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Parity effect and phase transitions in quantum Szilard engines
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Quantum Szilard engines with an arbitrary number of identical particles are studied in this paper. Analytical
expressions for the total work in the low- and high-temperature limits are obtained. The total work depends on
both the particle statistics, the odd-even parity, and the temperature of the system. The parity effect is drastic in
fermion systems. An odd number of fermions perform work as if they were a single fermion, and an even number
of fermions do not perform any work at all. For bosons, there exists a phase transition at a critical temperature
under which work done by the engine is always negative. It is found that only above a certain temperature,
bosonic quantum Szilard engine does more work than fermionic one. The possible experimental verification of
these effects is discussed.
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I. INTRODUCTION

The Szilard engine (SZE) is an elaborate form of Maxwell’s
demon designed to quantitatively analyze how an intelligent
being can extract work from a single thermal reservoir
along with an increase in entropy that saves the second law
of thermodynamics [1,2]. Szilard believed that the entropy,
which is widely accepted as kB ln 2 [3,4], is produced by
the measurement process. Bennett and Landauer argued that
it is the erasing of the information that generates entropy
[5,6]. The profound connection between information and
thermodynamics illustrated by the SZE spures the investigation
on the information-to-energy conversion and feedback control
system [7–16], yet interestingly a solution of the Maxwell
demon paradox without invoking the notions of information
or entropy was also proposed and analyzed by Scully et al.
with an experimental scheme [17–19].

Recently Kim et al. investigated the “quantum Szilard
engine” (QSZE) where the quantum effect of the work
substance has to be taken into consideration [20]. As is shown
in Fig. 1, N ideal identical molecules (fermions or bosons) are
prepared in an isolated box of size L. Naturally, the molecules
are in the eigenstates of a potential well of size L and have
discrete energy levels. The wall is then isothermally inserted
in the box at the position l, after which a measurement is
performed to find m molecules in the left room. As long as
the molecule numbers of each side are unequal, the QSZE
will experience an isothermal expansion which pushes the
wall either leftward or rightward to the equilibrium position
lmeq. Finally, the wall is removed and the whole thermodynamic
cycle is completed. The total work the engines performs during
a single cycle holds

Wtot = −kBT

N∑
m=0

fm ln

(
fm

f ∗
m

)
, (1)

where kB is the Boltzmann constant and T is the temperature
of the heat bath. fm = Zm(l)/Z(l) gives the probability of
having m molecules on the left at the measurement with Z(l) =∑N

m=0 Zm(l), where Zm(l) represents the partition function for
the case in which m molecules are on the left. f ∗

m is defined as
f ∗

m = Zm(lmeq)/Z(lmeq). Using Eq. (1), Kim et al. discussed the

quantum thermodynamic work (QTW) performed by QSZE
containing one and two molecules.

The situation for arbitrary number N , however, remains an
important and interesting topic of urgent research. In this work,
we studied the QSZE with an arbitrary number of particles.
It is found that there is a parity effect in fermionic QSZE,
and a phase transition occurs in a bosonic QSZE in which
QSZE absorbs work instead of doing work below a critical
temperature. It is also found that in contrast to the two particle
case, a bosonic QSZE does more work than a fermionic QSZE
only above certain temperature.

II. QSZE WITH THREE PARTICLES

For simplicity, we set the insertion position l = L
2 , and

suppose the molecules are in the energy levels of infinite
potential, which can be expressed as En(l) = n2π2h̄2

2Ml2 where M is
the mass of a single molecule and h̄ the reduced Plank constant.
Note that f ∗

0 = Z0(l0
eq)/Z(l0

eq) = Z0(0)/Z0(0) = 1 is always
satisfied because it corresponds to the case in which the wall
moves to the end of the box, and for the same reason f ∗

N = 1.
Besides, the symmetry of the system leads to fm = fN−m,
f ∗

m = f ∗
N−m. For QSZE containing three molecules, the total

work is therefore given by

Wtot = −2kBT

[
f0 ln f0 + f1 ln

(
f1

f ∗
1

)]
. (2)

A. Three-fermion case

Let us first consider the case of a three-fermion SZE
whose QTW is denoted as W 3F

tot . In the high-temperature
limit, theoretical calculations of the partition function give
the following results

f0(T → ∞) = 1
8 , f1(T → ∞) = 3

8 , f ∗
1 (T → ∞) = 4

9 .

