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We have calculated the lowest energy quantized breather excitations of both the β and the α Fermi-Pasta-Ulam
monoatomic lattices and the diatomic β lattice within the ladder approximation. While the classical breather
excitations form continua, the quantized breather excitations form a discrete hierarchy labeled by a quantum
number n. Although the number of phonons is not conserved, the breather excitations correspond to multiple
bound states of phonons. The n = 2 breather spectra are composed of resonances in the two-phonon continuum
and of discrete branches of infinitely long-lived excitations. The nonlinear attributes of these excitations become
more pronounced at elevated temperatures. The calculated n = 2 breather and the resonance of the monoatomic
β lattice hybridize and exchange identity at the zone boundary and are in reasonable agreement with the results of
previous calculations using the number-conserving approximation. However, by contrast, the breather spectrum
of the α monoatomic lattice couples resonantly with the single-phonon spectrum and cannot be calculated
within a number-conserving approximation. Furthermore, we show that for sufficiently strong nonlinearity, the
α lattice breathers can be observed directly through the single-phonon inelastic neutron-scattering spectrum.
As the temperature is increased, the single-phonon dispersion relation for the α lattice becomes progressively
softer as the lattice instability is approached. For the diatomic β lattice, it is found that there are three distinct
branches of n = 2 breather dispersion relations, which are associated with three distinct two-phonon continua.
The two-phonon excitations form three distinct continua: One continuum corresponds to the motion of two
independent acoustic phonons, another to the motion of two independent optic phonons, and the last continuum
is formed by propagation of two phonons that are one of each character. Each breather dispersion relation is
split off the top from of its associated continuum and remains within the forbidden gaps between the continua.
The energy splittings from the top of the continua rapidly increase, and the dispersions rapidly decrease with
the decreasing energy widths of the associated continua. This finding is in agreement with recent observations
of sharp branches of nonlinear vibrational modes in NaI through inelastic neutron-scattering measurements.
Furthermore, since the band widths of the various continua successively narrow as the magnitude of their
characteristic excitation energies increase, the finding is also in agreement the theoretical prediction that breather
excitations in discrete lattices should be localized in the classical limit.
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I. INTRODUCTION

The properties of soliton excitations have long been the
subject of intensive studies dating back to the first report
of their existence as shallow water waves of finite spatial
extent and persistent form by Scott-Russell in 1844 [1] and
the explanation of their stability by Korteweg and de Vries
(KdV) in 1895 [2]. In the Korteweg and de Vries theory, the
stability of the wave form is produced by the balance between
the dispersion and the nonlinearity. A fuller discussion of the
early history of solitons is given in Ref. [3]. The investigation
of solitons received a boost in 1965 when Zabusky and Kruskal
[4], while investigating the Fermi-Pasta-Ulam phenomenon,
mapped it on to the KdV system. They showed numerically
that when two solitons scatter, they emerge from scattering
with their forms and velocities intact. Their discovery spurred
an intense period of investigation in which the properties of the
solutions of the KdV equation and related exactly integrable
systems were found analytically using the inverse scattering
method [5,6]. The use of the inverse scattering technique led to
the discovery of breather excitations, which are stable oscilla-
tory excitations of homogeneous media that have finite spatial
extents and are stabilized by the nonlinear interactions. The
breather excitations can be considered as being bound states
of a soliton-antisolition pair in which the oscillations result
from their relative state of motion. Soliton excitations not only

are known to be stable in continuous systems but are also stable
in discrete integrable systems [7]. Similar stable soliton-like
excitations have been predicted [8–11] and observed in many
physical (but nonintegrable) systems in which the discreteness
of the lattice can be considered as a perturbation [12].

The properties of breather excitations are not as well known
as the properties of solitons. In 1988 Sievers and Takeno hy-
pothesized that breather excitations may also exist in discrete
and higher-dimensional lattice systems [13]. Subsequently,
MacKay and Aubry [14] rigorously established the existence
of breather excitations in lattices that possess a local limit.
In these classical systems such as the sine-Gordon system,
a classical breather excitation can be considered as a bound
state of a soliton and an antisoliton pair. Due to the continuous
nature of the relative motion of the soliton-antisoliton pair,
the classical spectrum forms a continuum. However, when the
internal motion of the breathers were quantized semiclassically
using the Bohr-Sommerfeld quantization procedure [15], it
became evident that the breathers form a hierarchy of discrete
excitations that can be considered as the bound states of
multiples of small-amplitude wave excitations. An alternate
method of semiclassical quantization scheme for breathers
has recently been analyzed by Schulman [16], which has
led to similar conclusions. The interpretation of breathers as
multiphonon bound states was confirmed by the solutions of
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exactly integrable quantum systems [17,18]. This realization
led to investigations of the lowest members of the hierarchy
of quantized breathers in nonintegrable lattices by means of
standard many-body methods [19–21]. Extensive reviews of
the properties of classical and quantum breathers are given
in Refs. [22–24]. The existence and stability of quantum
breathers in models [25] such as the discrete nonlinear
Schrödinger equation [26], the φ4 lattice [27,28], and related
systems [29] are well established. However, the existence of
quantum breathers in the Fermi-Pasta-Ulam lattice [30] has
not been proved since the interaction in the Fermi-Pasta-
Ulam model is nonlocal and is not of the type considered
by MacKay and Aubry [14] (although breather excitations
have been shown to exist in the classical Fermi-Pasta-Ulam
model by Flach and Gorbach [31]). Furthermore, as the
anharmonic interaction in the Fermi-Pasta-Ulam model does
not preserve the number of elementary excitations, the results
found [32–34] by truncating the Hamiltonian to only include
number-conserving processes [35] should not be considered
conclusive unless confirmed by other methods.

Breather excitations have recently been reported [36] to
exist in the high-temperature regime of the three-dimensional
ionic crystal NaI. Instead of the continuous excitation spectrum
expected for classical breathers, the observed spectrum con-
sisted of a sharp discrete peak. This observation indicates that
the breather excitations ought to be described in the quantum
limit where quantization of the internal oscillatory degrees
of freedom is expected to result in a hierarchy of discrete
excitations. Furthermore, the momentum dependence of the
scattering cross section indicates that the breathers show up
in the single-phonon contribution instead of the continua of
multiphonon excitations [37–39]. In a previous paper [40], we
have investigated n = 2 quantized breathers of the β lattice
using another method, valid at low temperatures. The method
is based on the realization that the ground state has the form
of a linear superposition of states containing even numbers of
phonons. An approximate n = 2 excited state is obtained from
the ground state by the action of an operator with a two-phonon
creation and two-phonon annihilation component. Inspection
of the spatial dependence of the various components of the
n = 2 excitation operator revealed the localized nature of the
excitation [40]. Proville has addressed the spatial and temporal
correspondence between the classical and quantum breathers
of the nonlinear Klein-Gordon lattice [41], by forming a
Wannier wave packet as a linear superposition of energy
eigenstates that exhibited both the localized and oscillatory
nature of the quantum excitations. In this paper, we shall
investigate the lowest members of the hierarchy of quantized
breathers in the α and β Fermi-Pasta-Ulam problem within
the ladder approximation. Unlike our previous method, the
present method should be valid at finite temperatures. For
the β lattice we shall neglect the single-phonon self-energy;
however, the inclusion of the single-phonon self-energy will
turn out to be crucial for the α lattice. We find that the cubic
anharmonic interaction of the α lattice couples the spectrum
of single-phonon excitations to the continuum of two-phonon
excitations in accordance with both the earlier theoretical
results of Leath and Watson [42] and the experimental results
of Manley et al. [36].

A diatomic lattice is expected to have a much richer lattice
vibration spectrum than a lattice with a monoatomic basis. The
existence of breathers for the classical diatomic Fermi-Pasta-
Ulam lattice were first predicted by Livi et al. [43] in the limit
of vanishingly small mass ratios and were more thoroughly
investigated by Maniadis [44] and by James and Noble [45] for
arbitrary mass ratios. Recently Yoshimura [46] has provided
an alternate formulation of the proof of existence and stability
of the breathers. The breather excitations consist of “optic
breathers,” which have frequencies above the optic phonons,
and as “acoustic breathers,” which have frequencies that lie
within the gap between the acoustic and the optic phonons.
Therefore, in this paper, we shall also investigate the dispersion
relations for the n = 1 and 2 breather excitations of the quantal
diatomic Fermi-Pasta-Ulam lattice.

The manuscript is structured as follows: In Sec. II we
describe the Hamiltonian for the β Fermi-Pasta-Ulam lattice,
and in Sec. III we shall present the calculation of the two-
phonon propagators for the η lattice. In Sec. IV we shall display
the hamiltonian of the α lattice and calculate its two-phonon
propagator. In Sec. V the results for the monoatomic lattices
will be discussed. The diatomic Fermi-Pasta-Ulam lattice
will be introduced in Sec. VI; the ladder approximation will
be discussed in Sec. VII; the components of the two-phon
propagator will be discussed in Sec. VIII; and the results will
be presented in Sec. IX. The conclusions will be presented in
Sec. X.

II. THE β FERMI-PASTA-ULAM HAMILTONIAN

The Hamiltonian for the discrete quartic Fermi-Pasta-Ulam
chain can be written as

Ĥ =
∑

i

[
P̂ 2

i

2M
+ Mω2

0

2
(ûi − ûi+1)2

]
+ K4

12

∑
i

(ûi − ûi+1)4

(1)

in which ûi is the operator for the atom at the ith lattice
site, which represents its displacement from its equilibrium
position, and P̂i is the momentum operator for the same
atom. The first two terms in the Hamiltonian represent
the approximate harmonic Hamiltonian, and the third term,
proportional to K4, represents the anharmonic interaction. It
should be noted that the Hamiltonian is invariant under the
continuous transformation ui → ui + δ. The assumed sponta-
neously broken symmetry of the ground state is responsible
for the occurrence of Goldstone modes.

