
M∑

n=1

k(�rn)|�rn,•〉〈�rn, • |. (3)

The conditional probability PN (�n,t | �m,0) that the reactant is at
site �n at time t when it was initially at �m under the assumption
of random initial occupation of inert particles is obtained
from Eq. (1) by multiplying 1/ (MCN ) and summing over all
possible initial and final configurations of the inert particles.
By defining the characteristic function by

φ(�n,t | �m,0; x) ≡
M∑

N=0

PN (�n,t | �m,0) xN, (4)

it can be expressed as

φ(�n,t | �m,0; x) = (1 + x)M

MCN

g(�n,t | �m,0; x), (5)

where we define

g(�n,t | �m,0; x) ≡ 〈{φ}|〈�n, • | exp[L̃(θ )t]|{φ}〉| �m,•〉, (6)

L̃(θ ) = exp(−θS)L exp(θS), S ≡ ∑M
�=1(|�r�,◦〉〈�r�,φ|−|�r�, φ〉

〈�r�, ◦ |), and x = tan2 θ . It is convenient to introduce the
abbreviations

〈{φ}|〈�rj , • | ≡
(

M ′∏
�=1

〈�r�,φ|
)

〈�rj , • |, (7)

|{φ}〉|�rj ,•〉 ≡
(

M ′∏
�=1

|�r�,φ〉
)

|�rj ,•〉, (8)

where M ′ denotes that the site �rj is excluded in the product.
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The inverse transformation is given by applying Cauchy’s
integral theorem,

PN (�n,t | �m,0) = 1

2πi

∫
d x

1

xN+1
φ(�n,t | �m,0; x), (9)

where the path of integration encircles the origin on the
complex plane.

In the thermodynamic limit of M → ∞ with c = N/M

being constant, the right-hand side of Eq. (9) can be calculated
by applying the saddle-point method [8–10]

P (�n,t | �m,0) = g(�n,t | �m,0; c/(1 − c)). (10)

The survival probability of a pair at time t whose initial
separation is given by �m is defined by

S( �m,t) =
∑

�n
P (�n,t | �m,0). (11)

From Eqs. (6) and (10) the Laplace transform of the survival
probability, Ŝ ( �m,s) = ∫ ∞

0 dt exp(−st)S( �m,t), is expressed
as

Ŝ( �m,s) =
∑

�n
〈{φ}|〈�n, • | 1

s − L̃(θ∗)
|{φ}〉| �m,•〉, (12)

where tan θ∗ = √
c/(1 − c). L̃(θ∗) can be expressed by the sum of the term describing diffusion and that describing reaction,

L̃(θ∗) = L̃rw + L̃rc. Even after the transformation the term describing reaction is not changed, L̃rc = Lrc, while L̃rw is given by the
sum, L̃rw = L̃rw0 + L̃rw1, where L̃rw0 describes the transition under the conservation constraint of the number of particles [8–10],

L̃rw0 = (1 − c)γB

∑
〈n,m〉

(|�rn,•〉〈�rn,φ| · |�rm,φ〉〈�rm, • | − |�rn,•〉〈�rn, • | · |�rm,φ〉〈�rm,φ|)

+ cγB

∑
〈n,m〉

(|�rn,•〉〈�rn, ◦ | · |�rm,◦〉〈�rm, • | − |�rn,•〉〈�rn, • | · |�rm,◦〉〈�rm, ◦ |)

+ γw

∑
〈n,m〉

(|�rn,◦〉〈�rn,φ| · |�rm,φ〉〈�rm, ◦ | − |�rn,◦〉〈�rn, ◦ | · |�rm,φ〉〈�rm,φ|), (13)

and L̃rw1 describes the transition where the number of particles is not conserved [8–10],

L̃rw1 =
√

c(1 − c) γB

∑
〈n,m〉

(|�rn,•〉〈�rn, • | · |�rm,φ〉〈�rm, ◦ | + �rn,•〉〈�rn, • | · |�rm,◦〉〈�rm,φ|

− |�rn,•〉〈�rn,φ| · |�rm,◦〉〈�rm, • | − |�rn,•〉〈�rn, ◦ | · |�rm,φ〉〈�rm, • |). (14)

By introducing the identity

1

s − L̃(θ∗)
= 1

s

(
1 + 1

s − L̃(θ∗)
L̃(θ∗)

)
, (15)

Eq. (12) can be rewritten as

sŜ( �m,s) = 1 +
∑

�n
〈{φ}|〈�n, • | 1

s − L̃(θ∗)
L̃(θ∗)|{φ}〉| �m,•〉.

(16)

In the lowest order approximation, the perturbation term
L̃rw1 is ignored in the numerator of Eq. (16) and we obtain

sŜ( �m,s) = 1 +
∑

�n
〈{φ}|〈�n, • |

× 1

s − L̃(θ∗)
(L̃rw0 + L̃rc)|{φ}〉| �m,•〉. (17)

By using Eq. (12) and the fact that the number of particles is
conserved for both L̃rw0 and L̃rc, Eq. (17) leads to

sŜ( �m,s) − 1 = γB(1 − c)
∑

j

[Ŝ( �m + �bj ,s) − Ŝ( �m,s)]

− k( �m)Ŝ( �m,s), (18)

where �m + �bj denotes a nearest neighbor of the site �m and
the sum is taken over all nearest neighbor sites. By the

inverse Laplace transformation, the equation for the survival
probability at time t of a pair with initial separation �m is
obtained:

∂

∂t
S( �m,t) = γB(1 − c)

∑
j

[S( �m + �bj ,t) − S( �m,t)]

− k( �m)S( �m,t). (19)

In the lowest order approximation, the site blocking effects by
inert particles reduces the transition rate. The transition rate is
reduced since jump to a neighboring site is allowed only when
the neighboring site is empty. The vacant probability is 1 − c

in the mean-field picture. Equation (19) is a mean-field result
in the sense that the reduction factor is given by 1 − c. The
transition rate of the reactant particle decreases linearly with
increasing concentration of inert particles.

