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Time needed to board an airplane: A power law and the structure behind it
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A simple model for the boarding of an airplane is studied. Passengers have reserved seats but enter the airplane
in arbitrary order. Queues are formed along the aisle, as some passengers have to wait to reach the seats for
which they have reservation. We label a passenger by the number of his or her reserved seat. In most cases the
boarding process is much slower than for the optimal situation, where passenger and seat orders are identical. We
study this dynamical system by calculating the average boarding time when all permutations of N passengers
are given equal weight. To first order, the boarding time for a given permutation (ordering) of the passengers is
given by the number s of sequences of monotonically increasing values in the permutation. We show that the
distribution of s is symmetric on [1,N ], which leads to an average boarding time (N + 1)/2. We have found
an exact expression for s and have shown that the full distribution of s approaches a normal distribution as N

increases. However, there are significant corrections to the first-order results, due to certain correlations between
passenger ordering and the substrate (seat ordering). This occurs for some cases in which the sequence of the
seats is partially mirrored in the passenger ordering. These cases with correlations have a boarding time that is
lower than predicted by the first-order results. The large number of cases with reduced boarding times have been
classified. We also give some indicative results on the geometry of the correlations, with sorting into geometry
groups. With increasing N , both the number of correlation types and the number of cases belonging to each
type increase rapidly. Using enumeration we find that as a result of these correlations the average boarding time
behaves like Nα , with α � 0.69, as compared with α = 1.0 for the first-order approximation.
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I. INTRODUCTION

Many systems display large variability: in geometrical
structure, in response to a constant driving, in temporal be-
havior. In several cases, the probability distribution functions
of relevant quantities have unusual, highly asymmetric forms.
Complexity is a broad and imprecise term often used for these
systems.

Theoretical models often contain a large number of particles
that move according to local or global rules (interactions). A
classical example is diffusion-limited aggregation, a pattern-
growth model that mimics several experimental situations
realistically [1,2]. In many cases analytical results are not
available, and only numerical simulations can give some
information on how relevant quantities depend on system size.

Furthermore, if the aim is to develop approaches that
are general, and not only useful for specific systems, one
needs general ways to characterize the particle configurations.
These configurations may constitute initial conditions or
arise during the dynamics. In most cases the particles are
indistinguishable. An important one-dimensional variant is
the asymmetric exclusion process [3,4]. We consider here,
however, distinguishable particles in one dimension. This has
several consequences: The number of initial configurations
of N particles is N !. Even though this is a large number,
the configurations may be organized systematically and in an
identical way for several models. The substrate on which the
process operates can in some cases be described similarly, as
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for the present model. This allows one to study complexity as
a matching problem.

This article is organized as follows. In Sec. II we describe
the passenger boarding problem, discuss briefly previous work,
and define the model to be studied. The main quantity of
interest to us, the average boarding time, is discussed in
Sec. III. Calculations underlying a first-order result for the
average boarding time are given in Sec. IV. Second-order cor-
rections arise due to correlations between passenger ordering
in the queue and the row ordering, as discussed in Sec. V.
Some concluding remarks are given in Sec. VI.

II. THE MODEL SYSTEM

We consider the time needed to board an airplane. The
passengers have reserved seats, but enter the airplane in
arbitrary order. As a result, many passengers must wait in the
aisle while their fellow travelers load their carry-on luggage.
Several approaches have been suggested to shorten the total
boarding time. These include observations of boarding designs
that are being used, estimation of parameters, simulations, and
mathematical modeling at various levels of sophistication and
for specified airplane layouts [5–16].

Here we consider a simplified situation, with only one seat
in each row. In this model there will therefore be no bottlenecks
in the boarding process due to already seated passengers that
must get up to allow a passenger in an inside seat. Moreover,
we assume that the time needed to advance along the aisle
is negligible compared to the time needed to place carry-on
luggage and get seated. In each time step all passengers that
have reached their reserved seats get seated. The seats are
numbered sequentially starting with 1 near the entrance door,
and we label the passengers with the number of the passenger’s
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reserved seat. We assume that a passenger standing in the aisle
queue takes up the same space as one seat.

The number of time steps needed for boarding N passen-
gers, T , depends sensitively on the sequence in which the
passengers are lined up. T takes all integer values from 1 to N .
The value T = 1 corresponds to having the passengers lined
up as 1,2,3, . . . ,N , with passenger N in front, so that there
is a perfect match between the queue and the row structure.
T = N corresponds to the inverse ordering.

