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Analysis of wasp-waisted hysteresis loops in magnetic rocks
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The random-field Ising model of hysteresis is generalized to dilute magnets and is solved on a Bethe lattice.
Exact expressions for the major and minor hysteresis loops are obtained. In the strongly dilute limit the model
provides a simple and useful understanding of the shapes of hysteresis loops in magnetic rock samples.

DOI: 10.1103/PhysRevE.85.011124 PACS number(s): 05.50.+q, 91.60.Pn, 91.25.Ng, 75.60.Ej

I. INTRODUCTION

Hysteresis is a nonequilibrium effect [1]. If a system is
driven by a cyclic force that changes faster than the system can
adjust to it, then the response does not move up and down on
a single path but rather makes a hysteresis loop. Theoretically
the area of the hysteresis loop should vanish as the frequency of
the driving field goes to zero but several systems with quenched
disorder show large hysteresis even at the slowest driving rate.
This behavior arises from the presence of numerous metastable
states in the system that are separated from each other by
energy barriers much larger than the thermal energy. The
metastable states correspond to local minima in the free-energy
landscape of the system. The system remains practically
trapped in a local minimum and is unable to attain thermal
equilibrium over observation times. However, it can be made
to jump from one local minimum to another if a sufficiently
strong force is applied to it. We focus on magnetic systems. The
magnetization induced by a cyclic field traces a hysteresis loop.
The loop is essentially a locus of magnetizations of metastable
states along the trajectory. Its shape and area are clearly objects
of practical interest because these determine the rate of energy
dissipation in the system. Somewhat less obvious but equally
important is the fact that the hysteresis loop also contains
information regarding the distribution of local free-energy
minima and the energy barriers between them. Sethna et al.
introduced the nonequilibrium random-field Ising model of
hysteresis that not only reproduces the shapes of hysteresis
loops “pleasantly familiar to the experimentalist” but also
provides an understanding of other aspects associated with it,
e.g., Barkhausen noise, return point memory, and critical-point
phenomena [2,3].

Originally the random-field Ising model was introduced
to study the effect of quenched positional disorder on the
critical behavior of a system in thermal equilibrium [4]. It
showed that even an arbitrarily small amount of disorder raises
the lower critical dimension of a system. The lower critical
dimension is the dimension below which a system can not
possess long-range order in a state of thermal equilibrium.
Above its lower critical dimension, it may evolve into an
ordered state at low temperatures but its approach to thermal
equilibrium is not smooth. This is due to the presence of a
large number of local minima in the free-energy landscape of
disordered systems [5]. The local minima are surrounded by
high barriers. The barrier heights are random but much higher
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than the thermal energy of the system. Hence the approach
to thermal equilibrium is very slow and sporadic. Indeed the
system may not reach equilibrium over practical time scales.
This makes the determination of the equilibrium state (the
global minimum of free energy) a difficult task numerically as
well as analytically. The dynamics of the approach to thermal
equilibrium in the random-field Ising model has been well
studied [6,7] but the progress has been slow due to the difficulty
of the problem.

The difficulty of thermal equilibration is sidelined if the
model is used to study hysteresis. Practically speaking, even
in the zero frequency limit of the driving field, hysteresis
is observed over time periods that are much shorter than
the time required for the system to equilibrate. Thus the
thermal relaxation process and the global minimum of the
free energy are not of primary importance in this case. In
the nonequilibrium random-field Ising model proposed by
Sethna et al. [2], the time required by the system to equilibrate
is set equal to infinity. Equivalently, the temperature of the
system is set equal to zero. The metastable states under
the stochastic thermal dynamics thus become stable states
under the athermal zero-temperature deterministic dynamics.
This does not compromise with the essential physics of the
problem. There is an argument based on the renormalization
group theory that the phase transition in the equilibrium
random-field Ising model is controlled by a stable zero-
temperature fixed point [7]. Several key features of hysteresis
observed in disordered ferromagnets as well other systems
whose dynamics is characterized by avalanches are very well
reproduced qualitatively and even quantitatively by the zero-
temperature nonequilibrium random field Ising model [8]. The
deterministic dynamics also makes the model amenable to an
exact solution in some special cases [9–11].