(3)

By inserting Eq. (3) into Eq. (2), one can easily obtain

W 3F
tot (T → ∞) = 9

4kBT ln 4
3 . (4)
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FIG. 1. The working cycle of the classical SZE. (a) A wall
is isothermally inserted into the box with N molecules at the
position l, then a measurement is performed to find m molecules
on the left without any cost of work. (b) The isothermal expansion
of the molecules pushes the wall to its equilibrium position lmeq. (c)
The wall is removed isothermally at last, and the engine is restored
to its original state.

A similar approach can be performed for the low-temperature
limit, giving

W 3F
tot (T → 0) = kBT ln 2. (5)

B. Three-boson case and the “work phase transition”

The total work performed by the three-boson SZE W 3B
tot can

also be addressed. In the high-temperature limit, we have

f0(T → ∞) = 1
8 , f1(T → ∞) = 3

8 , f ∗
1 (T → ∞) = 4

9 ,

(6)

and

W 3B
tot (T → ∞) = 9

4kBT ln 4
3 . (7)

In the low-temperature limit, one reaches

f0(T → 0) = 1
4 , f1(T → 0) = 1

4 ,
(8)

f ∗
1 (T → 0) = e−β[E1(l1

eq)−E1(L−l1
eq)],

and

W 3B
tot (T → 0) = 2kBT ln 2 − 1

2

[
E1

(
l1
eq

) − E1
(
L − l1

eq

)]
,

(9)
where β = 1/(kBT ).

The equilibrium position of the wall lmeq can be fixed
by a procedure described below. The generalized force that
acts on the wall is defined as F = ∑∞

n=1 Pn
∂En(l)

∂l
. Note that

Pn is the mean occupation number of the nth energy level
and can be expressed as Pn = e−βEn(l)/Z(l), where Z (l)
is the partition function Z (l) = ∑∞

n=1 e−βEn(l). Assume that
En (l) = n2π2h̄2/(2Ml2). Obviously, the balance of the wall

requires F left + F right = 0. Thus, we end up with

∞∑
i=1

mEi

(
lmeq

)
e−βEi (lmeq)

lmeqZ
(
lmeq

)
=

∞∑
j=1

(N − m)Ej

(
L − lmeq

)
e−βEj (L−lmeq)(

L − lmeq

)
Z

(
L − lmeq

) , (10)

where Ei(lmeq) and Ej (L − lmeq) denote the ith and j th energy
level of molecules on the left and right, respectively. In Eq. (9),
l1
eq is simply the special case for m = 1, and is thereby derived

as l1
eq = L

1+2
1
3

by solving Eq. (10). Hence Eq. (9) can be

rewritten as

W 3B
tot (T → 0) = 2kBT ln 2 − 1

2

[
E1

(
l1
eq

) − E1
(
L − l1

eq

)]
≈ 2kBT ln 2 − 0.47π2h̄2

ML2
. (11)

Equation (11) clearly indicates that there exists a phase
transition at which the work done by the SZE W 3B

tot changes
from positive to negative at low temperatures below a critical
temperature TC . We call this phase transition the “work phase
transition” (WPT). The critical temperature TC can thus be
naturally obtained. At a temperature above TC , the bosonic
SZE performs positive work. However, as the temperature
drops below TC , one will not extract any work from the
bosonic SZE, but will rather do work on it instead because the
engine performs negative work, or rather “absorbs” work in a
single cycle. This phase transition exists for general multipar-
ticle bosonic SZE’s and we will discuss this in more detail in
the next section.