In Fig. 1 some boarding configurations for N = 5 are
shown. Figures 1(a) and 1(e) illustrate the configurations with
minimum and maximum boarding times, respectively. An
intermediate case is shown in Fig. 1(b). The ordering 12 435,
with 5 in front, consists of two sequences with monotonically
increasing values. Each sequence gets seated in a single time
step, so in this case T = 2. There is a large number of
intermediate cases, in which some but not all passengers are
seated simultaneously.

Our model is simple, with a (uniform) time delay for a
passenger to take a seat and N ! queue orderings as the only
ingredients. In attempts to get closer to the real situation,
previous studies have incorporated effects like assigning
to each passenger one, two, or three pieces of luggage
and assuming increasing loading times as bins fill up [5];
minimizing passenger interferences using groups [6,8,16];
allowing a passenger in the queue to move one row forward
per time step if there is free space [7]; assigning to each seat
an energy that characterizes how desirable it is to passengers
(no seat reservation) [10]; defining a parameter for the aisle
length occupied by a passenger [15]. As a consequence of this
variety, it is difficult to compare results from previous models,
an observation made earlier in Ref. [9].

III. THE AVERAGE BOARDING TIME

In contrast to most previous studies, we are not primarily
interested in finding optimal boarding designs. Instead, we
determine 〈T (N )〉, the average number of time steps needed
to seat N passengers at N reserved seats, when all permutations
of passengers are equally likely. We use 〈T (N )〉 as a simple
characterization of the boarding model described in Sec.
II above. Specifically, we are interested in the functional
dependence of this average time upon N .

The calculation of the average boarding time involves two
stages: To first order, T for a given configuration (permutation)
is equal to the number s of sequences of increasing values
along the direction of motion (which is to the right in Fig. 1).
For the configuration in Fig. 1(b), for example, T = s = 2.
The average boarding time can then be obtained directly from
the probability distribution function for s. We show in Sec. IV
below that this probability distribution function is symmetrical
on [1,N ]. As a result, the average boarding time 〈T (N )〉 is

〈T (N )〉 = N + 1

2
∝ N. (1)

However, due to certain structures in the queues, the
boarding time may be lower than the number s of increasing
sequences. An example is the configuration in Fig. 1(c), for
which T = s = 3, but the actual boarding time t = 2. The
reason is that the passenger labeled 1 is seated together with
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FIG. 1. Five configurations (queues) for boarding, with N = 5
passengers. The direction of motion is to the right. Each line
represents one time step, during which one or more passengers are
being seated, leaving others to wait. Seated passengers are removed
from the queue, rendering it possible for other passengers to reach
they reserved positions (seats) in the succeeding time step. Each
passenger is identified (labeled) by the number of the reserved seat.
On the left hand, each configuration is shown before entering the aisle,
with sequences of increasing values (along the direction of motion)
underlined (see text). The time to complete boarding ranges from
T = 1 in (a) to T = 5 in (e), with some intermediate cases shown in
(b), (c), and (d).

the sequence 35 in front. As a result, the two sequences 2 and
14 are reduced to one (24). One notes that passengers 1 and
3 have the same relative order and distance (in the queue) as
their reserved seats have (on the “substrate”). We reserve T

for the boarding time of one particular permutation in terms
of the initial number of sequences of increasing label values.
For any case, T = s. The actual boarding time is t . For any
permutation, t � T .

These correlations, that is, correlations between queue
and substrate, lead to reduced boarding times for some of
the permutations (queue configurations). The symmetrical
probability distribution function for boarding times is thus
altered into an asymmetrical one, and the average boarding
time is no longer given by the simple formula in Eq. (1). A
more systematic treatment of correlations is given in Sec. V.
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TABLE I. Values of a(N,s) for N = 1 (top line) to N = 6 (bottom
line), with s increasing from 1 to N in each line.

N 1
↓ 1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

s →

IV. FIRST ORDER: SEQUENCES

As discussed above, the number of time steps needed for
boarding to be completed is at most equal to the number s

of increasing sequences in the permutation of 1,2, . . . ,N ,
corresponding to the passenger lineup before entering the
cabin. In Sec. IV A we establish a recursion relation and from
it the symmetry property that leads to Eq. (1). Furthermore, we
determine the distribution of s values for a given N . This is an
interesting problem by itself and will yield an upper bound for
t and its average. In Sec. IV B we show that this distribution
approaches the normal distribution when N increases, and in
Sec. IV C we give an explicit expression for the distribution.