For localized reactions, k ( �m) = k0δ �m,�0, the general solution
after the Laplace transformation is obtained as

Ŝ( �m,s) = 1

s

(
1 − Ĝ0( �m,s)k0

1 + Ĝ0(�0,s)k0

)
, (20)

where Green’s function

Ĝ0( �j,s) = 1 − ψ̂B(s)

s
U ( �j,s) (21)
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is given in terms of the lattice Green’s function [30]

U ( �j,s) = 1

(2π )d

∫
· · ·

∫ π

−π

dd �k exp(−i�k · �j )

1 − ψ̂B(s)λ(�k)
, (22)

where ψ̂B(s) is given by ψ̂B(s) = �B(1 − c)/[s + �B(1 − c)],
the structure factor is defined by λ(�k) ≡ 1

2d

∑2d
j=1 cos(�k ·

�bj/b), and b denotes the lattice spacing.
The recombination probability of a particle starting from

�m, κ( �m) = 1 − limt→∞ S( �m,t), is obtained as

κ( �m) = U ( �m,0)
�B (1−c)

k0
+ U (�0,0)

. (23)

Note that U ( �m,0) for any �m is independent of the concentration
of the inert particles, c, in the mean-field result. In the limit
of a perfectly absorbing boundary condition (k0 → ∞), the
recombination probability is independent of the concentration
of inert particles. For partially absorbing boundary condi-
tions the recombination probability increases by increasing
the concentration of inert particles. The escape probability,
limt→∞ S( �m,t), which is defined as the probability of a pair
with initial separation �m surviving at infinite time, is given by

ϕ( �m) = 1 − κ( �m). (24)

We have derived the simplest results on the survival
probability of a geminate pair by ignoring correlations higher
than the two-point correlation between the initial position and
the position at an arbitrary time. In the reaction-diffusion
equation thus derived, the presence of the inert particles
only reduces the diffusion coefficient linearly with increasing
concentration of inert particles, and the diffusion and the
reaction do not interfere. In the subsequent section, we show
that the diffusion and reaction interfere in the presence of inert
particles if we consider higher order correlations.

III. CORRECTION TO THE MEAN-FIELD EQUATION

If we ignore correlations higher than two-point correlations,
the Bardeen-Herring back correlation is not taken into account
[31]. The Bardeen-Herring back correlation takes place when
the reactant hops to a vacant site, leaving the previous occupied
site vacant; after the hopping the transition probability of the
reactant back to the previously occupied site is higher than
other sites. The velocity autocorrelation function in a lattice
gas shows a long time tail with a negative value due to the
Bardeen-Herring back correlation [11]. Suppose that a reactant
occupies a reactive site after a hopping. The rate of hopping
back to the previous site competes with that of the reaction. In

this way, the reaction interferes with the correlated diffusion.
Interference means that the reaction process and the diffusion
are not statistically independent. In this section, we study the
interference between the reaction and the correlated diffusion
by taking into account the Bardeen-Herring back correlation.
As in the previous section, we assume the initial uniform
distribution for the inert particles.

The effect of the interference between the reaction and the
correlated diffusions can be calculated as the correction to the
simple diffusion-reaction equation (17). The exact relation,
Eq. (16), can be rewritten as

sŜ( �m,s) = 1 +
∑

�n
〈{φ}|〈�n, • | 1

s − L̃(θ∗)

× (L̃rw0 + L̃rc)|{φ}〉| �m,•〉 + R̂( �m,s), (25)

where R̂( �m,s) represents the correction to Eq. (17) and is given
by

R̂( �m,s) =
∑

�n
〈{φ}|〈�n, • | 1

s − L̃(θ∗)
L̃rw1|{φ}〉| �m,•〉. (26)

By noticing L̃rw1 = L̃(θ∗) − L̃rw0 − L̃rc, we can prove the
operator identity,

1

s − L̃(θ∗)
= 1

s − L̃(θ∗)
L̃rw1

1

s − L̃rw0 − L̃rc
+ 1

s − L̃rw0 − L̃rc
.

(27)

L̃rw0 and L̃rc conserve the number of • in the bra and ket
notations, while L̃rw1 does not, so we have

〈{φ}|〈�n, • | 1

s − L̃rw0 − L̃rc
L̃rw1|{φ}〉| �m,•〉 = 0. (28)

If we substitute Eq. (27) into Eq. (26) and use Eqs. (28) and
(26) can be expressed as

R̂( �m,s) =
∑

�n
〈{φ}|〈�n, • | 1

s − L̃(θ∗)
L̃rw1

× 1

s − L̃rw0 − L̃rc
L̃rw1|{φ}〉| �m,•〉 (29)

=
∑

�n
Ŝ(�n,s)〈{φ}|〈�n, • |L̃rw1

× 1

s − L̃rw0 − L̃rc
L̃rw1|{φ}〉| �m,•〉, (30)

where the definition of Ŝ(�n,s) given by Eq. (12) is substituted.
By introducing the explicit expression of L̃rw1 given by
Eq. (14), we obtain

〈{φ}|〈�n, • |L̃rw1
1

s − L̃rw0 − L̃rc
L̃rw1|{φ}〉| �m,•〉

= γ 2
Bc(1 − c)

∑
r

∑
q

[G(�n•, �n + �br ◦ | �m•, �m + �bq◦, s) − G(�n + �br•, �n ◦ | �m•, �m + �bq◦, s)

−G(�n•, �n + �br ◦ | �m + �bq•, �m◦, s) + G(�n + �br•, �n ◦ | �m + �bq•, �m◦, s)]. (31)
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Here we define the four-point correlation function as