III. MANY PARTICLE QSZE

Now we have analyzed the total work performed by a
three-molecule QSZE in the high- and low-temperature limits,
which, compared with the N = 1 and N = 2 cases, appears to
be more intricate. The second term of W 3B

tot in Eq. (9) clearly
manifests the quantum effect which comes into play at low
temperature. It is intriguing and necessary for us to further
study the case of QSZE containing an arbitrary number of
molecules.

A. Hightemperature limit

One can prove that both fermionic and bosonic N -molecule
QSZE satisfy

fm(T → ∞) = Cm
N

2N
,

(12)

f ∗
m(T → ∞) = Cm

N

(
m

N

)m(
1 − m

N

)N−m

in the high-temperature limits. Then Eq. (1) reduces to

WNF
tot (T → ∞)

= WNB
tot (T → ∞)

=
⎧⎨
⎩

NkBT ln 2 − WO, N is odd

NkBT
(
1 − C

N
2

N

2N

)
ln 2 − WE, N is even,

(13)
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where

WO = NkBT

2N−1

N−1
2∑

m=1

Cm
NH (m),

(14)

WE = NkBT

2N−1

N
2 −1∑
m=1

Cm
NH (m),

where H (m) is the Shannon entropy

H (m) = −m

N
ln

m

N
− N − m

N
ln

N − m

N
.

Equation (13) reveals the fact that the fermionic and bosonic
SZE perform the same amount of work in the high-temperature
limit. This is not surprising because distinguishability occurs
at a higher temperature because more states are available for
fermions and bosons, which both turn into distinguishable
classical molecules when T → ∞.

The low-temperature limit case has to be discussed for the
bosonic and fermionic SZE separately. In the following, we
discuss them separately.

B. Parity effect in multifermion QSZE

For the N -fermion SZE, when N is odd, we have at low
temperature

fm =
{

1
2 m = N−1

2 or N+1
2 ,

0 otherwise,
(15)

f ∗
N−1

2
= f ∗

N+1
2

= 1.

When N is even

fm =
{

1
2 m = N

2 ,

0 m �= N
2 ,

f ∗
N
2

= 1. (16)

In these cases, Eq. (1) reduces to

WNF
tot (T → 0) =

{
kBT ln 2 N is odd,

0 N is even.
(17)

It is apparent from Eq. (17) that the work done by the
fermionic QSZE depends on the parity of the molecule num-
bers. In the low-temperature limit the QTW of an N -fermion
SZE is exclusively dependent on N ’s parity, but irrelevant to
N ’s value when the parity is fixed. We call it the parity effect,
which is directly related to the Pauli exclusion principle. Due
to the prohibition to occupy the same state, the more evenly the
fermions are allocated over the two rooms the lower the energy
of the system. Thus, the total work inevitably reaches zero in
the low-temperature limit for the even N -fermionic SZE. It is
worth mentioning that this effect can also be comprehended
from the aspect of the third law of thermodynamics [21].
The ground state exhibits degeneracies when there is an
odd number of fermions, whereas the ground state has no
degeneracies when there is an even number of fermions and the
entropy of the engine (as well as the work done by the engine)
approaches zero as the temperature approaches absolute zero
due to the third law of thermodynamics.

C. WPT in multiboson QSZE

On the other hand, at the low-temperature limit, one can
prove that for the N -boson SZE

fm(T → 0) = 1

N + 1
(18)

is always satisfied regardless of the parity of N .
When N is odd

f ∗
m (T → 0)

= f ∗
N−m (T → 0)

=
{

1 m = 0,

e−mβ[E1(lmeq)−E1(L−lmeq)] m = 1, 2, . . . ,N−1
2 .

(19)

When N is even

f ∗
m (T → 0)

= f ∗
N−m (T → 0)

=
⎧⎨
⎩

1 m = 0,

e−mβ[E1(lmeq)−E1(L−lmeq)] m = 1, 2, . . . ,N
2 − 1,

1
N+1 m = N

2 .