This paper generalizes the nonequilibrium random-field
model of hysteresis to dilute magnetic systems. We solve the
dilute version of the model exactly on a Bethe lattice and apply
the results to explain the shapes of hysteresis loops of magnetic
rocks. We choose magnetic rocks for two reasons: (i) these are
natural realizations of very dilute magnetic systems, and (ii)
have not received the same attention in the physics literature
as in geology. It is recognized that rock magnetism arises
from a few percent or less of magnetic minerals present in the
rocks [12,13]. The commonly occurring magnetic minerals
are magnetite (Fe3O4), maghemite (γ Fe2O3), titanomagnetite
(Fe2−yTiyO3), pyrrhotite (Fe7S8), greigite (Fe3S4), hematite
(αFe2O3), and goethite (FeOOH). The composition [14] is
generally determined by breaking the rock sample. Recently,
hysteresis measurements have been employed as a a possible
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nondestructive alternative. The motivation for this comes
from the fact that the hysteresis loop of a rock sample as
a whole is generally different from that of its magnetic
constituents in their pure form. Pure magnetic minerals are
mostly ferromagnetic or ferrimagnetic and therefore their
hysteresis loops are similar to those of iron (Fe). On the
other hand, hysteresis loop of a rock sample as a whole can
have unusual shapes including a wasp-waisted shape that is
constricted in the middle [15–17]. The wasp-waisted shape
is thought to arise from the fact that the grains dispersed
in the rock have a distribution of sizes, domain states, and
coercive fields [15–27]. One would like to determine the
distribution of magnetic grains from the hysteresis loop of the
rock sample. It is not immediately obvious if this is feasible. A
given distribution of grains and a set of interactions between
them will produce a unique hysteresis loop. However, the
inverse relationship of the hysteresis loop to the contents of
the rock is not necessarily unique. This is because the detailed
information concerning the grains has to be integrated over
in order to obtain the hysteresis loop. Nevertheless there are
practical advantages in exploring the extent to which we can
deduce the composition of a rock from its hysteresis loop. As
a first step toward this goal, one would like to study simple
models of hysteresis and explore how their predictions vary
with the parameters of the model.

There are a number of models of hysteresis in magnetic
rocks in the field of geology. The majority of these use
qualitatively similar assumptions and differ from each other
only in detail. As an illustration we consider the model
studied in Ref. [17]. Grains of magnetic minerals of various
sizes are assumed to be randomly dispersed in the rock. The
grains are frozen in their positions but their magnetization can
rotate or flip under a driving field as well as under thermal
fluctuations. Interactions between the grains are neglected.
This is presumably justified because the grains occupy only a
few percent of the total volume of the sample and therefore they
may be well separated from each other to interact significantly.
The size of a grain determines the quality of its response to
the applied field. Small grains (say 30 nm or less) behave like
a paramagnet and respond to a cyclic field without hysteresis.
Larger grains behave like a ferromagnet and respond to the
cyclic field with hysteresis. This is because the size of the
grain is related to the size of the energy barriers that stand in
the way of smooth rotation or flipping of magnetization within
a grain. These barriers are small for small grains and large
for large grains. The thermal energy of the system provides
the criterion for deciding whether a grain is small or large.
If the barriers are small in comparison with the thermal energy,
the magnetization is able to rotate freely under thermal fluctua-
tions and is able to attain thermal equilibrium. In this situation
the average magnetization is zero in zero applied field. In
a nonzero applied field it is given by the Langevin function
for a paramagnet. Larger grains are not able to attain thermal
equilibrium over time scales of the experiment. Their response
to the cyclic field is the non-equilibrium response in the form of
a hysteresis loop. A hysteresis loop may be characterized by a
number of parameters such as the saturation magnetization,
the remanent magnetization, and the coercive field. These
parameters are related to the size, shape and material of the
grain. Some variants of the model of hysteresis in a rock

sample consider directly a distribution of the coercivities of
the grains, others a distribution of the sizes that is translated
into coercivities through an assumed relationship between the
two. The task of the models is to reproduce the experimentally
observed shapes of hysteresis loops for a reasonable choice of
the parameters of the model. Some models achieve this task by
considering grains of different sizes [17,22], others by strongly
contrasting coercivities [15,18]. A few models have also
included interactions between the grains [23–25]. A number
of models reproduce major hysteresis loops similar to those
observed in the laboratory experiments. Thus the difficulty is
not that we do not have a model of rock magnetism but that we
have several. The question naturally arises if we can distinguish
between these models. Some authors have suggested that the
comparison of experimental first-order reversal curves (minor
hysteresis loops) with the predictions of different models may
serve to distinguish between them [24].