A. Probability distribution properties

By a(s,N ) we denote the number of permutations of
N integers containing s sequences of increasing numerical
values. When all N ! permutations of the integers are assumed
to be equally probable, the probability p(s,N ) to find a given
value of s equals

p(s,N ) = a(s,N )

N !
. (2)

We noted in Sec. II that there is merely one permutation
with s = 1, and one with s = N . Thus,

a(1,N ) = a(N,N ) = 1. (3)

By straight enumeration it is easy to determine a(s,N ) for
small values of N (see Table I). A striking symmetry, a(s,N ) =
a(N + 1 − s,N ), is apparent for each of these values of N .

We may establish a recursion relation for a(s,N ) in the
following way. Consider the effect of adding the integer 1
to all permutations of 2,3, . . . ,N . The emerging permuta-
tions of N integers with s increasing sequences result from
(N − 1)-permutations with s or s − 1 such sequences. When
1 is inserted to the left of a sequence, it merges with that
sequence resulting in no increase in the number of sequences.
When 1 is inserted elsewhere, the number of sequences in the
(N − 1)-permutation is increased by unity. Thus, we have

a(s,N ) = s a(s,N − 1) + (N + 1 − s) a(s − 1,N − 1). (4)

Using induction, we prove from this recursion relation the
symmetry apparent in Table I,

a(s,N ) = a(N + 1 − s,N ). (5)

From (4) we have

a(N + 1 − s,N ) = (N + 1 − s) a(N + 1 − s,N − 1)

+ s a(N − s,N − 1). (6)

We assume that the symmetry (5) holds for N − 1 so that
a(s,N − 1) = a(N − s,N − 1). Using this on the right-hand
side of (6) gives the result

a(N + 1 − s,N ) = (N + 1 − s) a(s − 1,N − 1)

+ s a(s,N − 1). (7)

Comparison with (4) yields a(s,N ) = a(N + 1 − s,N ), the
symmetry holds for N . Since the symmetry clearly is valid for
some N , N = 3, for example, it must hold for all values of N .

The symmetry property gives at once the average

〈s〉N = (N + 1)/2. (8)

Since under the first-order perspective T for any case (permu-
tation) is equal to s, Eq. (1) follows.

B. Limit distribution

We determine now further properties of the symmetric
distribution of s, beyond the average value (8), by calculating
the second and fourth moments. The variance to be determined
we denote by

� = 〈(s − 〈s〉)2〉 = 〈s2〉 − 〈s〉2 . (9)

When needed, a subscript will denote the value of N (as in
Eqs. (11) and (12) below).

The recursion (4) implies the following relation between
the probabilities (2):

N [p(s,N ) − p(s − 1,N − 1)]

= sp(s,N − 1) − (s − 1)p(s − 1,N − 1). (10)

Multiplication by (s − 1)2 and summation over all values of s

yields

N [〈s2〉N − 2〈s〉N + 1 − 〈s2〉N−1] = −2〈s2〉N−1 + 〈s〉N−1.

(11)
Introducing the variance and the average values (8), we end

up with

N �N − (N − 2) �N−1 = N/4. (12)

For N = 2 we have the variance �2 = 1/4. With this initial
value Eq. (12) determines the variances for all N to be

�N = (N + 1)/12. (13)

In a similar way one may determine the fourth-order
moment,

FN = 〈(s − 〈s〉)4〉N . (14)

Multiplying the probability relation (10) by s4 and summing
over all values of s we obtain after some manipulations the
following one-step recursion relation:

NFN − (N − 4)FN−1 = (6N2 − N )/48. (15)

The solution of (15) is

〈(s − 〈s〉)4〉N = FN = (N + 1)2

48
− N + 1

120

= 3�2
N

(
1 − 2

5(N + 1)

)
. (16)
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The special value for N = 4, F4 = 23/48, can be checked by
direct calculation. Since (16) satisfies (15), it must be valid for
all N .