(20)

Then the total work of the N -boson SZE in the low-
temperature limit is given by

WNB
tot (T → 0) =

{
kBT ln (N + 1) − Wo, N is odd,

N
N+1kBT ln (N + 1) − We, N is even,

(21)
where

Wo = 2

N + 1

N−1
2∑

m=1

m
[
E1

(
lmeq

) − E1
(
L − lmeq

)]
, (22)

We = 2

N + 1

N
2 −1∑
m=1

m
[
E1

(
lmeq

) − E1
(
L − lmeq

)]
. (23)

Though the expression for the even particle number is
different from that for the odd particle number QSZE, there
is no parity effect which exists in the fermion QSZE. The
difference between Eqs. (22) and (23) is only the number of
terms to be summed, which is about half of the particle number.

However, there exists a phase transition in the QTW done
by a bosonic QSZE. The bosonic SZE will absorb work rather
than perform work in an extremely low temperature. This
phenomenon can be viewed as the phase transition of the
bosonic SZE from the negative-work phase to positive-work
phase with a critical temperature TC . Note that this phase
transition only occurs when N � 3. In Fig. 2, the QTW from
a bosonic QSZE is drawn. It is interesting to see that the
critical temperature increases as the number of bosons in the
QSZE increases. We numerically verified that the We and Wo

increases as O(N ), and this in turn indicates that the critical
temperature also increases as O(N ). It is helpful to make
an estimation of this WPT effect. The system of the trapped
cold atoms might be a good candidate. Using appropriate
parameters, M = 10−26 kg and L = 10−5 m, we estimated
that the critical temperature of a QSZE with 1000 bosons will
be in the order of 10−7 K. It is within the reach of present-day
technology. It will be interesting to confirm this WPT effect,
which is purely quantum mechanical, from experiment.
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FIG. 2. (Color online) The phase transition of bosonic SZE for
N = 10 (the red curve), N = 100 (the green dashed curve), and
N = 1000 (the blue dot-dashed curve) cases. The bosons of mass
M = 10−26 kg are trapped in the infinite potential well of size L =
10−5 m. The temperature is given in units of 10−8 K, and the total
work in units of 10−29 J.

IV. SUMMARY

Summarizing the results from Eqs. (13), (17), and (21),
Table I presents the generalized QTW of N -molecule QSZE in
the high- and low-temperature limits. Not only is it consistent
with the special cases of N = 1, 2, 3, but also brings about
some deep physical insights.

Two purely quantum mechanical effects in QSZE are
predicted. At low temperatures, fermionic QSZE exhibits the
parity effects. Only QSZE with odd number of fermions can
produce work in a evenly separated QSZE, while an even
number of fermions does not do any work. The other interest-
ing quantum effect is the WPT effect. At low temperatures,
a bosonic QSZE absorbs work rather than performing work.
The critical temperature in WPT increases with the number of
molecules in the system.

It is also interesting to see that bosonic QSZE does not
always do more work that its fermionic counterpart. In the
temperature below TC , more work can be extracted from
fermionic SZE as long as N is odd. Nevertheless, the bosonic
SZE’s ability to perform work improves as the temperature
rises, and will finally defeat the fermionic SZE at a certain
temperature, which can be calculated as

T ′
C =

{ ln(N+1)
ln(N+1)−ln 2TC N is odd
TC N is even

(24)

one can numerically verify that Wo and We in Eq. (21)
approaches to infinity in the order O (N ). Consequently, the
critical temperature ascends as the molecule number increases,
as is revealed in Fig. 2.

From Eq. (13), one can numerically verify that the QTW
achieved in the high-temperature limit decreases with the
increase of the molecule number in a QSZE and approaches
1
2kBT as the molecule number tends to infinity. Simulta-
neously, the entropy that is generated in measuring the N

molecules’ position in the QSZE with l = L
2 satisfies �S =

NkB ln 2 [3,22]. Because the work performed by the QSZE
never exceeds NkBT ln 2, the second law of thermodynamics
is always satisfied.