The spatial Fourier transforms of the coordinates and
momenta operators of the atoms are defined as

ûq = 1√
N

∑
i

exp[iqRi]ûi ,

(2)

P̂q = 1√
N

∑
i

exp[iqRi]P̂i ,

where Ri represents the mean equilibrium position of the ith
atom. The Hamiltonian can be rewritten in terms of operators
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in the harmonic normal mode basis as

Ĥ =
∑

q

[
P̂q P̂

†
q

2M
+ Mω2

0(1 − cos q)ûq û
†
q

]

+ K4

12N

∑
k1,k2,k3,k4

�k1+k2+k3+k4

4∏
j=1

×
{

2 sin
kj

2
exp

[
−i

kj

2

]
ûkj

}
. (3)

Since the anharmonic interaction has a separable form, the
ladder approximation for the two-particle excitations can be
solved exactly.

The harmonic part of the Hamiltonian can be second
quantized and diagonalized by the substitutions

P̂q = i

(
Mh̄ωq

2

) 1
2

(a†
−q − aq),

(4)

ûq =
(

h̄

2Mωq

) 1
2

(a†
q + a−q),

where, respectively, a
†
q and aq are the boson creation and an-

nihilation operators and where the phonon dispersion relation
is given by

ω2
q = 2ω2

0(1 − cos q) = 4ω2
0 sin2 q

2
. (5)

Thus, the Hamiltonian of the β Fermi-Pasta-Ulam lattice has
the second quantized form

Ĥ =
∑

q

h̄ωq

2
(a†

qaq + aqa
†
q) + Ĥint, (6)

where the interaction Hamiltonian has the form

Ĥint =
(

I4

12N

) ∑
k1,k2,k3,k4

�k1+k2+k3+k4

4∏
j=1

{
Fkj

(
a
†
kj

+ a−kj

)}
,

(7)

where the repulsive interaction strength I4 (with units of
energy) is defined as

I4 =
(

h̄2K4

M2ω2
0

)
, (8)

and where the complex form factors Fq are given by

Fq =
(

sin q

2 exp
[−i

q

2

]
√∣∣ sin q

2

∣∣
)

. (9)

III. THE β-LATTICE TWO-PHONON PROPAGATORS

The two-phonon propagator has the form of a four by four
matrix D

(α),(β)
q,k,k′ (t), which involves the expectation value of the

product of two two-phonon operators Â
(α)
q,k(t), one evaluated

at time t and the other at time zero. The components of the
two-phonon propagator are expressed as

D
(α),(β)
q,k,k′ (t) = − i

h̄

〈
T̂ Â

(α)
q,k(t)Â(β)

q,k′
†(0)

〉
, (10)

where T̂ is Wick’s time-ordering operator. The two-phonon
operators are defined as

Â
(++)
q,k ≡ a

†
q

2 +k
a
†
q

2 −k,
Â

(+−)
q,k ≡ a

†
q

2 +k
a− q

2 +k,

(11)
Â

(−+)
q,k ≡ a− q

2 −ka
†
q

2 −k,
Â

(−−)
q,k ≡ a− q

2 −ka− q

2 +k,

where the pair of indices (ab), in which a and b are taken from
the set {+,−}, are denoted by a single index (α) that takes on
four values. It should be noted that, due to the bosonic character
of the creation and annihilation operators, the propagator with
index (ab) and momentum k is identical to the propagator with
indices (ba) and momentum −k. Hence, to avoid ambiguity,
the value of k is restricted to be positive. The components of
the propagator are to be evaluated from the equations of motion

ih̄
∂

∂t
D

(α),(β)
q,k,k′ (t) = δ(t)

〈[
Â

(α)
q,k(0),Â(β)

q,k′
†(0)

]〉
− i

h̄

〈
T̂
[
Â

(α)
q,k(t),Ĥ0(t)

]
Â

(β)
q,k′

†(0)
〉

− i

h̄

〈
T̂
[
Â

(α)
q,k(t),Ĥint(t)

]
Â

(β)
q,k′

†(0)
〉
, (12)

which involve equal time commutators. The equations of mo-
tion are to be truncated according to the ladder approximation,
depicted diagramatically in Fig. 1, in which the nontrivial
single-phonon self-energies are neglected. After representing
the interaction as a product of four identical factors as in
Eq. (7), the expectation value involving the commutator[

Âα
q,k,Ĥint

]
(13)

in the last term of Eq. (12) can be approximated by setting[
Â

(α)
q,k,ûk1 ûk2 ûk3 ûk4

]
≈ 6

〈[
Â

(α)
q,k,ûk1 ûk2

]〉
ûk3 ûk4 + 6

[
Â

(α)
q,k,ûk1 ûk2

]〈
ûk3 ûk4

〉
. (14)

In the above expression, the factor of 6 comes from the
invariance of the commutator in expression (13) under
permutation of the summation indices kj . The last term in
Eq. (14) represents a frequency-independent contribution
to the phonon self-energy, which can be absorbed as the
lowest-order temperature-dependent renormalization of the
harmonic phonon frequencies [47]

ωq ≈ 2ω0

∣∣∣∣ sin
q

2

∣∣∣∣
[

1 +
(

I4

2Nh̄ω0

)∑
k1

∣∣∣∣ sin
k1

2

∣∣∣∣(1 + 2Nk1

)]
,

(15)

FIG. 1. (Color online) The Ladder Approximation to the two-
particle Dyson equation for the β Fermi-Pasta-Ulam lattice. The
interacting two-particle propagators are denoted by the shaded
bubbles, and the noninteracting two-particle propagators are denoted
by open bubbles. The interaction I4 is represented by the vertex
connecting two bubbles.
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where the summation over k1 runs over both positive and
negative values of k. The anomalous one-phonon propagators
are also eliminated if one substitutes this renormalization
into Eqs. (4). This shift will not be considered any further.
After truncation of the equations of motion, it is seen that
the components of the two-phonon propagators satisfy a
closed set of inhomogeneous first-order linear differential
equations.

On Fourier transforming the set of differential equa-
tions where the Fourier transformed propagator components
D

(α),(β)
q,k,k′ (ω) are defined via

D
(α),(β)
q,k,k′ (ω) =

∫ ∞

−∞
dt exp[−iωt]D(α),(β)

q,k,k′ (t), (16)

one finds that the differential equations reduce to a set of cou-
pled algebraic equations. The components of the unperturbed
two-phonon propagators are diagonal in the indices α and β

and in the crystal momenta k and k′. The nonzero parts of
the noninteracting propagator are denoted by D

(α),(0)
q,k,k (ω). The

components of the unperturbed two-phonon propagators are
evaluated as

D
(±∓),(0)
q,k,k (ω) = −∓[ 1

2 + Nq

2 +k

]± [
1
2 + Nq

2 −k

]
h̄
(−ω ± ωq

2 +k ∓ ωq

2 −k

) , (17)

where the ± and ∓ signs are to be chosen independently.
When expressed in terms of the noninteracting propagators,
the closed set of algebraic equations take the form

D
(α),(β)
q,k,k′ (ω) = D

(α),(0)
q,k,k (ω)δ(α),(β)�k−k′ + D

(α),(0)
q,k,k (ω)F ∗

q

2 +k
F ∗

q

2 −k

× 2I4

N

∑
γ,k′′

Fq

2 +k′′Fq

2 −k′′D
(γ ),(β)
q,k′′,k′ (ω). (18)

It is seen that the phase factors originating from the interaction
term cancel. On multiplying the above equation for D

(α),(β)
q,k,k′ (ω)

by the factor

Fq

2 +kF q

2 −k, (19)

and summing over k, one finds

∑
α,k

F q

2 +kF q

2 −kD
(α),(β)
q,k,k′ (ω) = Fq

2 +k′Fq

2 −k′D
(β),(0)
q,k′,k′ (ω)

1 − I4
∑

γ �
(γ )
q (ω)

, (20)

where the functions �
(γ )
q (ω) have been defined as

�(γ )
q (ω) = 1

N

∑
k1

∣∣Fq

2 +k1
Fq

2 −k1

∣∣2D(γ ),(0)
q,k1,k1

(ω), (21)

in which the summation over k1 runs over positive and
negative values. The functions �

(γ )
q (ω) can be regarded,

apart from the product of form factors, as being equivalent
to the various components of the “bare” or noninteracting
two-phonon propagator. The imaginary parts of the Fourier

FIG. 2. (Color online) The (ω,q) phase space showing the
extent of the continuum of two-phonon creation (shaded area). The
continuum of Raman scattering excitations is located at frequencies
immediately below the two-phonon creation continuum. The two
continua are separated by the one-phonon dispersion relation, which
is shown by the red line marked with triangles.

transformed noninteracting propagator are nonzero at fre-
quencies corresponding to the sum and difference of the
frequencies for two harmonic phonons with total momentum
q. The frequencies of the noninteracting two-phonon creation
and the creation-annihilation excitations form continua in the
(ω,q) phase space, as shown in Fig. 2. The common boundary
separating the two-phonon sum and difference continua is
marked by the red line decorated with triangles.