G(�ri•, �rj ◦ |�rk•, �r�◦, s)

= 〈{φ}|〈�ri, • |〈�rj , ◦ | 1

s − L̃rw0 − L̃rc
|{φ}〉|�rk,•〉|�r�,◦〉

(32)

using the abbreviations

〈{φ}|〈�ri,•|〈�rj ,◦| ≡
(

M ′′∏
�=1

〈�r�,φ|
)

〈�ri, • |〈�rj , ◦|, (33)

|{φ}〉|�ri,•〉|�rj ,◦〉 ≡
(

M ′′∏
�=1

|�r�,φ〉
)

|�ri,•〉|�rj ,◦〉, (34)

where M ′′ denotes that the site �ri and the site �rj are excluded
in the product. Equations (33) and (34) represent the state that
all sites are vacant except the site �ri occupied by the reactant
and the site �rj occupied by an inert particle. By substituting
Eqs. (30) and (31) in Eq. (25), we have

sŜ( �m,s) − 1 = γB(1 − c)
∑

�n

∑
r

Fc(�n, �m,�br,s)

× [Ŝ(�n + �br,s) − Ŝ(�n,s)] − k( �m)Ŝ( �m,s),

(35)

where the kernel F̂c(�n, �m,�br,s) is given by

F̂c(�n, �m,�br,s)

= δ�n, �m − γBc
∑

q

[G(�n•, �n + �br ◦| �m•, �m + �bq◦, s)

−G(�n•, �n + �br◦| �m + �bq•, �m◦, s)]. (36)

By the inverse Laplace transformation of Eq. (35), the
survival probability is shown to satisfy the diffusion-reaction
equation in which the diffusion term is expressed by the time
convolution with the nonlocal kernel, Fc(�n, �m,�br,t).

The time convolution represents the memory effect origi-
nating from the correlation between the mobile reactant and
the inert particles. Reactant motion is correlated with the
time-dependent arrangements of the inert particles through
prohibited double occupancy of the lattice sites. In particular,
the site occupied by the reactant becomes empty just after
the hopping of the reactant and the chance of back transition
to the previously occupied site is high. The back transition
probability of the reactant decreases as time proceeds because
the empty site generated by the hop of the reactant to a
vacant site may be occupied by another inert particle. The
time dependence of the back-jump correlation is the origin of
the memory effect.

In principle, the back-jump correlation competes with
reaction. Suppose that the reactant hops to the reactive site.
The probability of jump back to the previously occupied
site decreases as the reaction rate increases. Since Eq. (32)
includes the operator describing reaction, L̃rc, the diffusion
memory kernel, F̂c(�n, �m,�br,s), depends on the reaction rate.
To obtain F̂c(�n, �m,�br,s) we need to solve an equation for
G(�n•, �n + �br ◦| �m•, �r◦, s).

In Eq. (A2) of Appendix A, we show that the equation for
G(�n•, �n + �br ◦| �m•, �r◦, s) includes the reactive sink term. The

interference between the reaction and correlated diffusion is
taken into account by the four-point correlation function. In
the simplest theory given by the two-point function, Eq. (19),
the interference between the reaction and correlated diffusion
is not taken into account.

When the reactive sink strength changes according to the
distance from the origin, the diffusion term given in terms
of the four-point correlation function depends on the distance
from the origin accordingly. In addition, the presence of the
inert particles gives rise to correlation over distances as a result
of the excluded volume interactions between the inert particles
and the reactant. Interference between the reaction and the
correlated diffusion breaks down the translational invariance as
shown in Eq. (A2) of Appendix A, and the resultant equation is
hard to solve. In the next section, we use numerical simulations
to study the interference effect.

When we ignore the interference between the reaction and
correlated diffusion, the translational invariance is satisfied
for the four-point correlation functions. Under the translational
invariance, G(�n•, �n + �br ◦| �m•, �r◦, s) depends only on relative
vectors and satisfies

G(�n•, �n + �br ◦| �m•, �r◦, s)

= G(�n ′•, �n ′ + �br ◦|�0•, �r ′◦, s), (37)

where �n ′ = �n − �m and �r ′ = �r − �m. Since the number of
independent variables is reduced, it is convenient to introduce
a new notation

G(T )(�n ′•, �br ◦|�r ′◦, s) = G(�n ′•, �n ′ + �br ◦|�0•, �r ′◦, s). (38)

In this case, the time evolution equation for the survival
probability is expressed after the spatial Fourier transform as

∂

∂t
S(�k,t) =

∫ t

0
dt1M(k,t − t1)S(k,t1)

−
∑

�m
exp(i�k · �m)k( �m)S( �m,t). (39)

In the Laplace domain, M̂(k,s) can be regarded as a self-energy
or memory function and is expressed as

M̂(�k,s) = −�B(1 − c)[1 − λ(�k)] + γ 2
Bc(1 − c)T̂c(�k,s), (40)

where the correlations among the inert particles and the
reactant as a result of the excluded volume interactions are
included in

T̂c(�k,s) =
∑

q

∑
r

[1 − exp(−i�k · �br )]G̃(�k,�br |�bq,s)

× [1 − exp(i�k · �bq)], (41)

G̃(�k,�br |�r,s) =
∑

��
exp(i�k · ��)G(T )(�� ,�br |�r,s). (42)

The same form of memory function expressed in terms of
the four-point correlation function was derived by a different
method [32]. The equation for G̃(�k,�br |�r,s) is explicitly shown
in Eq. (A12) of Appendix A.
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In the limit of small wavelength, k → 0, Eq. (39) can be
expressed after the inverse Laplace transformation as

∂

∂t
S( �m,t) = DB(1 − c)

∑
j

∫ t

0
dt1fc(t − t1)∇2S( �m,t1)