In summary, the QSZE containing an arbitrary number of
molecules was studied in this paper. The QTW was analytically
formulated for the general case of N -molecule QSZE in
the high- and low-temperature limits. The results reveal
how deeply quantum mechanics, such as indistinguishability
and the Pauli exclusion principle, influences the QSZE. We
found the parity effect in fermionic QSZE wherein the work
performance of the QZSE does not depend on the molecule
number, but rather on the parity of the molecule number. In
bosonic QSZE, it was predicted that a phase transition effect,
the WPT effect, exists. In WPT, bosonic SZE absorbs rather
than performs work when below the critical temperature TC .
The N -boson SZE possesses a better work performance than
the N -fermion SZE only at high temperatures. The critical
temperature rises with the increase in the molecule number,
the WPT effect can hopefully be observed in the cold atomic
system.
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Note to Appendix. In this Appendix, we present the detailed
calculation for the work done by N -molecule SZE and the
derivation of Table I. The insertion position of the wall is set
to be l = L

2 (i.e., the middle of the box). Here we assume the
box is an infinite potential well and the energy level can be
expressed as En (l) = n2π2h̄2

2Ml2 .

TABLE I. Total work done by SZE with N identical particles at the low- and high-temperature limits.

Fermions Bosons

Limits Odd N Even N Odd N Even N

T → 0 kBT ln 2 0 kBT ln(N + 1) − Wo
N

N+1 kBT ln(N + 1) − We

T → ∞ NkBT ln 2 − WO NkBT
(
1 − C

N
2

N

2N

)
ln 2 − WE NkBT ln 2 − WO NkBT

(
1 − C

N
2

N

2N

)
ln 2 − WE
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APPENDIX A: THE FERMIONIC CASE

First we consider the particles to be fermions. Then the probability that m particles are in the left room at a certain temperature
T is given by

fm = Zm

(
L
2

)
∑N

m=0 Zm

(
L
2

) , (A1)

where

Zm

(
L

2

)
=

∞∑
1=i1<i2<···<im

e−β
∑m

k=1Eik
( L

2 )
∞∑

1=i1<i2<···<iN−m

e−β
∑N−m

k=1 Eik
( L

2 ), (A2)

with β = 1
kBT

and Eik (
L
2 ) the ikth energy level of each room.

In the high-temperature limit Eq. (A1) can be reduced to

lim
β→0

fm = lim
k→∞

Cm
k CN−m

k

C0
kC

N
k + C1

kC
N−1
k + · · · + CN

k C0
k

= Cm
N

2N
, (A3)

and also there is lim
β→0

fm = Cm
N

2N . In the low-temperature limit fm is given by

lim
β→∞

fm = lim
β→∞

e−β
∑m

i=1Ei ( L
2 )e−β

∑N−m
i=1 Ei ( L

2 )

2e−β
∑ N+1

2
i=1 Ei ( L

2 )e−β
∑ N−1

2
i=1 Ei ( L

2 ) + o
[
e−β

∑ N+1
2

i=1 Ei ( L
2 )e−β

∑ N−1
2

i=1 Ei ( L
2 )

] =
{

1
2 m = N−1

2 , N+1
2 ,

0 m �= N−1
2 , N+1

2 ,
(A4)

when N is odd, when N is even

lim
β→∞

fm = lim
β→∞

e−β
∑m

i=1Ei ( L
2 )e−β

∑N−m
i=1 Ei ( L

2 )

e−2β
∑ N

2
i=1Ei ( L

2 ) + o
[
e−2β

∑ N
2

i=1Ei ( L
2 )

] =
{

1 m = N
2 ,

0 m �= N
2 .

(A5)