As stated earlier, we adapt the nonequilibrium random-field
model of hysteresis to dilute magnets. It offers a framework
for understanding hysteresis loops of magnetic rocks and
the relationship between different models employed for the
purpose in the field of geology. The nonequilibrium random
field Ising model [2,3] is defined on a lattice whose sites are
occupied by an Ising spin (a binary variable that represents
a unit domain with magnetization ±1). The magnetization
of a unit domain is allowed to flip (up/down) rather than
rotate continuously. Each spin interacts with its nearest
neighbors and experiences a uniform external field as well
as a Gaussian quenched random-field with average value
zero and standard deviation σ . This model along with the
zero-temperature Glauber dynamics has played a key role
in understanding several aspects of ferromagnetic hysteresis
including Barkhausen noise, return point memory, and scale
invariant avalanches characterizing critical hysteresis. The
ingredient we add to this model is the random dilution of
magnetic sites. We are interested in the limit of large dilution
when only a few percent of the sites are occupied by spins.
In this case the spins form small isolated clusters of different
sizes. The absence of a large spanning cluster on the lattice
precludes scale invariant avalanches or critical hysteresis but
reproduces shapes of hysteresis loops that are commonly seen
in magnetic rock samples. The size distribution of scattered
clusters on the lattice is determined by the random occupancy
of the lattice sites by spins. A cluster may be thought of
as a magnetic grain in other models of rock magnetism but
here there is no need to make a separate assumption for the
distribution of grain size. It is also easily understood why small
clusters behave somewhat like paramagnets and larger ones
like ferromagnets. Spins flip up or down whenever the net field
at their site changes sign. An isolated spin (smallest cluster)
has no memory and behaves like a perfect paramagnet. A spin
connected to other spins is influenced by them in addition to the
on-site magnetic field and therefore it shows hysteresis. The
random field Ising model of ferromagnetic hysteresis can be
solved exactly on a Bethe lattice and gives important insights
into the behavior of the model [9,10]. In the following we
extend this solution to the dilute case. The exact solution in
the dilute case is convenient in studying the effect of changing
various parameters on the shape of hysteresis loops without
performing time consuming simulations of the model.
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II. THE MODEL

The dilute random-field Ising model is defined by the
Hamiltonian,

H = −J
∑
i,j

cicjSiSj −
∑

i

hiciSi − h
∑

i

ciSi, (1)

where J (J > 0) is a ferromagnetic exchange interaction
and the sum is over nearest-neighbor sites {i,j} of a lattice.
The restriction to nearest neighbor interactions means that
the model applies to systems in which long range dipolar
interactions are negligible. Si = ±1 is an Ising spin, hi is a
random field, and h is a uniform external field. The random
field hi is drawn from a Gaussian distribution with mean
value zero and standard deviation σ . The quantity ci is a
random variable taking the value 1 with probability c and
0 with probability 1 − c. Thus c is the concentration of lattice
sites occupied by spins. The quantities {hi} and {ci} are
quenched and therefore remain unchanged under the evolution
of the system. The spins are the dynamical variables. These
are governed by the zero-temperature Glauber dynamics at
discrete time steps t ,

Si(t + 1) = sgn

[
J

∑
j

cjSj (t) + hi + h

]
. (2)

The sum on the right-hand-side is over nearest neighbors
of site i. At a fixed applied field h, this dynamics lowers
the energy of the system iteratively and takes it to a stable
fixed-point {S∗

i (h)} such that for each lattice site i

S∗
i (h) = sgn

[
J

∑
j

cjS
∗
j (h) + hi + h

]
. (3)

We are interested in the hysteresis loop when the applied
field h is cycled from −∞ to ∞ and back to −∞ infinitely
slowly. Numerically, we start with a sufficiently large and
negative h, so that the system is at the fixed point {S∗

i (h =
−∞) = −1}. Now h is increased slowly until this fixed point
becomes unstable. We hold h fixed at this value and allow the
system to evolve under the iterative dynamics until it reaches
a new fixed point. The new fixed point is characterized by its
magnetization per site m∗(h),

m∗(h) = 1

N

∑
i

ciS
∗
i (h). (4)