− k( �m)S( �m,t), (43)

where the diffusion constant is defined by DB = b2γB , the
correlation factor in the Laplace domain is given for the
hypercubic lattices by

f̂c(s) = 1 − γBc
∑

r

[G(a)(�br |�br,s) − G(a)(�br | − �br,s)], (44)

and the initial condition is S( �m,t = 0) = 1. G(a)(�br |�bq,s) is
defined by

G(a)(�br |�bq,s) =
∑

�m
〈{φ}|〈�n, • |〈�n + �br, ◦|

× 1

s − L̃rw0
|{φ}〉| �m,•〉| �m + �bq,◦〉, (45)

which is independent of the choice of �n as shown in Eq. (A14)
of Appendix A. The equation for G(a)(�br |�bq,s) is known
and has been studied to obtain the tracer-diffusion coefficient
[8–10]. It is shown in Eq. (A14) of Appendix A. Its solution is
known and the correlation factor can be expressed as

f̂c(s) = 1 − μ(s)

1 − μ(s) γw+γB (1−3c)
γw+γB (1−c)

, (46)

where μ(s) is given by

μ(s) = 1

(2π )d

∫
· · ·

∫ π

−π

dd �k 2 sin2 k1

(s/γt ) + 2d[1 − λ(�k)]
, (47)

and γt = γw + γB(1 − c). In the original derivation of the
correlation factor f̂c(s) and the tracer-diffusion coefficient
by Nakazato and Kitahara, a projection operator method is
applied. Here, a reaction-diffusion equation for the survival
probability is derived directly without using the projection
operator method.

To take into account the memory effect on the transient
decay of the survival probability with reasonable simplicity,
Eqs. (20)–(22) are used with

ψ̂B(s) = �Bf̂c(s)

s + �Bf̂c(s)(1 − c)
. (48)

In this approximation, the lattice Green’s function valid
for finite wavelength is used together with the expression
of f̂c(s) derived in the limit of k → 0. In the subsequent
section, we show by comparison with simulation results that
the approximation gives reasonable results as long as the
interference between the reaction and the Bardeen-Herring
back correlation is absent.

The equation can be further simplified by ignoring the
memory in the diffusion kernel. In this approximation, the
survival probability and the recombination probability for
localized reactions can be calculated, respectively, from
Eqs. (20) and (23) by introducing the correlation factor into

the hopping frequency,

γB → γBfc, (49)

where the correlation factor fc = f̂c(s = 0) is given by

fc = 1 − μ

1 − μ
γw+γB (1−3c)
γw+γB (1−c)

, (50)

and μ = μ(s = 0) is known for some lattices. When the
hopping frequencies are the same for the inert particles and the
reactant, γw = γB , the value of μ is 0.20984 and 1 − (2/π ) =
0.363 for the cubic and the square lattice, respectively.

The summary of this section is as follows. We have
studied the influence of back-jump correlations on the survival
probability of a geminate pair when the initial distribution of
inert particles is uniform. When the mobile reactant hops to a
vacant site, the reactant tends to jump back to its previously
occupied empty site (the Bardeen-Herring back correlation).
In this way, the reactant motion is highly correlated with
the time-dependent arrangements of the inert particles. The
back-jump correlations interfere with reaction. In principle,
the interference can be taken into account by Eqs. (35) and
(36) with Eq. (A2). However, in practice these equations are
hard to solve. If the interference is ignored, the influence of
back-jump correlations is taken into account by Eqs. (39)–(42)
with Eq. (A12). By introducing the further simplification
of ignoring the memory effect, we obtain Eq. (19) with
substitution given by Eq. (49). In the next section, these
results will be compared with those obtained by numerical
simulations.

IV. COMPARISON TO SIMULATION RESULTS

A. Simulation method

To see the interference of the reaction with the correlated
diffusion, we perform Monte Carlo numerical simulations. We
numerically obtain the probability of geminate reaction in the
presence of site-blocking effects using a kinetic Monte Carlo
method. The simulation is carried out on the simple cubic
lattice. One reactant is placed at the lattice site (0,0,0) and
assumed to be immobile. The other reactant is initially placed
at (j,0,0), where j is an integer and the lattice constant is unity.
Inert particles are randomly generated at lattice sites within the
box (0,L − 1)3, where L is the box length. The number of inert
particles N is related to their concentration by c = N/L3.
Each lattice site may accommodate only one inert particle
or the mobile reactant. We assume that the inert particles
belonging to the box (0,L − 1)3 are periodically replicated in
three dimensions, so that the simulation volume is effectively
unlimited. What should be noted is that the spatial periodicity
is assumed only for the distribution of inert particles, and
not for the reactants themselves. During the simulation, both
the inert particles and the mobile reactant may perform hops
to neighboring lattice sites. A hop is allowed only when the
destination site is not occupied by another inert particle or the
mobile reactant. However, both types of simulated particles are
allowed to jump to (0,0,0). If the mobile reactant is staying at
(0,0,0), its reaction with the other reactant is possible.

The procedure of selecting the event that actually takes
place at a given simulation step is as follows. First, we
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determine all possible hops for the mobile reactant and inert
particles. We denote the numbers of such hops as K and Kin,
respectively. If the mobile reactant is staying at a site other
than (0,0,0), the total rate of all possible events is calculated
as ktot = KγB + Kinγw. Otherwise, the total rate includes the
rate of reaction and is calculated as ktot = KγB + Kinγw + k0.
Now, we determine which event will actually take place. This is
decided at random, taking the ratio of the rate of each possible
event to the total rate ktot as the event probability. The above
procedure is repeated until either a reaction occurs or the mo-
bile reactant separates to a large distance rmax from (0,0,0). By
repeating the simulation for a large number (at least 2 × 104) of
independent runs, we can obtain the reaction probability. The
accuracy of the simulation results depends on two parameters:
L and rmax. They should be taken as large as possible within
the practical limits imposed by the available computational
time (the demand on computer time is especially high at large
concentrations of inert particles). In the production runs of the
simulation, we assumed L = 10 and rmax = 30. From test cal-
culations carried out also for other values of these parameters,
we found no significant effect of L on the obtained results.
However, a weak dependence of the reaction probability on
the value of rmax could be observed. For example, the reaction
probability obtained for j = 3 and c = 0 with rmax = 60 was
about 2% higher than that calculated with rmax = 30.