The solution of the coupled set of equations for the
components of the interacting two-phonon propagator can be
expressed as

D
(α),(β)
q,k,k′ (ω) = D

(α),(0)
q,k,k (ω)δ(α),(β)�k−k′ + D

(α),(0)
q,k,k (ω)

×
F ∗

q

2 +k
F ∗

q

2 −k

( 2I4
N

)
Fq

2 +k′Fq

2 −k′

1 − I4
∑

γ �
(γ )
q (ω)

D
(β),(0)
q,k′,k′ (ω). (22)

In addition to having a dense set of poles that correspond to the
two-phonon continua, the above expression may have poles at
the frequencies at which the denominator vanishes:

1 − I4

∑
γ

�(γ )
q (ω) = 0. (23)

Therefore, in addition to having poles within the two-phonon
continua, the components of the two-phonon propagator (with
fixed q) may also have poles at isolated frequencies that form
a set of discrete dispersion relations. When the dispersion
relations are located outside the continua, they describe long-
lived collective breather excitations, since in this case the
lifetime is determined by the imaginary parts of �

(γ )
q (ω + iη),

which vanish, ∑
γ

Im �(γ )
q (ω + iη) = 0, (24)

when η is a positive infinitesimal quantity. If the dispersion
relations are located within the continua, the imaginary parts
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of �
(γ )
q (ω + iη) are nonzero, so the collective excitations

have finite lifetimes and exist only as resonances. Due to
singularities in

∑
γ �

γ
q (ω) (discussed in the Appendix A),

both these collective modes are guaranteed to exist no matter
how small the repulsive interaction I4 is. The divergences in
the two-phonon creation component are a consequence of the
one-dimensional nature of the lattice. In three dimensions,
one expects that the corresponding van Hove singularities
would be washed out and that the collective modes would
occur only for values of the anharmonicity exceeding a critical
value. The T = 0 values of the dispersion relations for the
collective modes agree with those previously found by another
method [40], which allowed for the direct construction of
the many-body wave function and demonstrated the localized
nature of the excitations. Since the total number of phonons
is not conserved, the collective mode is composed of a
superposition of components from every channel. One sees
that, at T = 0, each of the branches of collectives modes
has a total weight of unity. Thus, the occurrence of breather
excitations must be accompanied by a modification of the
spectral weight in all the two-phonon continua. Since the total
spectral weight is conserved at T = 0, one sees that Levinson’s
theorem [48] applies. Thus, we see that the determination of
the n = 2 breather dispersion relation and spectral density
for the β Fermi-Pasta-Ulam lattice requires the calculation of
the noninteracting two-phonon propagators �(α)

q (ω). This is
discussed in Appendix A.

IV. THE α FERMI-PASTA-ULAM LATTICE

The Hamiltonian of the α Fermi-Pasta-Ulam lattice can be
written in the second quantized form of

Ĥ =
∑

q

h̄ωq

2
(a†

qaq + aqa
†
q) − i

K3

3
√

N

(
h̄

Mω0

) 3
2

×
∑

k1,k2,k3

�k1+k2+k3

3∏
j=1

{
Fkj

(
a
†
kj

+ a−kj

)}
. (25)

The interaction Hamiltonian has a separable form that has
obvious similarities to the interaction Hamiltonian of the β

lattice. However, it should be noted that the classical harmonic
approximation to the ground state is metastable and is expected
to become unstable when either the thermal and zero-point
fluctuations are sufficiently large. This yields an upper limit to
the strength of the anharmonic interaction for the approximate
ground state to be long lived at T = 0, which is given by

I3 ∼ h̄ω0, (26)

where the interaction energy I3 has been defined as

I3 = K3

(
h̄

Mω0

) 3
2

. (27)

Below this threshold, the approximate ground state is expected
to decay with an exponentially small quantum tunneling rate.

The two-phonon spectra can be evaluated in a manner
analogous to the method we used for the β lattice. The
equations of motion for the two-phonon propagator can be

truncated by approximating the time-ordered expectation value
involving the equal-time commutators of the form

[
Âα

q,k,Ĥint
]
. (28)

The truncation can be performed by setting

[
Âα

q,k,ûk1 ûk2 ûk3

] ≈ 3
〈[
Âα

q,k,ûk1 ûk2

]〉
ûk3 , (29)

in which the factor of 3 comes from the invariance of the
commutator in expression (28) under the permutation of the
indices of summation kj . The truncated equations of motion
for the components of the two-phonon propagator have the
forms

h̄

(
i

∂

∂t
± ωq

2 +k ∓ ωq

2 −k

)
D

(±∓),(β)
q,k,k′ (t)

= −δ(t)

(
∓
[

1

2
+ Nq

2 +k

]
±
[

1

2
+ Nq

2 −k

])
�k−k′δ(±∓),(β)

+ 2i
I3√
N

F ∗
q

2 +k
F ∗

q

2 −k
Fq

(
∓
[

1

2
+ Nq

2 +k

]

±
[

1

2
+ Nq

2 −k

])∑
±

G
±,(β)
q,k′ (t), (30)

where we have introduced the anomalous propagators defined
by

G
+,(β)
q,k′ (t) = − i

h̄

〈
T̂ a†

q(t)Âβ

q,k
†(0)

〉
,

(31)

G
−,(β)
q,k′ (t) = − i

h̄

〈
T̂ a−q(t)Âβ

q,k
†(0)

〉
.

The anomalous propagators involve only three phonon creation
and annihilation operators, in contrast to the β lattice where
the corresponding propagator involved four operators. The
equations of motion for the anomalous propagators G

±,β

q,k′ (ω)
are of the form

h̄

(
i

∂

∂t
± ωq

)
G

±,(β)
q,k′ (t)

= ∓2i
I3√
N

F ∗
q

∑
γ,k′′

Fq

2 +k′′Fq

2 −k′′D
(γ )(β)
q,k′′,k′(t). (32)

On Fourier transforming the equations of motion for G
±,(β)
q,k′ (ω)

and after some manipulation, one finds that

∑
±

G
±,(β)
q,k′ (ω) = 2iF ∗

q

2h̄ωq

h̄2ω2 − h̄2ω2
q

I3√
N

×
∑
γ,k′′

Fq

2 +k′′Fq

2 −k′′D
(γ )(β)
q,k′′,k′(ω). (33)

The above equation, together with the Fourier transformed
equations of motion,

D
(α)(β)
q,k,k′ (ω) = D

(α)(0)
q,k,k (ω)δ(α),(β)�k−k′ − 2iI3F

∗
q

2 +k
F ∗

q

2 −k

×D
(α)(0)
q,k,k (ω)Fq

1√
N

∑
±

G
±,(β)
q,k′,k′(ω), (34)
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FIG. 3. (Color online) The Ladder Approximation to the two-
particle Dyson equation for the α Fermi-Pasta-Ulam lattice. The
interacting two-particle propagator is denoted by the shaded bubbles,
and the noninteracting two-particle propagator is denoted by the open
bubble. The interaction I3 is represented by the vertex of a bubble
connecting to the single-phonon propagator. The noninteracting
single-phonon propagator with wave vector q, D(0)

q (ω), is denoted
by the red wavy line. The product of 2| sin q

2 |I3D
(0)
q (ω)I3 acts as an

effective wave vector and frequency-dependent interaction, U4(ω,q).

forms a closed set of algebraic equations. This set of equations
is recognized as describing the ladder approximation shown in
Fig. 3. On eliminating

∑
± G

±,(β)
q,k′ (ω), one finds

D
(α)(β)
q,k,k′ (ω) = D

(α)(0)
q,k,k (ω)δ(α),(β)�k−k′

+F ∗
q

2 +k
F ∗

q

2 −k
D

(α)(0)
q,k,k (ω)

[
2|Fq |2I3

2h̄ωq

h̄2ω2 − h̄2ω2
q

I3

]

× 2

N

∑
γ,k′′

Fq

2 +k′′Fq

2 −k′′D
(γ ),(β)
q,k′′,k′ (ω), (35)

which maps onto Eq. (18) for the β lattice in which I4 has been
replaced by an effective frequency and wave vector-dependent
interaction U4(ω,q) defined by

U4(ω,q) = 2

∣∣∣∣ sin
q

2

∣∣∣∣I3
2h̄ωq

h̄2ω2 − h̄2ω2
q

I3, (36)

which is a repulsive interaction for frequencies above the bare
phonon frequency ωq and is attractive for ωq > ω. Hence, the
solution for the components of the two-phonon propagator are
found to be given by

D
(α)(β)
q,k,k′ (ω) = D

(α)(0)
q,k,k (ω)δ(α),(β)�k−k′

+F ∗
q

2 +k
F ∗

q

2 −k

D
(α)(0)
q,k,k (ω) 2U4(ω,q)

N
D

(β)(0)
q,k′,k′(ω)

1 − U4(ω,q)
∑

γ �
(γ )
q (ω)

×Fq

2 +k′Fq

2 −k′ . (37)

We note that, because of the frequency dependence of the
effective interaction, the total (ω integrated) weight in the
two-phonon spectral density is not conserved since weight is
mixed into the single-phonon spectrum as can be seen from the
single-phonon Dyson equation depicted in Fig. 4. The Fourier
transform of the single-phonon propagator Dq(t) defined by

Dq(t) = − i

h̄
〈T̂ [a†

q(t) + a−q(t)][a†
−q(0) + aq(0)]〉 (38)

is calculated as

Dq(ω) = 2h̄ωq

h̄2ω2 − h̄2ω2
q − 2h̄2ω2

q

( I 2
3

h̄ω0

)∑
γ �

(γ )
q (ω)

. (39)

This expression is in agreement with the general expressions
deduced by Maradudin and Fein [37] and Cowley [38]. The
polarization part of the single-phonon propagator renormalizes

FIG. 4. (Color online) The single-particle Dyson equation for the
α Fermi-Pasta-Ulam lattice. The interacting single-phonon propaga-
tors are denoted by the double red wavy lines, and the noninteracting
single-phonon propagator is denoted by a single red wavy line. The
noninteracting two-phonon propagator is denoted by the open bubble.
The interaction I3 is represented by the vertex of a bubble connecting
to a single-phonon propagator.

the single-phonon quasiparticle spectral density downward,
introduces a broadened resonance just above the “bare”
single-phonon frequency, and describes the isolated pole at
the frequency of the n = 2 breather.