The process is repeated, i.e., we start with a fixed point
and increase h until this fixed-point becomes unstable. We
then hold h fixed and allow the system to evolve to a
new fixed-point characterized by a higher m∗(h). Holding
h constant during the evolution of the system amounts to
the assumption that the applied field varies infinitely slowly
as compared with the internal relaxational processes of the
system. The above process is repeated until all fixed points in
increasing applied field are determined. The trajectory of the
magnetizations m∗(h) of these fixed points forms the lower half
of the hysteresis loop. The upper half of the hysteresis loop is
obtained similarly by starting with the fixed-point with m∗ = 1
and decreasing the field in smallest steps to obtain the sequence
of fixed-points up to m∗ = −1. If the size of the sample N is
sufficiently large so that finite size effects can be neglected,

the magnetization m∗
u(h) on the upper half of the hysteresis

loop is related to the magnetization m∗
l (h) on the lower

half by the theoretical symmetry relation m∗
u(h) = −m∗

l (−h).
Hysteresis loops for the undiluted case (c = 1) have been
studied numerically on d-dimensional regular lattices, and by
an exact solution on a Bethe lattice [9,10]. In the following
we extend the exact solution on the Bethe lattice to c � 1 and
apply it to rock magnetism.

III. HYSTERESIS ON A BETHE LATTICE

A Bethe lattice is an infinite-size branching tree of coordi-
nation number z. It may be visualized as the deep interior of
a large branching tree (Cayley tree) of the same coordination
number. Figure 1 shows a small (four levels) Cayley tree with
z = 3 drawn such that the lattice points at the bottom row
(level 0) are at the surface of the tree, and the point at the
top (level 3) is at the root (center) of the tree. All lattice
points except on the surface have z nearest neighbors. A
lattice point on the surface has only one neighbor. Analysis
of hysteresis on a Cayley tree is simpler because there are
no closed loops on the lattice. However most of the lattice
points lie on the surface and therefore special care has to be
exercised to ensure that the results apply to the deep interior
of the tree and are insensitive to conditions on the surface. We
adopt two separate methods to eliminate the surface effects. In
our analytic calculations we use recursion relations that take
us from the surface toward the interior of the tree level by
level. Fixed points of these recursion relations are insensitive
to the random-fields on the surface. In numerical simulations
we employ a different strategy. We perform simulations on
a surfaceless random graph of coordination number z. The
two methods of eliminating surface effects are equivalent and
therefore our theoretical results match our simulation results
perfectly.

Consider a tree whose sites are randomly occupied by an
Ising spin with probability c. If c is slightly less than unity
the lattice acquires holes (regions without spins). For values
of c closer to zero it breaks up into disjointed clusters of
spins. It is not immediately obvious that the earlier method of
recursion relations [9] starting from the surface of a compact
lattice (c = 1) and moving towards its interior is still useful,

FIG. 1. (Color online) A Cayley tree with four levels (l =
0,1,2,3) and coordination number z = 3. Each node is connected
to z nearest neighbors except the nodes at the surface (l = 0) which
have only one neighbor. The deep interior of the tree where surface
effects can be neglected is known as the Bethe lattice.
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i.e., if it would yield fixed points in spite of enhanced surface
effects. But we find that the method works over the entire
range 0 � c � 1. We start with a diluted lattice and h = −∞
so that all spins are down initially. The field is slowly ramped
up from −∞ to h and we ask what fraction of spins are up
at h. We choose a site at random in the deep interior of the
tree and call it the central site. The probability that the central
site is occupied by a spin is equal to c. We now calculate the
probability that it is up as well. Each nearest neighbor of the
central site if it is occupied by a spin forms the vertex of a
subtree. The subtrees do not interact with each other except
through the central site. Therefore the evolution on z subtrees
meeting at the central site is independent of each other as long
as the central site does not flip up from its initial state. It is
an important property of the model that the order in which the
spins flip up does not influence the fixed point at h [9], so we
may assume that the central site is the last site to flip up at h

if it flips up at all. Before we can say whether the central sites
may flip up or not, we need to know the conditional probability
cP ∗(h) that a nearest neighbor of the central site is up given
that the central site is down at applied field h.