B. Simulation results

We investigate quantitatively the effects of the factors
ignored in deriving a simple result, Eq. (19), by comparison
to the more rigorous theoretical results and the simulation
results. One of the factors ignored is the Bardeen-Herring back
correlation, which is described by the four-point correlation
function given in Appendix A. The Bardeen-Herring back
correlation is taken into account fully by Eqs. (39)–(42) and
partly by Eq. (19) with Eq. (49). Equation (49) is obtained from
Eqs. (39)–(42) by taking the limit of the small wavelength
k → 0 and ignoring the memory effect. Equation (19) with
Eq. (49) is much simpler than Eqs. (39)–(42). The numerical
way to solve Eqs. (39)–(42) with Eq. (A12) is given in
Appendix A.

Another factor ignored is the effect of the interference
between the reaction and the Bardeen-Herring back corre-
lation. The interference is taken into account in the results of
numerical simulations but is ignored in any theoretical results
including the most sophisticated one given by the solution of
Eqs. (39)–(42).

The recombination probability in the completely diffusion-
controlled limit, k0 → ∞, is shown in Fig. 1. The simulation
results are compared to the numerical solutions of Eqs. (39)–
(42). In the theoretical results the influence of the reaction
on the four-point correlation function is ignored. As shown in
Fig. 1, the reaction’s influence on the four-point correlation
function is relatively small for all concentrations of inert
particles as far as the overall yield (recombination probability)
is concerned. However, Fig. 1 shows small deviation at high
concentration of inert particles for the initial separation of
j = 1. The deviation is not an effect of statistical error of the
simulation. We will discuss this point later when we study
transient decay of the survival probability.

FIG. 1. (Color online) Recombination probability of a geminate
pair against concentration of inert particles c for k0 → ∞ (in the
simulation, k0/γB = 106) and γw/γB = 1. j indicates the initial
separation of the geminate pair. Dots with error bars indicate the
simulation results. Squares represent the numerical solutions of
Eqs. (39)–(42) with Eq. (A12). Dashed lines indicate the mean-field
results of Eq. (23). The results of Eq. (23) with the substitution given
by Eq. (49) practically coincide with those of Eq. (23).

In the completely diffusion-controlled limit, k0 → ∞, the
recombination probability obtained from Eq. (23) with the sub-
stitution given by Eq. (49) is independent of the concentration
of the inert particles. This result is not a rigorous relation. It is
obtained by the oversimplification of taking the limit of small
wavelength, k → 0, and ignoring the interference between the
reaction and the Bardeen-Herring back correlation. However,
the difference between the result of the simplified equation,
Eq. (23) with Eq. (49), and that obtained without taking the
limit of the long wavelength, Eqs. (39)–(42), is also very small.
Figure 1 indicates that the simplified approach which leads to
Eq. (23) with Eq. (49) is justified for the calculation of the
recombination probability in the diffusion-controlled limit.

The recombination probability in the case of finite reactivity
is shown in Fig. 2. The influence of the reaction on the four-
point correlation function can be seen as the difference between
the simulation results and the numerical solutions of Eqs. (39)–
(42). In the reaction-controlled limit, the difference is very
small for all concentrations of the inert particles regardless of
the initial distance of a geminate pair. The difference between
the simplified results obtained in Eq. (23) with Eq. (49) and
the solutions of Eqs. (39)–(42) is again negligibly small.

We also compare the transient decay of the survival
probability obtained from simulations with theoretical results
of Eqs. (20)–(22) with Eq. (48) to study the effect of
interference between the reaction and the Bardeen-Herring
back correlation. Figure 3(a) shows that the theoretical results
reproduce the simulation results in the reaction-controlled
limit (k0/γB = 1.0) over the whole time range regardless of
the concentration of inert particles. As we have theoretically
shown in the previous section, the interference between the
reaction and the Bardeen-Herring back correlation changes
the diffusion term through four-point correlation functions,
leaving the reaction term unaltered. The interference could
be dominated in the diffusion-controlled limit but should be
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(a)

(b)

FIG. 2. (Color online) Recombination probability of a geminate
pair against the concentration of the inert particles c when γw/γB = 1.
(a) k0/γB = 1.0 and (b) k0/γB = 0.5. j indicates the initial separation
of the geminate pair. Dots with error bars indicate the simulation
results. Squares represent the numerical solutions of Eqs. (39)–(42)
with Eq. (A12). The results of Eq. (23) with the substitution given
by Eq. (49) are indicated by the solid lines. Dashed lines indicate the
mean-field results of Eq. (23).

small in the reaction-controlled limit. Figure 3(a) indicates
that the approximation used for finite k in Eqs. (20)–(22) and
(48) is valid as long as interference between the reaction and
the Bardeen-Herring back correlation can be ignored. Figure
3(b) shows that in the diffusion-controlled limit the theoretical
results agree with the simulation results in the absence of
inert particles. However, when the concentration of inert
particles is high (c > 0.5), the survival probability obtained
from simulation decays faster than that in the theoretical
results. The acceleration of the decay should be attributed
to the influence of the interference between the reaction and
the Bardeen-Herring back correlation.