Like the β lattice, the two-phonon spectral density for the
α lattice depends on the components of the noninteracting
two-phonon propagator �

(γ )
q (ω). However, for the α lattice,

the renormalization of the single-phonon excitation energy
and its decay rate is also determined by �

(γ )
q (ω), which is

given in Appendix A.

V. MONOATOMIC LATTICES: RESULTS
AND DISCUSSION

A. The α lattice

The dispersion relation of the n = 2 breather and resonance
can be obtained directly from the single-phonon propagator.
This type of coupling between the single- and two-phonon con-
tinua was anticipated by Leath and Watson [42] over 40 years
ago, although these authors were concerned neither with the
Fermi-Pasta-Ulam model nor with breather excitations. The
excitation energies are given by the solutions of the equation

h̄2ω2 − h̄2ω2
q = 4h̄ωqI3

∣∣∣∣ sin
q

2

∣∣∣∣I3

∑
γ

Re �(γ )
q (ω). (40)

The equation can be solved graphically by the intersection of
the parabolic line with the polarization part as shown in Fig. 5.
The decay rate of the excitations is given by the imaginary
part of the polarization part at the intersection of the dashed
parabola with the solid blue curve. It is seen that for a fixed
q, there are three physically significant solutions. The lowest
energy solution describes the renormalized phonon frequency.
The phonon frequencies are softened, but due to the explicit
factor of |sin q

2 |, the dispersion relation retains the linear form
for low q values. At T = 0, both the n = 2 breather and the
single-phonon excitations are described by delta functions
with intensities given by[

1 − 2

∣∣∣∣ sin
q

2

∣∣∣∣I 2
3

∑
γ

∂

∂ω
�(γ )

q (ω)

]−1

(41)

evaluated at their respective excitation energies. Since
the slope of the real polarization part is negative at the
intersections, the ω-integrated spectral weight associated with
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FIG. 5. (Color online) The graphical solution for the excitation
energies for the renormalized single-phonon, the n = 2 resonance,
and the n = 2 breather of the α lattice. The excitation ener-
gies are given by the intersection of the dashed parabolic curve
h̄2(ω2 − ω2

q ) with 2h̄ωq times the real part of the polarization part,
2|sin q

2 |I 2
3

∑
γ �(γ )

q (ω), shown by the solid blue line. The decay rate
of each excitation is determined from the imaginary part (dotted red
line) evaluated at the excitation energy. The interaction strength I3

was set at ( I3
h̄ω0

) = 1√
2
.

each delta function is less than unity. The single-phonon
spectral density is shown in Fig. 6.

The delta functions at the renormalized phonon frequency
and at the n = 2 breather energy are marked by vertical lines.
The lower threshold for the two-phonon continuum is given
by the bare phonon frequency. The dispersion relation for the
renormalized phonons, the n = 2 breather, and the resonance
are shown in Fig. 7. It is expected that the renormalized
phonon dispersion relation will become increasingly soft as the
temperature or the interaction strength is increased, eventually

FIG. 6. (Color online) The T = 0 single-phonon spectral density,
− 1

π
Dq (ω + iη), in units of (h̄ω0)−1, showing delta function peaks at

the renormalized phonon frequency, the n = 2 breather, and a sharp
resonance in the n = 2 continuum. The interaction I3 has the same
value as in Fig. 5.

FIG. 7. (Color online) The dispersion relation for the renormal-
ized phonons and the n = 2 breather of the α lattice are indicated by
the filled blue circles. The position of the resonance is indicated by
the filled red triangles. At q = π the position of the n = 2 breather
and the resonance become indistinguishable from the neighboring
van Hove singularities in the noninteracting two-phonon continuum.
The interaction I3 has the same value as in Fig. 5.

reaching zero when the fluctuations become sufficiently large
to drive the system unstable. For T = 0, our analysis suggests
that the critical value of I3 and the wave vector for the
instability is given by the generalized Stoner criterion

0 = 1 + 2h̄ω0

(
I3

h̄ω0

)2∑
γ

�(γ )
q (0). (42)

At T = 0, this reduces to

1 = 2

π

(
I3

h̄ω0

)2
[

2 + cos2 q

4

2 sin q

4

ln

(
1 − sin q

4

1 + sin q

4

)

+ sin2 q

4

2 cos q

4

ln

(
1 − cos q

4

1 + cos q

4

)]
. (43)

The right-hand side is a mildly varying function of q, which
has a broad maximum at q = 0, and suggests that the critical
value of I3 is given by(

I3

h̄ω0

)2

= π

2
. (44)

For I3 close to this critical value, it is expected that the
time scale for the decay of the approximate metastable state
via large-amplitude tunneling fluctuations will be comparable
to the decay rate produced via the (harmonic) zero-point
fluctuations. Furthermore, for ( I3

h̄ω0
) = 0.707, one finds that

as much as 10% of the T = 0 single-phonon spectral weight
can be identified with the coupling to the two-phonon spectral
density, and this percentage increases as I3 increases. This
is qualitatively consistent with the observation of Manley
et al. that the breather excitation in NaI as measured in
inelastic neutron-scattering experiments [36] is associated
with an intensity proportional to Q2, where Q is the neutron
momentum transfer. This is consistent since the single-
phonon spectral density S(Q,ω) measured in inelastic neutron-
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scattering experiments [39] is related to the imaginary part of
the single-phonon propagator via

S1(Q,ω) = − 1

2π2
exp[−W (Q)](Q.ε̂q)2

(
h̄

2Mωq

)
× ImDq(ω + iη)[1 + N (ω)], (45)

where W (Q) is the anharmonic analog of the Debye-Waller
factor, q is the phonon wave vector, and ε̂q is the phonon
polarization vector. Although there is no general nonpertur-
bative theory of the Debye-Waller factor in the presence of
anharmonic interactions [49], we note that for large values
of I3, the Debye-Waller factor is not simply given by the
standard harmonic expression involving the renormalized
phonon frequencies. This is due to the presence of the
large admixture of the two-phonon spectra, which should
also contribute to W (Q). The appearance of the coupling
proportional to Q2 is in direct contrast to the results on the
β lattice in which the only manifestation of the n = 2 breather
in the single-phonon spectrum is expected to be a weak broad
peak. However, for the β lattice, the n = 2 breather should
show up directly as a sharp peak in the neutron scattering with
a coupling strength proportional to Q4.

B. The β lattice

The n = 2 breather is expected to show up directly in the
two-phonon spectrum as a sharp peak above the two-phonon
continuum. The dispersion relation for the n = 2 breather is
shown in Fig. 8 at various temperatures. The breather spectrum
for the β lattice has a finite separation for the two-phonon
continuum for all q values. The n = 2 breather and the n = 2
resonance become strongly mixed at q = π . It is also seen
that as the temperature increases, the energy separation of the
breather excitation from the top of the two-phonon continuum

FIG. 8. (Color online) The dispersion relation for the n = 2
resonance and the n = 2 breather of the β lattice at the temperatures
( kBT

h̄ω0
) = 0.0 (blue circles), 1.0 (blue squares), 1.5 (blue triangles),

and 2.0 (blue diamonds) with ( I4
h̄ω0

) = 1.

also increases, in accordance with the findings of Texeira
Rabelo et al. [50]. The dispersion relation becomes flatter as
the temperature increases consistent with the group velocity of
the breather tending to zero in the classical limit. This finding is
in accordance with the comments by Aubry [22], by Flach and
Willis [23], and by Fleurov [51]. In contrast with the breather,
the temperature-dependent shift of the excitation energy of the
n = 2 resonance has a much smaller magnitude.

Unlike the α lattice, the n = 2 breather is not expected
to show up in the single-phonon propagator. For the β

lattice, the phonon polarization part is related to the three-
phonon propagators, as depicted in Fig. 9. The single-phonon
polarization part �q(ω) is calculated to second order in I4 as

�q(ω) = 2I 2
4

3N2

∑
k1,k2

∣∣∣∣ sin
q

2
sin

(
q − k1 − k2

2

)
sin

k1

2
sin

k2

2

∣∣∣∣
[

2h̄
(
ωq−k1−k2 + ωk1 + ωk2

)
h̄2ω2 − h̄2

(
ωq−k1−k2 + ωk1 + ωk2

)2

]

× ([1 + Nq−k1−k2

][
1 + Nk1

][
1 + Nk2

]− Nq−k1−k2Nk1Nk2

)− 2I 2
4

N2

∑
k1,k2

∣∣∣∣ sin
q

2
sin

(
q − k1 − k2

2

)
sin

k1

2
sin

k2

2

∣∣∣∣
×
[

2h̄
(− ωq−k1−k2 + ωk1 + ωk2

)
h̄2ω2 − h̄2

(− ωq−k1−k2 + ωk1 + ωk2

)2

](
Nq−k1−k2

[
1 + Nk1

][
1 + Nk2

]− [
1 + Nq−k1−k2

]
Nk1Nk2

)
. (46)

When calculated to infinite order in I4, the n = 2 breather may
be expected to appear in the polarization part in a convolution
with a noninteracting single-phonon propagator and would at
most give rise to a broad peak. However, from inspection of the
polarization part given in Eq. (46), one is led to expect that for
the β lattice, the single-phonon propagator will couple directly
with the n = 3 breather. The three-phonon creation continuum
has van Hove singularities whose positions in the (k1,k2)
plane are determined by the solutions of the simultaneous

equations

∂

∂k1

(
ωq−k1−k2 + ωk1 + ωk2

) = 0,

(47)
∂

∂k2

(
ωq−k1−k2 + ωk1 + ωk2

) = 0.