Note that for large N we have

lim
N→∞

〈(s − 〈s〉)4〉N
�2

N

= 3, (17)

the same value as for any Gaussian distribution. This indicates
strongly that for large N the symmetric probability distribution
of s values is well approximated by the Gaussian

P (s,N ) = (2π�N )−1/2 e−(s−〈s〉N )2/2�2
N . (18)

One may support this conclusion by comparing the maximum
values of p(s,N ) and P (s,N ).

C. Analytic expression for the distribution

We now determine the probabilities p(s,N ). To that end
define a generating function

gN (u) =
∑

s

a(s,N ) us. (19)

By multiplying the recursion equation (4) by us and summing
over all s, we obtain

gN (u) =
[
Nu + (u − u2)

d

du

]
gN−1(u). (20)

Starting with g1(u) = u, we find g2 = u + u2, g3 = u +
4u2 + u3, etc., where the values of a(s,N ) are seen as
coefficients. By introducing

hN (u) = (1 − u)−N−1 gN (u), (21)

(20) simplifies to

hN (u) =
(

u
d

du

)N

hN−1(u), (22)

with solution

hN (u) =
(

u
d

du

)N
u

(1 − u)2
, (23)

since h1 = (1 − u)−2g1(u) = u(1 − u)−2.
Using the power series u(1 − u)−2 = ∑∞

n=1 nun and (21),
we find

gN (u) = (1 − u)N+1
∞∑

n=1

nN un. (24)

Inserting the binomial expansion,

(1 − u)N+1 =
N+1∑
k=0

(
N + 1

k

)
(−u)k, (25)

into (24) and introducing s = n + k, we have

gN (u) =
∑

s

s−1∑
k=0

(−1)k
(

N + 1

k

)
(s − k)Nus. (26)

Thus, the coefficient of us is

a(s,N ) =
s−1∑
k=0

(−1)k
(

N + 1

k

)
(s − k)N. (27)

This provides an explicit analytic expression for the proba-
bilities p(s,N ) = a(s,N )/N !. The values in Table I can be
checked against this formula.

V. SECOND ORDER: CORRELATIONS

Above we obtained for the average boarding time the
expression (1), 〈T (N )〉 = (N + 1)/2. That result is an upper
bound, and in this section we show that for many permutations
of the incoming passengers, the actual boarding time t is
considerably lower than the first-order result T . The basic
reason for the increased efficiency is that when a queue
is waiting in the aisle, some members behind the leading
sequence may be able to take their assigned seats at the same
time as the members of the leading sequence are seated. In
some cases this leads to a merger of two sequences behind
the leading one and reduced boarding time. We refer to a
permutation for which this happens as a reduction case. For N

values with reduction cases, the average boarding time 〈t(N )〉
is consequently lower than the first-order result 〈T (N )〉.

We start by discussing in Sec. V A the simple case N = 4.
The remaining part of this section is devoted to enumeration
of all reduction cases for a given N . The enumerations
are exact for small N , and we present also a few approximate
enumerations for larger N . In Sec. V D we summarize the
numerical results by estimating the N dependence of the
average boarding time. The data is consistent with a power
law,

〈t(N )〉 ∝ Nα, (28)

with an exponent α considerably smaller than the first-order
result α = 1.

A. The case N = 4

Consider the incoming passengers having the order 2143,
moving toward the right, with T = 3. When passenger 3 has
reached seat number 3, passenger 1 will be standing at seat 1.
Hence, passengers 3 and 1 are able to be seated during the first
time step. The remaining two passengers form the increasing
sequence 24, and consequently both may be seated during the
second time step. The boarding time is therefore t = 2 in this
case, reduced by 1 compared with the first-order result.

For N = 4 this is, in fact, the only case with t < T . When
averaging over all 4! permutations, there will be one less case
with boarding time 3 and one additional case with boarding
time 2, compared with the first-order results. Thus, we obtain

〈t(4)〉 = 〈T (4)〉 − 1

4!
3 + 1

4!
2 = 59

24
, (29)

less than 〈T (4)〉 = 5/2.

B. Classes of reduction cases

We refer to a merger of two sequences as a single reduction.
For the reduction case discussed in Sec. V A there is one single
reduction. A single reduction reduces the boarding time for
the permutation by an amount 1. In general, a reduction case
may have r = 1,2, . . . single reductions. The value of s, the
initial number of sequences in the passenger queue, varies
significantly from one reduction case to another.
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FIG. 2. The fraction of permutations (cases) that do not contain
any reductions, as a function of system size N .