As the conclusion of this section, we point out that the
interference between the reaction and the Bardeen-Herring
back correlation is most pronounced in the transient decay
of the survival probability in the diffusion-controlled limit at
high concentration of inert particles. As far as the reaction
yield is concerned, the mean-field results given by Eq. (19)

(a)

(b)

FIG. 3. (Color online) Survival probability as a function of γBt

for the initial separation of j = 1. (a) k0/γB = 1.0 and (b) k0/γB =
106. Concentrations of inert particles are shown in figures. Symbols
represent the simulation results. Lines indicate the theoretical results
of Eqs. (20)–(22) with Eq. (48).

reproduce the simulation results regardless of reaction strength
and the concentration of the inert particles when the density
of the inert particles is uniform. The result can be improved
by introducing the substitution given by Eq. (49) into Eq. (19)
to take into account the Bardeen-Herring back correlation.
Generalization of Eq. (19) to the case of continuous diffusion
and nonuniform distribution of inert particles is shown in the
subsequent sections.

V. INHOMOGENEOUS DISTRIBUTION
OF INERT PARTICLES

So far, we have assumed the homogeneous distribution
of inert particles. Recently, the influence of inhomogeneous
distributions of inert particles is taken into account to study
catalytic surface reactions, in particular focusing on reaction
front structures [33–38]. In this section, we study geminate
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reactions under the inhomogeneous distribution of inert par-
ticles. Since we are not able to solve the lattice model for
nonuniform initial distribution of inert particles with the same
rigor as that under uniform distribution of inert particles, we
study the results in the continuous limit by using the mean-field
approximation. We consider the pair distribution p(�r,t) of
finding a pair of reactants at the separation �r at time t . As
shown in Appendix B, the lattice model considered in this
paper leads to

∂

∂t
p(r,t) = �∇ · DB{[1 − cv(�r,t)] �∇p(r,t) + p(r,t) �∇cv(�r,t)}

− k(r)p(r,t), (51)

in the continuous limit, where the diffusion constant is defined
by DB = b2γB and the concentration of inert particles is
denoted by cv(�r,t). The first term on the right-hand side
includes the diffusion term influenced by the concentration
gradient of inert particles [33–38] and the drift term is induced
by the spurious potential defined by

U = −kBT ln [1 − cv(r,t)] . (52)

Equation (51) can be rewritten in terms of the potential as

∂

∂t
p(r,t) = �∇ · DB[1 − cv(�r,t)]

[
�∇p(r,t) + p(r,t)

�∇U

kBT

]
− k(r)p(r,t). (53)

The perfectly reflecting boundary condition at R is imposed
to express that the reactants cannot penetrate each other.

We calculate the escape probability on the basis of Eq. (53).
We consider the case that the density of the inert particles
is stationary and inhomogeneous. Both the intrinsic reaction
rate and the density of the inert particles are assumed to be
isotropic. The equation for the survival probability is obtained
from Eq. (53) by introducing the adjoint operator as [39–41]

∂

∂t
S(r,t) = �∇ · DB[1 − cv(r)] �∇S(r,t)

−DB[ �∇cv(r)] · �∇S(r,t) − k(r)S(r,t), (54)

where �∇ in the square brackets operates only on cv(r). The
perfectly reflecting boundary condition at r = R is represented
by

∂

∂r
S(r,t)

∣∣∣∣
r=R

= 0. (55)

When the reaction takes place at the reaction radius R with the
intrinsic rate k0 [42], the equation for the escape probability
defined by ϕ(r) = limt→∞ S(r,t) in d dimensions satisfies

1

rd−1
exp

(
U

kBT

)
∂

∂r
DB[1 − cv(r)]rd−1

× exp

(
− U

kBT

)
∂

∂r
ϕ(r) = 0, (56)

using the potential defined by Eq. (52). The boundary
conditions are given by limr→∞ ϕ(r) = 1 and

SdDB[1 − cv(r)]
∂

∂r
ϕ(r)

∣∣∣∣
r=R

= k0ϕ(R), (57)

where the surface area of the d-dimensional sphere is
given by Sd = dπd/2/�[(d/2) + 1]. For 2 and 3 dimensions,
S2 = 2πR and S3 = 4πR2. The solution of Eq. (56) subject
to the above mentioned boundary conditions is obtained as

ϕ(r) =
∫ r

R
dr1

1
DB [1−cv (r1)]2rd−1

1
+ Sd

k0

1
[1−cv (r)]Rd−1∫ ∞

R
dr1

1
DB [1−cv (r1)]2rd−1

1
+ Sd

k0

1
[1−cv (r)]Rd−1

. (58)

In the limit of perfectly absorbing boundary condition, the
escape probability simplifies into,

ϕ(r) =
∫ r

R

dr1
1

[1 − cv(r1)]2rd−1
1

/∫ ∞

R

dr1
1

[1 − cv(r1)]2rd−1
1

.

(59)

According to Eq. (59), the escape probability is independent
of the density of the inert particles when the density is
homogeneous. This result is consistent with that obtained
in the lattice system in Sec. IV. On the other hand, when
the density of the inert particles is inhomogeneous, the
escape probability in general depends on the density of the
inert particles. The escape probability is lower than that for
the homogeneous density of inert particles if cv(r) has a
positive slope. The recombination reaction can be assisted by
a positive density gradient of the inert particles. On the other
hand, the recombination can be hindered by a negative density
gradient of the inert particles.

VI. CONCLUSIONS

In this paper, the time evolution equations for the survival
probability of a geminate pair under the presence of many
inert particles are derived and the results are compared to
the simulation results. If we ignore correlations higher than
two-point correlations, Eq. (19) is derived. In this lowest order
approximation, the influence of inert particles is described by
using the mean-field expression of the tracer-diffusion constant
in the reaction-diffusion equation.