In the high-temperature limit we rewrite Eq. (10) as

lim
β→0

∑∞
n=1n

2 exp
[ − βc

(
n

L−lmeq

)2]∑∞
n=1 exp

[ − βc
(

n
lmeq

)2]
∑

n=1
∞n2 exp

[ − βc
(

n
lmeq

)2]∑
n=1

∞ exp
[ − βc

(
n

L−lmeq

)2] = m

N − m

(
L − lmeq

lmeq

)3

, (A6)

with c = π2h̄2

2M
. From Ref. [16], we have

lim
β→0

∑
n=1

∞ exp
[ − βc

(
n
lmeq

)2]
∑∞

n=1 exp
[ − βc

(
n

L−lmeq

)2] = lim
β→0

√
π

4βc
lmeq − 1

2√
π

4βc

(
L − lmeq

) − 1
2

= lmeq

L − lmeq

, (A7)

thus Eq. (A6) can be further rewritten as

m

N − m

(
L − lmeq

lmeq

)4

= lim
β→0

∑∞
n=1n

2 exp
[ − βc

(
n

L−lmeq

)2]
∑∞

n=1n
2 exp

[ − βc
(

n
lmeq

)2] =
(

L − lmeq

lmeq

)2

lim
β→0

∑∞
n=1 exp

[ − βc
(

n
L−lmeq

)2]
∑∞

n=1 exp
[ − βc

(
n
lmeq

)2] =
(

L − lmeq

lmeq

)3

, (A8)
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and from this, we obtain for the high-temperature limit

lmeq

L − lmeq

= m

N − m
. (A9)

In the low-temperature limit Eq. (10) becomes ∑m
i=1i

2(
lmeq

)3 =
∑N−m

i=1 i2(
L − lmeq

)3 (A10)

for fermionic SZE, so the equilibrium position is fixed by

lmeq

L − lmeq

=
[

m(m + 1)(2m + 1)

(N − m)(N − m + 1)(2N − 2m + 1)

] 1
3

, (A11)

when T → 0
By definition f ∗

m is expressed as

f ∗
m = Zm

(
lmeq

)
∑N

m=0Zm

(
lmeq

) , (A12)

with

Zm

(
lmeq

) =
∞∑

1=i1<i2<···<im

e−β
∑m

k=1Eik
(lmeq)

∞∑
1=i1<i2<···<iN−m

e−β
∑N−m

k=1 Eik
(L−lmeq). (A13)

In the high-temperature limit f ∗
m reaches

lim
β→0

f ∗
m = lim

k→∞
Cm

mkC
N−m
(N−m)k

C0
mkC

N
(N−m)k + C1

mkC
N−1
(N−m)k + · · · + CN

mkC
0
(N−m)k

= Cm
N

(
m

N

)m(
1 − m

N

)N−m

, (A14)

while in the low-temperature limit only f ∗
N−1

2
needs calculation. We will first show that the allocation pattern f ∗

N−1
2

corresponds to

the case that exhibits the lowest energy of all. To prove this we simply have to compare EN−1
2

(l
N−1

2
eq ) with EN+3

2
(l

N+1
2

eq ). We observe
that

EN−1
2

(
l

N−1
2

eq
)
/EN+3

2

(
l

N+1
2

eq
) =

(
N − 1

N + 3

)2 [
(N + 2) (N + 3)

N (N − 1)

] 2
3

< 1 (A15)

holds for all N . Then f ∗
N−1

2
is given as

lim
β→∞

f ∗
N−1

2
= lim

β→∞
e
−β

∑ N−1
2

i=1 Ei

(
l

N−1
2

eq

)
e
−β

∑ N+1
2

i=1 Ei

(
L−l

N−1
2

eq

)
e
−β

∑ N−1
2

i=1 Ei

(
l

N−1
2

eq

)
e
−β

∑ N+1
2

i=1 Ei

(
L−l

N−1
2

eq

)
+ o

[
e
−β

∑ N−1
2

i=1 Ei

(
l

N−1
2

eq

)
e
−β

∑ N+1
2

i=1 Ei

(
L−l

N−1
2

eq

)] = 1. (A16)

Using the above results the total work of the N -fermion SZE is obtained as

WNF
tot (T → ∞) = NkBT

[
ln 2 − 1

2N

N∑
m=0

Cm
NH (m)

]
=

⎧⎨
⎩

NkBT ln 2 − NkBT

2N−1

∑ N−1
2

m=1 Cm
NH (m), N is odd

NkBT
(
1 − C

N
2

N

2N

)
ln 2 − NkBT

2N−1

∑ N
2 −1
m=1 Cm

NH (m), N is even
(A17)