As N increases, the number of reduction cases increases
rapidly. Figure 2 shows that the fraction of cases without
reductions falls off as N increases. As an example of how
the number of reduction cases n(r,s) varies, detailed results
for N = 8 are given in Table II.

Table II shows that there are no reduction cases with 1, 2,
and N sequences. Moreover, reductions cannot produce a
boarding time t = 1. Consequently, cases with r reductions
can only occur when s � r + 2. These results are valid for
all N . The reduction cases are concentrated at intermediate s

values. The fraction of cases that are reduction cases increases
monotonically with s up to s = 7.

By enumeration the distribution of boarding times ν(t)
was obtained directly. It may also be calculated from the
distribution n(r,s), the number of cases with r reductions,
and s increasing sequences. Since t = s − r , the number of
cases ν(t) with boarding time t equals

ν(t) = a(t) −
∑
r�1

n(r,t) +
∑
r�1

n(r,t + r). (30)

The second term subtracts from the number a(t) of cases with
t sequences those that contain reductions.

TABLE II. Exact enumeration for N = 8. Here a(s,8) is the
number of passenger permutations with a given number s of
increasing sequences. The last three columns record the number of
cases with 1, 2, and 3 reductions. The bottom line lists the total
number B(r,N ) of cases with r reductions for N = 8 passengers.

s a(s,8) n(1,s) n(2,s) n(3,s)

1 1 0 0 0
2 247 0 0 0
3 4293 303 0 0
4 15 619 4981 58 0
5 15 619 8203 985 1
6 4293 2337 803 17
7 247 125 57 1
8 1 0 0 0

15 949 1903 19

TABLE III. Distribution of boarding times for N = 8. The second
line is the distribution of the number of sequences in the passenger
permutations (first column in Table II), and the third line gives the
distribution ν(t) when reductions are taken into account. The second
order is exact.

Boarding time 1 2 3 4 5 6 7 8

First order 1 247 4293 15 619 15 619 4293 247 1
Second order 1 609 9973 19 587 8824 1261 64 1

Table III gives for N = 8 the number of cases with
a given boarding time to first and second order. To
first order the distribution is symmetric, as explained in
Sec. IV. With reductions present, the boarding time distribu-
tion is unsymmetrical, tilted toward shorter times. The average
boarding time can be determined from this distribution, or
calculated from the values of B(r,N ) (last line in Table II), the
total number of cases with r reductions,

〈t(N )〉 = N + 1

2
− 1

N !

N∑
r=1

rB(r,N ), (31)

which should be compared to Eq. (29). In this case we obtain
〈t(8)〉 = 13 469/3360 = 4.0086, considerably less than the
first-order result 〈T (8)〉 = 4.5.

In the same way we have performed an exact determination
of the reduction cases for values of N up to 14.

C. Geometry of reductions

So far we have only been concerned with the number of
reduction cases as a function of N . However, the reduction
cases can be sorted into geometrical categories, which is briefly
illustrated here. In Table IV we list for N = 5 all permutations
with reduction and, in addition, a few interesting cases for
N = 6. As indicated in Table V, both the number of cases for
each reduction type and the number of types increase rapidly
with N .

Above we have sorted cases with reductions, as obtained
from enumeration, into different types. We now start from the
opposite side by building up systematically all permutations
that contain a given reduction type. This involves restrictions
on where some passenger labels may be placed, while others
can be varied freely.

Consider the simplest type (1,2), which consists of correla-
tions 1 3, 2 4, etc. Note that 1 2 does not give a reduction since
in this case passengers 1 and 2 will not be seated during the
same time step. For correlations k (k + 2) there are restrictions
on the label values behind and between, that is, on l and m in
lkm(k + 2). A sequence must end just behind the correlation;
thus, we must have l > k. Moreover, a sequence must also end
at the intermediate site, which requires m > k + 2. Finally,
these two sequences must merge when the correlated structure
leaves the queue, which requires m > l.