The critical points are located at k1 = ( q+2nπ

3 ) and k2 =
( q+2nπ

3 ) for n = 0,1, and 2 cause the van Hove singularities
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FIG. 9. (Color online) The Dyson equation for the single-phonon
propagator for the β lattice. The dressed propagator is depicted
by the double wavy lines, and the noninteracting propagator by
the single wavy line. The lowest-order contribution to the single-
phonon polarization part describes a coupling to three co-propagating
phonons.

in the noninteracting three-phonon creation spectral density to
have the form of discontinuities. The Kramers-Kronig relation
relates the discontinuities in the imaginary part to logarithmic
singularities in the real part. The divergences form bands in
(ω,q) space, as seen in Fig. 10. In Fig. 11 it is seen that
the second-order single-phonon polarization part exhibits a
strong van Hove singularity at the top of the three-phonon
creation continuum, which produces an isolated pole in
the one-phonon spectrum. Due to the divergence at the van
Hove singularities, the effect of multiple interactions between
the three co-propagating phonons will produce a bound state
above the three-phonon continuum, no matter how small
the interaction strength I4 is. This is a consequence of the
one-dimensional nature of the model. Thus, the inclusion of
multiple interactions is expected to produce a coupling of the
single-phonon spectral density to the n = 3 breather. However,
due to the large energy separation between the single-phonon
energy and the top edge of the three-phonon continuum, the
intensity of the n = 3 breather contribution to S1(Q,ω) is
expected to be relatively small. From this analysis, and the
form of the van Hove singularities seen in Fig. 10, it should
be clear that the resonances are analytic continuations of the
breather excitations into the neighboring Brillouin zones.

FIG. 10. (Color online) The positions of the van Hove singular-
ities of the three-phonon creation continuum, in (ω,q) space, are
marked by the black and blue solid lines. The continuum is bounded
from above by the black solid line decorated with squares and is
bounded from below by the single-phonon dispersion relation (red
line with triangles).

FIG. 11. (Color online) The real (blue) and imaginary (red) parts
of 2h̄ωq times the T = 0 phonon polarization part �q (ω) for the β

lattice (in units of h̄2ω2
0) evaluated at q/π = 3/4 with ( I4

h̄ω0
) = 1.

The polarization part exhibits a strong van Hove singularity at
the top of the three-phonon creation continuum. The real part
of the polarization part is expected to diverge logarithmically at
the singularities; however, the results shown here do not diverge
due to numerical rounding. The dashed blue parabola represents
h̄2(ω2 − ω2

q ). The energy of the n = 3 breather is expected to be
found at the intersection of the blue curves at frequencies above the
three-phonon continuum.

VI. THE HAMILTONIAN OF THE DIATOMIC
FERMI-PASTA-ULAM LATTICE

The diatomic Fermi-Pasta-Ulam lattice consists of an
alternating periodic array of atoms with masses MA and MB ,
as shown in Fig. 12, which are coupled by harmonic and
anharmonic nearest-neighbor interactions. The anharmonic
Hamiltonian for the lattice is given by

Ĥ =
∑

i

(
P̂ 2

i,A

2MA

+ P̂ 2
i,B

2MB

)

+K2

2

∑
i

[(ûi,A − ûi,B)2 + (ûi,B − ûi+1,A)2]

+K4

12

∑
i

[(ûi,A − ûi,B)4 + (ûi,B − ûi+1,A)4], (48)

where the index i labels the unit cell. The first line represents
the harmonic part of the Hamiltonian, and the second line
(proportional to K4) represents the anharmonic interaction.
It should be noted that the Hamiltonian is symmetric under
the continuous transformation ui,A → ui,A + δ and ui,B →
ui,B + δ; thus we have assumed that the continuous sym-
metry of the ground state has been spontaneously broken.
The spontaneously broken symmetry of the ground state is

FIG. 12. (Color online) A cartoon of a four atom segment of the
diatomic Fermi-Pasta-Ulam lattice, in which atoms of masses MA

and MB are arranged periodically on alternating sites.
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responsible for the occurrence of a branch of Goldstone
modes.

In Appendix B, the harmonic part of the Hamiltonian Ĥ0

is written in terms of the Fourier transformed phonon creation
and annihilation operators, γ

†
j,q and γj,q , respectively, for the

optic and acoustic phonon (j = 1, 2) bands as

Ĥ0 =
∑

q

h̄ω1,q

2
(γ †

1,qγ1,q + γ1,qγ
†
1,q)

+
∑

q

h̄ω2,q

2
(γ †

2,qγ2,q + γ2,qγ
†
2,q), (49)

where the dispersion relations are given by

ω2
j,q = K2

(
1

MA

+ 1

MB

)[
1 ±

√
1 − 4MAMB

(MA + MB)2
sin2

q

2

]
(50)

in which the optical branch (j = 1) corresponds to the positive
sign and the acoustic branch (j = 2) corresponds to the
negative sign. The dispersion relations for the acoustic and
optic branches of the phonon excitations are shown in Fig. 13.

The anharmonic interaction Ĥint can be written in the form
of a sum of two separable momentum-conserving interactions.
In Appendix B the interaction is put into the second quantized
form

Ĥint =
(

K4h̄
2

48N

) 2∑
m=1

[ ∑
k1,k2,k3,k4

�k1+k2+k3+k4

×
4∏

j=1

{
2∑

i=1

F
(m)
i,kj

(
γ
†
i,kj

+ γi,−kj

)}]
, (51)

where the form factors for each separable interaction F
(m)
i,k are

complex numbers that are given in Appendix B.

FIG. 13. (Color online) The acoustic and optic branches of the
dispersion relation for the diatomic harmonic lattice with MB = 2MA.
A characteristic frequency ω0 has been defined in terms of the
harmonic force constant K2 via K2 = MAω2

0.

VII. DIATOMIC LATTICE: THE LADDER
APPROXIMATION

The two-phonon propagator can be evaluated in the ladder
approximation depicted in Fig. 1. By Fourier transforming the
equations of motion and using a generalization of the notation
of Ref. [40], the two-particle Dyson equation can be expressed
as

D
(α)(α′)
q,k,k′ (ω) = D

(α)(0)
q,k,k (ω)(δ(α)(α′)�k−k′ + δ(α̃)(α′)�k+k′)

+ 1

N

2∑
m=1

D
(α)(0)
q,k,k (ω)

(
H

(m)
α,q,k

)∗
J4

×
∑
β,k′′

H
(m)
β,q,k′′D

(β)(α′)
q,k′′,k′(ω), (52)

FIG. 14. (Color online) The ω dependence of the real (blue solid
line) and imaginary parts (red dotted line) of �11

q (ω + iη) for various
q values. The polarization parts are evaluated with MB = 4MA.
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where the index (α) denotes the pairs of indices (±,i; ±,j )
that describe the two-phonon operators so that the ± denotes
either the creation or annihilation operator and the Latin index
i denotes either the optic (i = 1) or the acoustic (i = 2) phonon
mode. The index (α̃) represents the transpose of the pair
of excitations denoted by the index (α). The noninteracting
two-phonon propagators D

(α)(0)
q,k,k (ω) are diagonal in the pair of

indices k,k′ and (α),(α′) and are given by

D
(α)(0)
q,k,k (ω) = ±( 1

2 + Ni,
q

2 +k

)± (
1
2 + Nj,

q

2 −k

)
h̄
(
ω ∓ ωi,

q

2 +k ∓ ωj,
q

2 −k

) . (53)

The factor ± multiplying the factor ( 1
2 + Ni,

q

2 +k) should be
associated with the phonon mode with index j and momentum
q

2 − k, and the sign in front of ( 1
2 + Nj,

q

2 −k) corresponds to

the mode labeled by the index i and the momentum q

2 + k.

The factors H
(m)
α,q,k are dimensionless complex numbers that

represent the product of the form factors for the pair of
excitations

H
(m)
α,q,k =

(
K2

ω0

)
F

(m)
i,

q

2 +k
F

(m)
j,

q

2 −k
(54)

involved in the mth component of the interaction. The
interaction strength J4 has units of energy and is given by

J4 =
(

K4h̄
2ω2

0

4K2
2

)
. (55)

The set of algebraic equations represented by (52) form a
closed set. On introducing the set of functions denoted by

�mm′
q (ω) = 1

N

∑
k,i,j

H
(m)
i,j,q,k

2h̄
(
ωi,

q

2 +k + ωj,
q

2 −k

)(
1 + Ni,

q

2 +k + Nj,
q

2 −k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k + ωj,
q

2 −k

)2

(
H

(m′)
i,j,q,k

)∗

+ 1

N

∑
k,i,j

H
(m)
i,j,q,k

2h̄
(
ωi,

q

2 +k − ωj,
q

2 −k

)(
Nj,

q

2 −k − Ni,
q

2 +k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k − ωj,
q

2 −k

)2

(
H

(m′)
i,j,q,k

)∗
, (56)

one finds that the two-phonon propagators can be expressed as

D
(α)(α′)
q,k,k′ (ω) = D

(α)(0)
q,k,k (ω)(δ(α)(α′)�k−k′ + δ(α̃)(α′)�k+k′)

+ 2D
(α)(0)
q,k,k (ω)

(
H

(1)
α,q,k

)∗
J4
[
1 − J4�

22
q (ω)

]
H

(1)
α′,q,k′′[

1 − J4�11
q (ω)

][
1 − J4�22

q (ω)
]− J 2

4 �12
q (ω)�21

q (ω)
D

(α′)(0)
q,k′,k′(ω)

+ 2D
(α)(0)
q,k,k (ω)

(
H

(1)
α,q,k

)∗
J 2

4 �12
q (ω)H (2)

α′,q,k′′[
1 − J4�11

q (ω)
][

1 − J4�22
q (ω)

]− J 2
4 �12

q (ω)�21
q (ω)

D
(α′)(0)
q,k′,k′(ω)

+ 2D
(α)(0)
q,k,k (ω)

(
H

(2)
α,q,k

)∗
J4
[
1 − J4�

11
q (ω)

]
H

(2)
α′,q,k′′[

1 − J4�11
q (ω)

][
1 − J4�22

q (ω)
]− J 2

4 �12
q (ω)�21

q (ω)
D

(α′)(0)
q,k′,k′(ω)

+ 2D
(α)(0)
q,k,k (ω)

(
H

(2)
α,q,k

)∗
J 2

4 �21
q (ω)H (1)

α′,q,k′′[
1 − J4�11

q (ω)
][

1 − J4�22
q (ω)

]− J 2
4 �12

q (ω)�21
q (ω)

D
(α′)(0)
q,k′,k′(ω). (57)

The factor of two comes from the degeneracy of the bosonic two-particle propagator due to the permutation of the operators.