In the lowest order approximation, the so-called Bardeen-
Herring back correlation is not taken into account. The
Bardeen-Herring back correlation is the tendency of the
preferred jump of the diffusing particle back to the previously
occupied empty site. We have shown that the reaction
interferes with the Bardeen-Herring back correlation. In the
reaction-diffusion equation, the transition operator describing
diffusion is influenced by the reaction strength while leaving
the reaction term unaltered. If the interference between the
reaction and the Bardeen-Herring back correlation is taken
into account, the reaction-diffusion equation becomes very
complicated and cannot be solved analytically. By taking into
account the Bardeen-Herring back correlation but ignoring the
interference between the reaction and the Bardeen-Herring
back correlation, we obtain the reaction-diffusion equation
given in terms of the improved expression of the tracer-
diffusion constant. The influence of the excluded volume
interactions is taken into account solely by the tracer-diffusion
constant. The tracer-diffusion constant decreases by increasing
the concentration of the inert particles since the diffusive
motion of the reactive species is hindered by the presence
of the inert particles.
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By comparison of the theoretical results with the results of
numerical simulations, the interference between the reaction
and the Bardeen-Herring back correlation is shown to be
small as far as the overall reaction yield is concerned. The
interference also influences the transient decay of the survival
probability of a geminate pair in the diffusion-controlled
limit. When the initial concentration of the inert particles
is high, we show that interference between the reaction and
the Bardeen-Herring back correlation accelerates the transient
decay of the survival probability in the diffusion-controlled
limit.

Recently, Schmit et al. studied the reaction in a microfluid
by the Monte Carlo simulation [26]. The simulation results
are well approximated by the survival probability of a pair
of reactants obtained from the reaction-diffusion equation
similar to Eq. (19): it is suggested to use the reaction-
diffusion equation in which the mutual diffusion coefficient
is substituted by the effective tracer-diffusion coefficient of a
tagged particle in a sea of inert particles [26]. They calculated
the mean first passage time instead of the survival probability.
Since the mean first passage time can be given in terms
of the inverse of the overall reaction rate, their results are
consistent with our conclusion, although the slightly different
expression of the effective tracer-diffusion coefficient is used
in their equation. According to our work, the approximation
would fail in the transient decay of the survival probability
in the diffusion-controlled limit at high concentration of inert
particles.

The above conclusions are obtained by assuming the
homogeneous distribution of the inert particles. We have
also formulated a way to obtain the survival probability of
a geminate pair when the initial distribution of inert particles
is inhomogeneous. The reaction yield is increased when the
reaction proceeds in the presence of a positive density gradient
of the inert particles which inhibits the escape of reactants. The
effect can be interpreted as a cage effect. Although we need
further investigation for the kinetics of the survival probability
in the presence of the density gradient of the inert particles,
our results on the escape probability indicate that the crowding
promotes reactions when the density of the inert particles
increases with the distance from the location of the immobile
reactant.

Recently, the cage effect of crowding by inert particles
was introduced by Kim and Yethiraj to interpret the increase
of association rate constant with increasing the concentration
of inert particles obtained by Brownian dynamic simulations
when the intrinsic reaction rate constant was small [7]. The
cage effect in this paper is similar to that introduced by them
in the sense that the presence of inert particles surrounding
a reactant pair promotes the reaction, but the mechanism
is slightly different. In our case, the concentration gradient
toward one of the reactant pair assists the recombination
reaction, while the association rate in their case increases
by the increase of the recollision probability due to the high
concentration of inert particles rather than the concentration
gradient.

APPENDIX A: DIFFUSION KERNEL

By introducing the operator identity
1

s − L̃rw0 − L̃rc
= 1

s

[
1 + 1

s − L̃rw0 − L̃rc
(L̃rw0 + L̃rc)

]
(A1)

into Eq. (32) and from the definition given by Eq. (32), we derive

sG(�n•, �n + �br ◦| �m•, �r◦, s) − δ�r,�br
δ�n, �m

=
∑

α

[γwG(�n•, �n + �br ◦| �m•, �r + �bα◦, s) + γB(1 − c)G(�n•, �n + �br ◦| �m − �bα•, �r + �bα◦, s)

− γtG(�n•, �n + �br ◦| �m•, �r◦, s)] − δ�r,�0
∑

α

[γwG(�n•, �n + �br ◦ | �m•, �bα◦, s)

+ γB(1 − c)G(�n•, �n + �br ◦| �m − �bα•, �bα◦, s)] +
∑

α

δ�r,�bα
[γBcG(�n•, �n + �br ◦| �m + �bα•, − �bα◦, s)

+ (γt − γBc)G(�n•, �n + �br ◦| �m•, �bα◦, s)] − k( �m)G(�n•, �n + �br ◦| �m•, �r◦, s), (A2)

where

γt = γw + γB(1 − c). (A3)

In the presence of k( �m), G(�n•, �n + �br ◦| �m•, �r◦, s) does not satisfy the condition of translational invariance of �m against �n.
If we ignore k( �m) in Eq. (A2), the translational invariance is satisfied. The equation for G(T )(��,�br |�r,s) introduced in Eq. (38)

is given by

sG(T )(��,�br |�r,s) − δ�r,�br
δ��,�0 =

∑
α

[γwG(T )(��,�br |�r + �bα,s) + γB(1 − c)G(T )(�� − �bα,�br |�r + �bα,s)

− γtG
(T )(��,�br |�r,s)] − δ�r,�0

∑
α

[γwG(T )(��,�br |�bα,s) + γB(1 − c)G(T )(�� − �bα,�br |�bα,s)]

+
∑

α

δ�r,�bα
[γBcG(T )(�� + �bα,�br | − �bα,s) + (γt − γBc)G(T )(��,�br |�bα,s)]. (A4)
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By applying Fourier transformation,

g(�k,�br |�h,s) =
∑

��

∑
�r

exp[i(�k · �� + �h · �r)]G(T )(��,�br |�r,s), (A5)