WNF
tot (T → 0) =

{
−kBT

(
1
2 ln 1

2 + 1
2 ln 1

2

) = kBT ln 2, N is odd

−kBT ln 1 = 0 N is even.
(A18)

APPENDIX B: THE BOSONIC CASE

Next we shall discuss the bosonic case. The probability fm still obeys Eq. (A1), where Zm(L
2 ) = Zleft · Zright with

Zleft =
∞∑

1=i1<i2<···<im

e−β
∑m

k=1Eik
( L

2 ) +
∞∑

1=i �=i1<···<im−1

e−β
∑m−1

k=1 [2Ei ( L
2 )+Eik

( L
2 )] + · · · +

∞∑
i=1

e−mβEi ( L
2 ) (B1)
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and

Zright =
∞∑

1=i1<i2<···<iN−m

e−β
∑N−m

k=1 Eik
( L

2 ) +
∞∑

1=i �=i1<···<iN−m−1

e−β
∑N−m−1

k=1 [2Ei ( L
2 )+Eik

( L
2 )] + · · · +

∞∑
i=1

e−(N−m)βEi ( L
2 ). (B2)

In the high-temperature limit, fm is obtained as

lim
β→0

fm = lim
k→∞

Cm
k CN−m

k + P (kN−1)

C0
kC

N
k + C1

kC
N−1
k + · · · + CN

k C0
k + Q(kN−1)

= Cm
N

2N
, (B3)

where P (kN−1) and Q(kN−1) are k’s polynomials of degree N − 1. Note that Eq. (A6) also applies to the bosonic case, and so
does Eq. (A9) consequently. So f ∗

m can be evaluated as

lim
β→0

f ∗
m = lim

k→∞
Cm

mkC
N−m
(N−m)k + R(kN−1)

C0
mkC

N
(N−m)k + C1

mkC
N−1
(N−m)k + · · · + CN

mkC
0
(N−m)k + S(kN−1)

= Cm
N

(
m

N

)m(
1 − m

N

)N−m

. (B4)

In the low-temperature limit fm is given by

lim
β→∞

fm = lim
β→∞

e−NβE1( L
2 ) + o

[
e−NβE1( L

2 )
]

(N + 1)e−NβE1( L
2 ) + o

[
e−NβE1( L

2 )
] = 1

N + 1
(B5)

while f ∗
m is given by

lim
β→∞

f ∗
m = lim

β→∞
e−mβE1(lmeq)e−(N−m)βE1(L−lmeq) + o

[
e−mβE1(lmeq)e−(N−m)βE1(L−lmeq)

]
e−NβE1(L−lmeq) + o

[
e−NβE1(L−lmeq)

] ∼ e−mβ[E1(lmeq)−E1(L−lmeq)] (B6)

when 0 < m < N − m,

lim
β→∞

f ∗
m = lim

β→∞
e−NβE1( L

2 ) + o
[
e−NβE1( L

2 )
]

(N + 1)e−NβE1( L
2 ) + o

[
e−NβE1( L

2 )
] = 1

N + 1
(B7)

when m = N
2 and f ∗

0 = f ∗
N = 1. Finally, we obtain the total work of the bosonic SZE as

WNB
tot (T → ∞) =

⎧⎨
⎩

NkBT ln 2 − NkBT
2N−1

∑ N−1
2

m=1 Cm
NH (m), N is odd

NkBT
(
1 − C

N
2

N

2N

)
ln 2 − NkBT

2N−1

∑ N
2 −1
m=1 Cm

NH (m), N is even,

(B8)

WNB
tot (T → 0) =

⎧⎨
⎩kBT ln (N + 1) − 2

N+1

∑ N−1
2

m=1 m
[
E1

(
lmeq

) − E1
(
L − lmeq

)]
, N is odd

N
N+1kBT ln (N + 1) − 2

N+1

∑ N
2 −1
m=1 m

[
E1

(
lmeq

) − E1
(
L − lmeq

)]
N is even.

(B9)
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