VIII. DIATOMIC LATTICE: THE TWO-PHONON POLARIZATION PARTS

The two-phonon polarization parts satisfy

�11
q (ω) = �22

q (ω) (58)

and

�12
q (ω) = �21

q (ω∗)∗ (59)

for complex frequencies ω. The diagonal components are found to be given by

�11
q (ω) = 1

N

∑
k,i,j

(
ωi,

q

2 +kωj,
q

2 −k

4ω2
0

)
2h̄
(
ωi,

q

2 +k + ωj,
q

2 −k

)(
1 + Ni,

q

2 +k + Nj,
q

2 −k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k + ωj,
q

2 −k

)2

+ 1

N

∑
k,i,j

(
ωi,

q

2 +kωj,
q

2 −k

4ω2
0

)
2h̄
(
ωi,

q

2 +k − ωj,
q

2 −k

)(
Nj,

q

2 −k − Ni,
q

2 +k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k − ωj,
q

2 −k

)2 . (60)
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The real and imaginary parts of �11
q (ω + iη) where η → 0 are

shown in Fig. 14 for various q values. The imaginary parts
are nonzero with the two-phonon creation continua and vanish
elsewhere. The extent of the two-phonon creation continua
are shown in Fig. 15. The real and imaginary parts exhibit
divergent van Hove singularities at most of the extrema of the
two-phonon continua. The divergencies shown in the figure

are suppressed due to limited numerical accuracy. The notable
exceptions to the divergent behavior are found at the lower
edges of the acoustic-mode two-phonon continuum and the
mixed-mode continuum since the form factors vanish there.
The off-diagonal polarization parts �12

q (ω) also simplify, since
the complex products of the form factors are given by the
expressions

K2

ω0
F

(1)
j,kF

(2)
j,k

∗ = (−1)j
(

ωj,k

2ω0

)⎡⎣cos k
2

(
1

MA
+ 1

MB

)− i sin k
2

(
1

MA
− 1

MB

)
√(

1
MA

+ 1
MB

)2 − 4
MAMB

sin2 k
2

⎤
⎦ (61)

so that the contributions to �12
q (ω) from the imaginary parts of the product vanish. This follows since the contributions are

antisymmetric under the permutation (i, q

2 + k) ↔ (j, q

2 − k), and, therefore, the imaginary part vanishes when the summations
over k and (i,j ) are performed. Thus, one has

�12
q (ω) = 1

N

∑
k,i,j

(−1)i+jRq,k

(
ωi,

q

2 +kωj,
q

2 −k

4ω2
0

)
2h̄
(
ωi,

q

2 +k + ωj,
q

2 −k

)(
1 + Ni,

q

2 +k + Nj,
q

2 −k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k + ωj,
q

2 −k

)2

+ 1

N

∑
k,i,j

(−1)i+jRq,k

(
ωi,

q

2 +kωj,
q

2 −k

4ω2
0

)
2h̄
(
ωi,

q

2 +k − ωj,
q

2 −k

)(
Nj,

q

2 −k − Ni,
q

2 +k

)
h̄2ω2 − h̄2

(
ωi,

q

2 +k − ωj,
q

2 −k

)2 , (62)

where the dimensionless factor Rq,k is given by

Rq,k =
cos k

(
1

M2
A

+ 1
M2

B

)+ cos q

2

(
2

MAMB

)
√(

1
MA

+ 1
MB

)2 − 4
MAMB

sin2
(

q+2k

4

)√(
1

MA
+ 1

MB

)2 − 4
MAMB

sin2
(

q−2k

4

) . (63)

The real and imaginary parts of �11
q (ω + iη) where η → 0 are

shown in Fig. 16 for various q values. Due to the factor Rq,k , the
imaginary part of the function �12

q (ω + iη) changes sign for
frequencies between the extrema of the acoustic two-phonon
continuum at k = 0 and the upper edge where k = π . Since the
k values of the extrema are reversed for the optic two-phonon
continuum, the pattern of signs is opposite for the acoustic and
optic continua. In the limit q → π , there is a confluence of
the energies of the k = 0 and k = π extrema, which results in
cancellation so that the function �12

π (ω) vanishes.

IX. DIATOMIC LATTICE: RESULTS AND DISCUSSION

The n = 2 breather and resonance energies are given by the
solutions of the equation

Re
{[

1 − J4�
11
q (ω)

][
1 − J4�

22
q (ω)

]− J 2
4 �12

q (ω)�21
q (ω)

}= 0.

(64)

The dispersion relation for the long-lived breathers are given
by the solutions for which the corresponding imaginary parts
are identically zero, i.e.,

Im
{[

1 − J4�
11
q (ω)

][
1 − J4�

22
q (ω)

]− J 2
4 �12

q (ω)�21
q (ω)

}= 0.

(65)

Therefore, the breather excitations must have dispersion rela-
tions that are located outside the regions of (ω,q) phase space
occupied by the two-phonon continua. At zero temperatures,
these regions are shown in Fig. 15. The solutions of Eqs. (64)
and (65) are shown by the solid lines marked by the filled
circles. The dispersion relations lie above the top edges of
the various two-phonon continua, and the energy separation
between the branches of n = 2 breathers and the continua are
seen to increase as one moves to the successive higher-energy
branches. The increasing energy separations are correlated
with decreasing widths of the successive two-phonon continua.
It is also seen that the dispersion relation of the breathers
become successively flatter for the higher-energy branches,
which is in agreement with the findings of Wang et al.
[27] for the quantum breathers of the φ4 lattice. This is
supportive of the argument of Fleurov [51], which suggests
that classical breathers should be localized; however, quan-
tum breathers may move by quantum mechanical tunneling.
Hence, the band widths should decrease for the higher-energy
branches as the classical limit is approached. The position
of the lowest energy breather is found at energies above
the dispersion relation for the acoustic phonon and below
the optic phonon dispersion relation. This is in agreement
with the inelastic neutron-scattering results of Manley et al.
[36] on three-dimensional NaI in which they found a sharp
spectral feature between the acoustic and optic phonon
branches.
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FIG. 15. (Color online) The (ω,q) phase-space map of the
acoustic (lower band = red shading), mixed mode (middle band +
green shading), and optic (upper band = blue shading) two-phonon
creation continua for the diatomic harmonic lattice, with MB = 4MA.
For sufficiently large mass differences (MB > 3MA), the gap between
the acoustic and mixed mode continua extends across the entire
Brillouin zone, while for smaller values of the mass differences
(3MA > MB > MA), the mixed mode and acoustic continua merge
and have some overlap for small q values. The dispersion relations for
the n = 2 breather excitations defined by the solutions of Eqs. (64)
and (65) are marked by the solid lines decorated with the full circles.
The dispersion relations for the harmonic phonon are marked by the
full lines and coincide with the lower edges of the two lowest energy
two-phonon continua.

X. CONCLUSIONS

In summary, we have shown that the quantized Fermi-
Pasta-Ulam lattices have intrinsically nonlinear excitations
that exist as breathers or resonances, no matter how weak the
interaction strength is. Furthermore, we have shown that the
n = 2 and 3 breather excitations could be expected to show up
in inelastic neutron-scattering experiments through the single-
phonon scattering cross section, due to the presence of a cubic
component to the anharmonic interaction. This could also be
expected to be true for more general forms of the anharmonic
interactions and is consistent with experimental observations
[36]. In particular, the experiments demonstrate the existence
of a sharp feature with a fairly flat dispersion relation that lies
in the gap between the acoustic and optic phonon branches,
as found for the diatomic lattice. The intensity of the sharp
feature is proportional to Q2, indicating that this component
involves coupling to the single-phonon spectrum. However,
the coupling of the nonlinear excitations to the single-phonon
spectra is not expected to extend to larger values of n, if
the anharmonic interactions are weak. This expectation is
based on the observation that the van Hove singularities in the
noninteracting n-phonon continua have the form of van Hove
singularities in the density of states of an (n − 1)-dimensional
system and, therefore, are only expected to give rise to either
divergences or discontinuities for n = 2 and 3. For larger
values of n, one expects that the van Hove singularities will
take the form of either extremal points or points of inflection.

FIG. 16. (Color online) The ω dependence of the real and
imaginary parts of �12

q (ω + iη) for various q values. The polarization
parts are evaluated with MB = 4MA.