G̃(�k,�br |�r,s) =
∑

��
exp[i�k · ��]G(T )(��,�br |�r,s), (A6)

we obtain

sg(�k,�br |�h,s) = exp(i �h · �br ) +
∑

α

[ωt (�bα) exp(−i �h · �bα) − γt ]g(�k,�br |�h,s)

+
∑

α

[exp(−i �h · �bα)ωB(�bα)c + γs exp(i �h · �bα) − ωt (�bα)]G̃(�k,�br |�bα,s), (A7)

where we define

γs = γt − γBc, (A8)

ωB(�r) = γB exp(i�k · �r), ωt (�r) = γw + γB(1 − c) exp(i�k · �r). (A9)

It is convenient to introduce the function

Q(�k,�r,s) = 1

(2π )d

∫
· · ·

∫ π

−π

dd �h exp(−i �h · �r)

s + �t − �t (�k,�h)
, (A10)

where �t = 2dγt , and �t (�k,�h) is defined by

�t (�k,�h) = 2d[γwλ(�h) + γB(1 − c)λ(�k − �h)]. (A11)

A closed set of equations can be obtained from Eq. (A7) as

G̃(�k,�br |�bq,s) = Q(�k,�bq − �br,s) +
∑

α

[γsQ(�k,�bq − �bα,s) + ωB(�bα)cQ(�k,�bq + �bα,s) − ωt (�bα)Q(�k,�bq,s)]G̃(�k,�br |�bα,s).

(A12)

The solution is independent of the position of the reactive sink in this approximation. By introducing the solution of Eq. (A12)
into Eq. (41) and using Eqs. (39) and (40), the survival probability is obtained after numerical inverse Laplace transformation
and inverse Fourier transformation.

An equation for G(a)(�br |�r,s) is obtained by applying the operator identity,

1

s − L̃rw0
= 1

s

(
1 + 1

s − L̃rw0
L̃rw0

)
, (A13)

as [8–10]

sG(a)(�br |�r,s) − δ�r,�br
=

∑
α

γt [G
(a)(�br |�r + �bα,s) − G(a)(�br |�r,s)] − δ�r,�0

∑
α

γtG
(a)(�br |�bα,s)

+
∑

α

δ�r,�bα
[γBcG(a)(�br | − �bα,s) + (γt − γBc)G(a)(�br |�bα,s)]. (A14)

The solution depends on a position of an inert particle through its relative vector against the initial position of a mobile reactant.

APPENDIX B: EXCLUDED VOLUME INTERACTIONS UNDER INHOMOGENEOUS DISTRIBUTION OF INERT PARTICLES

Since the particle jumps to a vacant site, p(�r,t) obeys

∂

∂t
p(�r,t) = γB

∑
j

[p(�r + �bj•, �rφ,t) − p(�r•, �r + �bjφ,t)] − k(�r)p(�r,t), (B1)

where p(�r•, �r ′φ,t) denotes the joint probability at time t that the site �r is occupied by a reactive particle and the site �r ′ is empty.
We note the relation [34,35,43]

p(�r•, �r ′φ,t) = p(�r,t) − p(�r•, �r ′◦, t) − p(�r•, �r ′•, t), (B2)
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where p(�r•, �r ′◦, t) and p(�r•, �r ′•, t) denote the joint probabilities at time t that the site �r is occupied by a reactive particle and
the site �r ′ is occupied by an inert particle and that both sites are occupied by reactive particles, respectively. Equation (B1) can
be rewritten as

∂

∂t
p(�r,t) = γB

∑
j

[p(�r + �bj•, t) − p(�r•, t) − p(�r + �bj•, �r◦, t) + p(�r•, �r + �bj◦, t)] − k(�r)p(�r,t). (B3)

By assuming that the pair correlation function depends on the distance vector between the reactant and the inert particle alone,
the joint probability function can be written as [44]

p(�r•, �r ′◦, t) = p(�r,t)c(�r ′,t)σ (�r − �r ′), (B4)

where the occupation probability by an inert particle is denoted by c(�r,t). When the spatial variation of σ (�r) is smaller than
p(�r,t) and c(�r,t), we obtain in the limit of small lattice spacing,∑

j

p(�r + �bj•, �r◦, t) = [p(�r,t)c(�r,t) + b2c(�r,t)∇2p(�r,t)]σ (0), (B5)

∑
j

p(�r•, �r + �bj◦, t) = [p(�r,t)c(�r,t) + b2p(�r,t)∇2c(�r,t)]σ (0), (B6)

where limb→0 σ (�bj ) = σ (0). By introducing Eqs. (B5) and (B6), Eq. (B3) in the limit of b → 0 becomes

∂

∂t
p(�r,t) = �∇ · DB{[1 − σ (0)cv(�r,t)] �∇p(�r,t) + σ (0)p(�r,t) �∇cv(�r,t)} − k(�r)p(�r,t), (B7)

where DB = b2γB and the concentration of inert particles is denoted by cv(�r,t) in the continuum limit. In the mean-field
approximation in which σ (0) = 1, the derivation follows from that given previously [34,35]. Equation (B7) can be expressed in
terms the correlation factor as

∂

∂t
p(�r,t) = �∇ · DB{[1 − cv(�r,t)]fc

�∇p(�r,t) + σ (0)p(�r,t) �∇cv(�r,t)} − k(�r)p(�r,t), (B8)

where σ (0) = fc + (1 − fc)/cv(r,t). fc is given by Eq. (50), though, strictly speaking, the calculation of the correlation factor fc

is restricted to the homogeneous distribution of inert particles. In the mean-field approximation, we have σ (0) = 1 and Eq. (B7)
leads to Eq. (51).
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