Determination of the number of permutations that give rise
to a reduction of type (1,2) consists of two steps. The first step
is to determine the number of l k m (k + 2) blocks that fulfill
the requirements above for each N value. We refer to these
structures of fixed label values as 4-blocks. For N = 4, only
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TABLE IV. All cases with reductions for N = 5 passengers,
and some cases for N = 6, are listed. The permutations are listed
in the first column, the number of sequences s in the second,
and the boarding time t in the third. The fourth column shows
the disconnected passenger groups that are seated simultaneously,
thereby generating a reduction. An underlined blank denotes a label
value (passenger) not being seated during the same time step. A
decomposition of this group into correlations is given in the fifth
column. The sixth column gives a classification in the following
format: (number of blanks, difference between the numbers in the
fifth column). Here c stands for a chain of correlations and g for
reductions generated or modified after a previous time step.

Permutation s t Group Correlation Type

1 3 2 5 4 3 2 2 4 2 4 (1,2)
2 1 3 5 4 3 2 1 , 4 1 , 4 (2,3)
2 1 4 3 5 3 2 1 35 1 3 + 1 , 5 (1,2 + 2,4)
2 1 5 3 4 3 2 1 34 1 3 + 1 , 4 (1,2 + 2,3)
2 1 5 4 3 4 3 1 4 1 4 (1,3)
2 3 1 5 4 3 2 1 4 1 4 (1,3)
2 4 1 5 3 3 2 1 3 1 3 (1,2)
3 1 2 5 4 3 2 12 4 12 4 (1,2/3)
3 1 5 4 2 4 3 1 4 1 4 (1,3)
3 2 1 5 4 4 3 1 4 1 4 (1,3)
3 2 5 4 1 4 3 2 4 2 4 (1,2)
4 1 5 3 2 4 3 1 3 1 3 (1,2)
4 2 1 5 3 4 3 1 3 1 3 (1,2)
5 2 1 4 3 4 3 1 3 1 3 (1,2)
2 1 4 3 6 5 4 2 1 3 5 1 3 5 (1,2c1,2)
2 1 5 3 4 6 3 2 1 346 1 3 + 1, 4 + 1, , 6 (1,2 + 2,3 + 3,5)
3 1 2 6 4 5 3 2 12 45 12 4 + 12 , 5 (1,2/3 + 2,3/4)
3 1 6 2 5 4 4 3 1 5 g1 5 (g1,4)
3 2 6 1 5 4 4 3 2 5 g2 5 (g1,3)

the reduction 1 3 is possible, and only for one choice of label
values on the remaining two sites: 2 1 4 3. This is the only
case with reduction for N = 4 (see also Sec. V A). All four
label values are here used inside the 4-block. For N = 5, the 4-
block 2 1 4 3 is again possible under 1 3. Additional 4-blocks
under 1 3 and one further 4-block under 2 4 are shown in
Table VI. This table also show all 4-blocks for N = 6.

There is a simple pattern in the generation of 4-blocks from
(N − 1) to N in Table VI. All 4-blocks for (N − 1) are also
valid for N . Furthermore, there is one additional 4-block for
N for each class that was present for (N − 1). A class is here
defined as the set of 4-blocks with the same label value at the
hindmost site (the site to the left, as shown). An example is
2 1 4 3 and 2 1 5 3 for N = 5, followed by 2 1 4 3, 2 1 5 3, and
2 1 6 3 for N = 6. There is also one 4-block in a new class
for N , like 5 1 6 3 for N = 6. Finally, one new correlation of
type k (k + 2) is possible when N is increased by 1, like 3 5
from N = 5 to N = 6.

An expression for the total number of 4-blocks can be found
based on the pattern just described. For one correlation, the
number of 4-blocks is always given by a triangle number, with
each class as one line in the triangle representation. Consider
as an example N = 6 and 1 3, where one has 3 (from 2-class)
plus 2 (from 4-class) plus 1 (from 5-class). The base of the
triangle number is (N − 3) for the correlation 1 3, (N − 4)
for 2 4, . . . ,1 for the last correlation that is possible. Thus,

TABLE V. Reduction types, with number of cases, for N = 4,
N = 5, and N = 6. These types correspond to the last column in
Table IV. The reduction types are listed under: Simple, which may
be subdivided into uncompressed (same distance in queue and on
substrate) and compressed (lower distance in initial queue than on
substrate), where only two passengers leave the queue simultane-
ously; Interlaced, where two or more types overlap; Extended, which
to some degree are reductions symmetrical to the interlaced ones,
but where further decomposition is not possible; and Others, which
consists of further, more complex reduction types. Note that in
this table, the components of the interlaced cases are also counted
under the main types. An example is the (1,2 + 2,3) case for N = 5,
which is counted as one (1,2) case and one (2,3) case under Simple,
uncompressed.