It is the divergences in the real part of the noninteracting n = 2
or 3 multiphonon propagators that are responsible for the for-
mation of the breathers and the resonances at arbitrarily small
interaction strengths, and it is these divergences that also give
rise to the coupling with the single-phonon scattering cross
section.

Since the van Hove singularities do not diverge in three
spatial dimensions, one expects that a critical value of the
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anharmonic interaction has to be exceeded before the n =
2 breather is formed. The presence of the Bose-Einstein
distribution function n the polarization part multiplying the
anharmonicity has the effect of enhancing the effective
interactions at high temperatures and could be expected to lead
to the appearance of the n = 2 breather in NaI at temperatures
above a critical temperature. This expectation is consistent
with experiment, since the sharp feature was only observed
at T = 555 K and since the feature was not observed in
experiments carried out below T = 438 K.
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APPENDIX A

Analytic expressions for the real and imaginary parts of the
T = 0 two-phonon creation components of the propagator for
the monoatomic lattice are discussed in this Appendix.

The imaginary parts of the components of the two-phonon
propagator are given by

Im �(α)
q (ω + iη)

= −π

h̄

∫ π

−π

dk

2π
δ
(
ω ∓ ωq

2 +k ± ωq

2 −k

)∣∣Fq

2 +kF q

2 −k

∣∣2
×
[
±
(

1

2
+ Nq

2 +k

)
∓
(

1

2
+ Nq

2 −k

)]
, (A1)

where the sum over k has been replaced by an integral over k.
The integration can be performed by using the properties of
the delta function, yielding

Im �(α)
q (ω + iη) = − 1

2h̄

∑
k

∣∣Fq

2 +kF q

2 −k

∣∣2∣∣ ∂
∂k

(± ωq

2 +k ∓ ωq

2 −k

)∣∣
×
[
±
(

1

2
+ Nq

2 +k

)
∓
(

1

2
+ Nq

2 −k

)]
,

(A2)

where the sum over k is restricted to the values that are the
solutions of

ω = ±ωq

2 +k ∓ ωq

2 −k. (A3)

For general values of q, the imaginary part of the components
of the “bare” two-phonon propagator are expected to be
singular at the boundaries [52]. At the boundaries, the
imaginary part may become infinite, since the boundaries are
defined by the k values for which ±ωq

2 +k ∓ ωq

2 −k is extremal.
For example, for 0 < q < π , the upper edges of two-phonon

creation continuum is given by

4ω0 cos
q

4
, (A4)

and this maximal value corresponds to k = π . In the region of
(ω,q) given by

4ω0 cos
q

4
> ω > 4ω0 sin

q

4
, (A5)

the imaginary part of the two-phonon creation continuum is
nonzero and is determined by the equivalent k values with a
magnitude found from

ω = 4ω0 cos
q

4
sin

k

2
, (A6)

which leads to a square root divergence at the upper boundary
of the continuum with the form

Im �(++)
q (ω + iη)

∝ − 2

h̄

√
16ω2

0 cos2 q

4 − ω2

∣∣ω2 − 4ω2
0 sin2 q

2

∣∣
16ω0

2 cos2 q

4

, (A7)

when 4ω0 cos q

4 > ω, and is zero otherwise. The Bose-Einstein
distribution functions in the factor [1 + Nq

2 +k + Nq

2 −k] (not
displayed) are evaluated at the frequencies given by

ωq

4 ± k
2

= 1

2

[
ω ± tan

q

4

√
16ω2

0 cos2
q

4
− ω2

]
. (A8)

For values of (ω,q) that satisfy the inequality

4ω0 sin
q

4
> ω > 2ω0 sin

q

2
, (A9)

the imaginary part of the two-phonon creation component of
the propagator is determined by the equivalent k values with
magnitudes that satisfy either of the equations

ω = 4ω0 cos
q

4
sin

k

2
for k � q

2
,

(A10)

ω = 4ω0 sin
q

4
cos

k

2
for k � q

2
.

The corresponding phonon frequencies that enter the factor
[1 + Nq

2 −k + Nq

2 −k] containing the Bose-Einstein distribution
functions are given by

ωq

4 ± k
2

= 1

2

[
ω ± tan

q

4

√
16ω2

0 cos2
q

4
− ω2

]
for k � q

2
,

ω q

4 ± k
2

= 1

2

[
ω ± cot

q

4

√
16ω2

0 sin2
q

4
− ω2

]
for k � q

2
.

(A11)

For simplicity, we shall consider the case T = 0, since the
factors containing the Bose-Einstein distribution functions
must be carried along with each term and results in quite a
cumbersome expression. At T = 0, the imaginary part of the
two-phonon creation component is given by

Im �(++)
q (ω + iη) ∝ −2

h̄

∣∣ω2 − 4ω2
0 sin2 q

2

∣∣
16ω2

0

[
1

cos2 q

4

√
16ω2

0 cos2 q

4 − ω2
+ 1

sin2 q

4

√
16ω2

0 sin2 q

4 − ω2

]
m, (A12)
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which is composed of the tail of the square root singularity from the upper edge (k = π ) but also has a second square root
singularity originating from the extrema at k = 0.

The real part of the two-phonon creation component is related to the imaginary part of the component by the Kramer’s-Kronig
relation. At T = 0, the real part can be expressed as an integral that can be reduced to the sum of two elementary integrals

Re �(++)
q (ω) = 1

2h̄ω0

∫ π

0

dk

π

∣∣sin
(

q

4 + k
2

)
sin
(

q

4 − k
2

)∣∣(
ω

2ω0

)− |sin
(

q

4 + k
2

)∣∣− ∣∣sin
(

q

4 − k
2

)∣∣
= 1

4πh̄ω0

∫ q

2

0
dk

cos2 k
2 − cos2 q

4(
ω

4ω0

)− cos k
2 sin q

4

+ 1

4πh̄ω0

∫ π

q

2

dk
sin2 k

2 − sin2 q

4(
ω

4ω0

)− sin k
2 cos q

4

. (A13)

This expression can be further reduced to

Re �(++)
q (ω) = − 1

πh̄ω0
− ω

16πh̄ω2
0

[( q

2

sin2 q

4

)
+
(

π − q

2

cos2 q

4

)]

+
(
ω2 − 4ω2

0 sin2 q

2

8πh̄ω2
0

)[
1

sin2 q

4

∫ q

4

0

dk
2

ω − 4ω0 sin q

4 cos k
2

+ 1

cos2 q

4

∫ π
2

q

4

dk
2

ω − 4ω0 cos q

4 sin k
2

]
. (A14)

The last two integrals can be evaluated by standard means. The resulting expression for the first integral takes different forms for
ω > 4ω0 cos q

4 and ω < 4ω0 cos q

4 . It is evaluated as

∫ q

4

0

dx

ω − 4ω0 sin q

2 cos x
= 2√

ω2 − 16ω2
0 sin2 q

4

tan−1

[
tan q

8

√
ω2 − 16ω2

0 sin2 q

4

ω − 4ω0 sin q

4

]
if ω2 > 16ω2

0 sin2 q

4

= 1√
16ω2

0 sin2 q

4 − ω2
ln

⎡
⎣ tan q

8

√
16ω2

0 sin2 q

4 − ω2 + ω − 4ω0 sin q

4

tan q

8

√
16ω2

0 sin2 q

4 − ω2 − ω + 4ω0 sin q

4

⎤
⎦ if 16ω2

0 sin2 q

4
> ω2

(A15)

and gives rise to a square root singularity above the extrema at ω = 4ω0 sin q

4 . Likewise, the result for the second integral has
different forms for ω > 4ω0 sin q

4 and ω < 4ω0 sin q

4 . It is determined from the indefinite integral∫
dx

ω − 4ω0 cos q

4 sin x
= 2√

ω2 − 16ω2
0 cos2 q

4

tan−1

[
ω tan x

2 − 4ω0 cos q

4√
ω2 − 16ω2

0 cos2 q

4

]
if ω2 > 16ω2

0 cos2 q

4

= 1√
16ω2

0 cos2 q

4 − ω2
ln

⎡
⎣ω tan x

2 − 4ω0 cos q

4 −
√

16ω2
0 cos2 q

4 − ω2

ω tan x
2 − 4ω0 cos q

4 +
√

16ω2
0 cos2 q

4 − ω2

⎤
⎦ if 16ω2

0 cos2 q

4
> ω2,

(A16)

which gives rise to a singularity above the upper edge of
the two-phonon creation continuum at ω = 4ω0 cos q

4 , seen
in Fig. 17. Due to the singularity in the imaginary part, the real
part of the propagator also shows a singularity at the upper edge
of the continua. This divergence guarantees that the equation
for the bound state of the β lattice, Eq. (23), has a solution
above the two-phonon continuum for any positive value of the
interaction I4, no matter how small. The second square root
divergence in the imaginary part, due to the states near k = 0,
is accompanied by a second divergence in the real part. The
divergence in the real part guarantees that the equation∑

γ

Re �(γ )
q (ω) = 1

I4
(A17)

describing collective modes of the β lattice has a second
solution for 4ω0 cos q

4 > ω > 4ω0 sin q

4 , no matter how weak
the interaction I4 is (I4 > 0). However, since the imaginary

part is finite, ∑
γ

Im �(γ )
q (ω) �= 0, (A18)

for this value of ω, one does not find a bound state, but, instead,
one finds a resonance located just above the extremum of the
two-phonon creation continuum at ω = 4ω0 sin q

4 . It is noted
that the imaginary part of the two-phonon creation component
tends to zero smoothly at the lower edge of the continuum
since the form factor goes to zero there.

The two-phonon annihilation component and the two-
phonon creation component of the propagator are related via

�(++)
q (ω) = �(−−)

q (−ω). (A19)

Hence, the real part of
∑

γ �
(γ )
q (ω) is an even function of ω, and

the imaginary part
∑

γ �
(γ )
q (ω + iη) is an odd function of ω.
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FIG. 17. (Color online) The sum of the real and imaginary parts
of the T = 0 two-phonon propagators

∑
γ �(γ )

q (ω + iη) [in units of
(h̄ω0)−1], for the values of q/π of 0.0, 0.5, and 1.0 (as marked in
the legend). The imaginary parts are denoted by the fine red lines
and takes on either negative values within the continua or are zero
otherwise. The real parts are denoted by the bold blue lines.

At T = 0, the component of the two-phonon propagator
describing the joint creation-annihilation processes is zero.
However, at finite temperatures, the imaginary part is found as

Im �(+−)
q (ω + iη)

= −1

h̄

∣∣Fq

2 + kF q

2 − k

∣∣2∣∣ ∂
∂k

(
ωq

2 +k − ωq

2 −k

)∣∣ [Nq

2 −k − Nq

2 +k

]
, (A20)

which is to be evaluated at the k values given by the solution
of

ω = ωq

2 +k − ωq

2 −k, (A21)

which reduces to the pair of equations

ω = 4ω0 cos
q

4
sin

k

2
for k � q

2
,

(A22)

ω = 4ω0 sin
q

4
cos

k

2
for k � q

2
At ω = 0, the solutions reduce to k = 0 and k = π , from
which it is seen that the Bose-Einstein terms cancel exactly.
Hence, the imaginary part vanishes at ω = 0. The imaginary
part initially varies linearly with ω. The imaginary part can be
evaluated at arbitrary temperatures, but, like the corresponding
expression for the two-phonon creation process, it is too
cumbersome to display. At sufficiently high temperatures
(kBT � h̄ω0), the expression simplifies to yield

Im �(+−)
q (ω + iη) ∝ −2

(
kBT ω

4h̄2ω2
0

)[
1√

16ω2
0 cos2 q

4 − ω2

+ 1√
16ω2

0 sin2 q

4 − ω2

]
, (A23)

where 0 < ω � 2ω0 sin q

2 . As seen in Fig. 18 the difference
component of the two-phonon propagator does not introduce
any radically new structure to

∑
α �(α)

q (ω), but only extends the
tails of the singularities in the imaginary part of two-phonon

creation component to a lower energy range. It is also seen that
the effect of increasing temperature is to increase the intensities
of the singularities.

APPENDIX B

In this Appendix we present the calculation of the Hamil-
tonian for the diatomic β lattice.

The harmonic part of the Hamiltonian Ĥ0 can be written in
terms of the Fourier transformed variables and is given by

Ĥ0 =
∑

q

[
P̂A,q P̂

†
A,q

2MA

+ P̂B,q P̂
†
B,q

2MB

]

+K2

∑[
(ûA,q û

†
A,q + ûB,q û

†
B,q)

− cos
q

2
(ûB,q û

†
A,q + ûA,q û

†
B,q)

]
. (B1)

This can be diagonalized by two successive canonical trans-
formations. The first canonical transformation is given by

P̂A,q = cos θqP̂α,q + sin θqP̂β,q ,

P̂B,q = − sin θqP̂α,q + cos θqP̂β,q ,
(B2)

ûA,q = cos θqûα,q + sin θqûβ,q ,

ûB,q = − sin θqûα,q + cos θqûβ,q .

The Hamiltonian is then written in terms of bosonic creation
and annihilation operators

P̂α,q = i

√
h̄

2αq

(a†
α,q − aα,−q ), ûα,q =

√
h̄αq

2
(a†

α,q + aα,−q ),

P̂β,q = i

√
h̄

2βq

(a†
β,q − aβ,−q ), ûβ,q =

√
h̄βq

2
(a†

β,q + aβ,−q ).

(B3)

The values of αq , βq , and θq are chosen so that the terms
that involve the product of two creation operators and terms
involving two annihilation operators vanish. This leads to the
expressions

α2
q =

(
1

MA
+ 1

MB

)+ cos 2θq

(
1

MA
− 1

MB

)
4K2

(
1 + cos q

2 sin 2θq

) ,

β2
q =

(
1

MA
+ 1

MB

)− cos 2θq

(
1

MA
− 1

MB

)
4K2

(
1 − cos q

2 sin 2θq

) ,

(B4)

sin 2θq =
√√√√ 4

MAMB
cos2 q

2

4
MaMB

cos2 q

2 + (
1

MA
− 1

MB

)2
sin2 q

2

,

cos 2θq = −
√√√√ (

1
MA

− 1
MB

)2
sin2 q

2

4
MaMB

cos2 q

2 + (
1

MA
− 1

MB

)2
sin2 q

2

.
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FIG. 18. (Color online) The temperature dependence of the sum of the two-phonon propagators
∑

γ �(γ )
q (ω + iη) [in units of (h̄ω0)−1], for

the values of q/π of 0.25 and 0.75, for different values of ( kBT

h̄ω0
) shown in the legend. The imaginary parts are denoted by the solid lines, and

the real parts are denoted by the dashed lines.

The Hamiltonian is then subjected to a second unitary
transform

a†
α,q = cos ϕqγ

†
1,q − sin ϕqγ

†
2,q ,

(B5)
a
†
β,q = sin ϕqγ

†
1,q + cos ϕqγ

†
2,q ,

which diagonalizes the Hamiltonian if ϕq is chosen as

tan 2ϕq = 2
√

αqβq cos q

2 cos 2θq

βq

(
1 − cos q

2 sin 2θq

)− αq

(
1 + cos q

2 sin 2θq

) .
(B6)

On substituting the expressions for sin 2ϕq and cos 2ϕq , the
resulting harmonic Hamiltonian reduces to

Ĥ0 = h̄K2

2

∑
q

{
αq

(
1 + cos

q

2
sin 2θq

)
+ βq

(
1 − cos

q

2
sin 2θq

)

−
√[

αq

(
1 + cos

q

2
sin 2θq

)
+ βq

(
1 − cos

q

2
sin 2θq

)]2

− 4αqβq sin2
q

2

}
(γ †

1,qγ1,q + γ1,qγ
†
1,q)

+ h̄K2

2

∑
q

{
αq

(
1 + cos

q

2
sin 2θq

)
+ βq

(
1 − cos

q

2
sin 2θq

)

+
√[

αq

(
1 + cos

q

2
sin 2θq

)
+ βq

(
1 − cos

q

2
sin 2θq

)]2

− 4αqβq sin2
q

2

}
(γ †

2,qγ2,q + γ2,qγ
†
2,q). (B7)

The above form of the Hamiltonian describes the dispersion
relations for the acoustic and optic branches of the phonon
excitations. Since direct calculation shows that

4αqβq sin2 q

2
= 1

K2

√
4

MAMB

sin
q

2
(B8)

and

αq

(
1 + cos

q

2
sin 2θq

)
+ βq

(
1 − cos

q

2
sin 2θq

)

=
√

1

2K2

√√√√( 1

MA

+ 1

MB

)
+
√

4

MAMB

sin
q

2
, (B9)

it is seen that the two branches of phonon dispersion relations
are given by the conventional expression

ωi,q =
√

K2

2

[√√√√( 1

MA

+ 1

MB

)
+
√

4

MAMB

sin
q

2

±

√√√√( 1

MA

+ 1

MB

)
−
√

4

MAMB

sin
q

2

]
, (B10)

where the optical branch (i = 1) corresponds to the positive
sign and the acoustic branch (i = 2) corresponds to the
negative sign. In the above derivation it has been implicitly
assumed that sin q

2 has a positive value.
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The anharmonic interaction Ĥint can be written in the form
of a sum of two separable momentum-conserving interactions

Ĥint =
(

K4

12N

) ∑
k1,k2,k3,k4

�k1+k2+k3+k4

4∏
j=1

{exp[−ikj /4]ûA,kj

− exp[+ikj /4]ûB,kj
} +

(
K4

12N

) ∑
k1,k2,k3,k4

�k1+k2+k3+k4

×
4∏

j=1

{exp[+ikj /4]ûA,kj
− exp[−ikj /4]ûB,kj

}.

(B11)

For a set of fixed kj values, the pairs of interaction operators
are mutually Hermitean conjugate. The interaction can be put
into the second quantized form

Ĥint =
(

K4h̄
2

48N

) 2∑
m=1

[ ∑
k1,k2,k3,k4

�k1+k2+k3+k4

4∏
j=1

×
{

2∑
i=1

F
(m)
i,kj

(
γ
†
i,kj

+ γi,−kj

)}]
, (B12)

where the form factors for each separable interaction F
(m)
i,k are

complex numbers. For the first separable interaction (m = 1),
the form factors are given by

F
(1)
1,k = cos

k

4
[αk cos ϕk(cos θk + sin θk)

+βk sin ϕk(sin θk − cos θk)]

− i sin
k

4
[αk cos ϕk(cos θk − sin θk)

+βk sin ϕk(sin θk + cos θk)] (B13)

and

F
(1)
2,k = cos

k

4
[−αk sin ϕk(cos θk + sin θk)

+βk cos ϕk(sin θk − cos θk)]

−i sin
k

4
[−αk sin ϕk(cos θk − sin θk)

+βk cos ϕk(sin θk + cos θk)]. (B14)

For the second separable interaction (m = 2), the form factors
F

(2)
i,k are given as the complex conjugates of the F

(1)
i,k :

F
(2)
i,k = (

F
(1)
i,k

)∗. (B15)
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