Reduction type N = 4 N = 5 N = 6

Simple, uncompressed
(1,2) 1 8 58
(2,3) 2 22
(3,4) 3

Simple, compressed
(1,3) 4 42
(2,4) 1 16
(3,5) 3
(1,4) 14
(2,5) 8

Extended
(1,2/3) 1 8
(1,2/4) 4
(2,3/4) 2
(1,3/4) 4
(2,4/5) 1
(1,2/3/4) 1

Others
(1,2c1,2) 1
(g1,2) 1
(g1,3) 2
(g1,4) 1
(2,3g1,3) 1

Interlaced
(1,2 + 2,3) 1 6
(1,2 + 2,4) 1 7
(1,2 + 2,5) 5
(2,3 + 3,4) 1
(2,3 + 3,5) 1
(1,3 + 2,4) 4
(1,3 + 2,5) 3
(1,2 + 2,3 + 3,4) 1
(1,2 + 2,3 + 3,5) 1
(1,2 + 2,4 + 3,5) 1
(1,2/3 + 2,3/4) 1
(1,2/3 + 2,4/5) 1

the total number of blocks is obtained by summing triangle
numbers from 1 to (N − 3),

n4-blocks =
N−3∑
k=1

1

2
k(k + 1) = 1

6
(N − 3)(N − 2)(N − 1).

(32)

011130-6



TIME NEEDED TO BOARD AN AIRPLANE: A POWER LAW . . . PHYSICAL REVIEW E 85, 011130 (2012)

TABLE VI. All possible 4-blocks (see explanation in main text)
underlying the reduction type (1,2), for N = 4, N = 5, and N = 6.
Note the systematic repetition and expansion of the 4-block set as N

increases.

Correlation N = 4 N = 5 N = 6

1 3 2143 2143 2143
2153 2153

2163
4153 4153

4163
5163

2 4 3254 3254
3264
5264

3 5 4365

The second step in determining the number cases with the
reduction type (1,2) consists of finding the number of ways
to place the (N − 4) label values that do not belong to the
4-block. These label values can be placed either in front of or
behind the 4-block and freely exchanged between the available
sites, without any influence on the reduction of the 4-block.
The number of ways to place these remaining sites is (N − 3)
[and not (N − 4)]: All may be placed behind the 4-block, one
may be placed in front of the 4-block, and the others behind
it,......, all may be placed in front of the 4-block. Thus, there
are

noutside 4-block = (N − 3)(N − 4)! (33)

ways to distribute the label values outside each 4-block.
The number of (1,2) cases is given by n(1,2) = n4-blocks ·
noutside 4-block; therefore,

n(1,2) = 1
6 (N − 3)(N − 1)!. (34)

A similar calculation for (1,3), which contains 1 4, 2 5, etc.,
gives the result

n(1,3) = 1
6 (N + 1)(N − 3)(N − 4)(N − 3)!. (35)

The mismatch between the values from Eq. (34) and Table V
for N = 6 is due to a case where two (1,2) blocks overlap
and form a new reduction type (see permutation 2 14365 in
Table IV).

The most interesting aspect of the results (34) and (35)
is that they are close to, but slightly less than N !. In
Sec. V D we show that the average boarding time follows
a power law 〈t〉 ∝ Nα with an exponent α lower than the
first-order result α = 1. This implies that the number of
reductions must increase faster than N ! [see Eq. (31)]. This is
not achieved by the most frequent reduction types in Eqs. (34)
and (35) alone, the other reduction types indicated in Table V
are necessary components.

Several trends in Table V can be understood with the
calculations above as a background. For the simplest Extended
cases, there are 5-blocks of sites with restrictions, and these
types are less frequent than Simple, uncompressed and Simple,
compressed, which are determined by 4-blocks. A similar
pattern applies within each group and subgroup. Under Simple,
uncompressed, (1,2) cases are determined by 4-blocks, (2,3),

FIG. 3. Average boarding time as a function of N , on log scales.
The line represents Eq. (36), with parameters as given in (37).

by 5-blocks, and (3,4) by 6-blocks, and the frequency falls off
rapidly.

D. A power law

For N up to 14 all N ! passenger permutations were
generated, the number of reduction cases was recorded, and the
average boarding time was determined. Since all permutations
were covered, the results are exact. For N = 15 and 16 several
runs with nonoverlapping subsets of permutations have been
used (no sampling). By this procedure 40% of the permutations
were included for N = 15, for N = 16 merely 2% were
included.

The data is shown in Fig. 3 as a log-log plot. The results
are consistent with a power law of the form

〈t(N )〉 = cNα. (36)

Using linear regression on the log-scale data we find

α = 0.69 ± 0.01 and c = 0.95 ± 0.02. (37)

The uncertainties reflect variations as different subsets of the
data are used. Note that there is no noise in the data for
N < 15.

The lowering of the exponent α from the value α = 1 in first
order emphasizes the importance of including correlations. It
implies that the number of reductions is very large for large
N , since it clearly must increase much faster than N ! if the
exponent value α = 1 is to be avoided. Boarding is much more
efficient than predicted by Eq. (1).

In addition to the average value of the boarding time
distribution we have also determined the standard deviation
σ for different N . The standard deviation scales differently
from the average,

σ (N ) ∝ Nβ, (38)

with β � 0.32 ± 0.02.

VI. CONCLUDING REMARKS

We have formulated a simple model for the airline boarding
process. In particular, the N dependence of the average
boarding time is of interest, when all permutations of the N

incoming passengers occur with equal probability.
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The main mechanism that determines the boarding time
for a given permutation is associated with the sequences of
increasing passenger labels along the queue direction: All
passengers in one sequence take their seats simultaneously.
This perspective leads to the simple expression (1) for the
average boarding time. We have been able to find an analytic
expression for the full distribution of the number of these
sequences. For increasing N the normal distribution (18) is
approached.

However, we show that due to certain correlations between
the queue ordering and the seat arrangement in the airplane,
additional passengers may be seated. For N up to 14 the
corresponding reductions in boarding time are determined
exactly for the different permutations, for N = 15 and 16 in
good approximation. The average boarding time now behaves
as Nα , with α � 0.69, for increasing N , instead of α = 1 to
first order, see (1).

A variety of geometrical structures generates the power
law. With increasing N , the number and types of these
structures increase rapidly, as for many other complex systems.
The present model is one-dimensional, and the microscopic
structures in terms of integer series is easily systematized.

An interesting question is how sensitive the N dependence
of the boarding time is to model details. Bachmat and co-
workers report N0.5 [12,15] (as compared with our result
N0.69), but the N dependence was not a main concern in their
research.

We have previously studied a model that resembles the
present one: N distinguishable particles with unidirectional
motion in one dimension [17]. In that model as well bottlenecks
formed by structures in the permutations lead to significant
slowing down. However, there is no interaction with the
substrate in the previous model. The time needed to have
the particles transported some given distance behaves like
N/ ln N , which increases faster with N than N0.69, the result
for the boarding model above. This difference reflects a
stronger bottleneck mechanism in the previous model.

Efficient boarding is obtained when many positions along
the aisle are occupied by passengers loading carry-on luggage
and getting seated, rather than by passengers waiting in line.
Several airlines use groups to improve efficiency, for example,
boarding first all passengers for rows 17–32, thereafter rows
1–16. This is referred to as a back-to-front strategy. For our
model, however, boarding with two disconnected groups leads
to an average boarding time equal to 2 c (N/2)α = 1.24 c Nα ,
that is, less efficient boarding.

One might wonder whether this unexpected result is due
to the simplicity of our model. In a real aircraft there are
several seats in each row, and boarding delays arise due to row
obstructions as well as to aisle obstructions. If our model is
modified to include more than one seat in each row, higher
values of the boarding time are expected. At this point we
are not able to make quantitative statements on the combined
effects of several seats per row and of grouping. There are,
however, in the literature several studies where both these
effects are investigated using simulation models, with results
that do not clearly support the conventional wisdom that
grouping procedures are efficient [5,7,11,15]. Reference [15]
states that “Somewhat surprisingly, these studies have found
that back-to-front policies are not necessarily effective, and
may even be detrimental” (compared with random boarding).

Finally, we remark that several studies suggest that boarding
is most effective by use of more exotic boarding strategies.
These are combinations of a back-to-front procedure and a
window-to-aisle policy in which a window seat in a row
is filled first and the aisle seat last [6–8,11]. On the other
hand, sophisticated and efficient boarding designs tend to
split, during the boarding process, groups of people traveling
together.
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