P ∗(h) is the fixed point of the recursion equation,

P l(h) =
z−1∑
i=0

(
z − 1

i

)
(1 − c)i

[
z−1−i∑
j=0

(
z − 1 − i

j

)

×{cP l−1(h)}j {c − cP l−1(h)}z−1−i−jpj (i; h)

]
. (5)

The above equation is written on the assumption that all spins
in the system were down before being exposed to a field
h. Spins on the surface had the first chance to flip up at h,
then spins on level 1 and so on. In this process of organized
relaxation, spins up to level l − 1 have been relaxed and we
are at the point of calculating the probability that a spin at
level l (say at site x) flips up while spins at level l + 1 are
still down. With this explanation, Eq. (5) is easily understood
after various symbols are defined. P l(h) is the conditional
probability that the spin at site x at level l is up given that
its nearest neighbor at level l + 1 is down. Similarly, P l−1(h)
is the conditional probability that a site at level l − 1 is up
given that its nearest neighbor at level l (site x) is down. The
site x has one neighbor at level l + 1 and z − 1 neighbors
at level l − 1. These neighbors can be occupied by spins

with probability c or unoccupied with probability 1 − c. The
neighbors at level l − 1, if occupied, could be up or down
independently of each other; pj (i; h) is the probability that site
x has sufficient quenched field to flip up at h if j neighbors
are up, i neighbors are unoccupied by spins, and consequently
z − j − i neighbors are down.

pj (i; h) =
∫ ∞

(z−2j−i)J−h

φ(hi)dhi ; φ(hi) = 1√
2πσ 2

e
−hi2

2σ2 .

(6)

The probability that a randomly chosen site on the lattice (the
central site) is occupied and up is

p(h) = c

z∑
i=0

(
z

i

)
{1 − c}i

[
z−i∑
j=0

(
z − i

j

)
{cP ∗(h)}j

×{c − cP ∗(h)}z−i−jpj (i,h)

]
. (7)

The magnetization per spin on the lower and upper half of the
major hysteresis loop is given by

m∗
l (h) = 2p(h) − c; m∗

u(h) = −m∗
l (−h). (8)

If we reverse the applied field before completing the lower
half of the major loop, we generate a minor hysteresis loop.
First reversal of the field generates the upper half of the minor
loop, and a second reversal generates the lower half. When
the field on second reversal reaches the point where the first
reversal was made, the lower half of the minor loop meets the
starting point of the upper half. In other words, the minor loop
closes upon itself at the point where it started. This property
of the random-field Ising model is known as the return point
memory. Consider the upper half of the minor loop. Suppose
the applied field is reversed from h to hd (hd � h). We need
to calculate the probability that an occupied site, say site x,
that is up at h turns down at hd . When site x turns up at h, the
field on its nearest neighbors increases by an amount 2J . This
may cause some neighbors to turn up as well. Each neighbor
that turns up increases the field on site x by an amount 2J .
Therefore on reversing the field, site x can turn down only after
all neighbors which turned up after it have turned down. The
probability D∗(hd ) that an occupied nearest neighbor of site
x that was down before site x turned up at h is again down at
hd is determined by the fixed point of the following recursion
relation:

D∗(hd ) = c

z−1∑
i=0

(
z − 1

i

)
(1 − c)i

⎡
⎣z−1−i∑

j=0

(
z − 1 − i

j

)
{cP ∗(h)}j {c − cP ∗(h)}z−1−j−i{1 − pj+1(i; h)}

⎤
⎦

+ c

z−1∑
i=0

(
z − 1

i

)
(1 − c)i

⎡
⎣z−1−i∑

j=0

(
z − 1 − i

j

)
{cP ∗(h)}j {D∗(hd )}z−1−j−i{pj+1(i; h) − pj+1(i; hd )}

⎤
⎦ . (9)

Given an occupied site x that is up at h, the first sum above gives
the conditional probability that an occupied nearest neighbor
of x remains down at h after site x has turned up. The second

sum takes into account the situation that the nearest neighbor
in question turns up at h after site x turns up but turns down
at hd .
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The fraction of occupied sites that turn down at hd is given
by

q(hd ) = c

z∑
i=0

(
z

i

)
(1 − c)i

[
z−i∑
j=0

(
z − i

j

)
{cP ∗(h)}j

×{D∗(hd )}z−i−j {pj (i,h) − pj (i,hd )}
]
. (10)

The magnetization on the upper return loop and in the range
of the applied field h − 2J � hd � h is given by

m(hd ) = 2{p(h) − q(hd )} − c. (11)

At hd = h − 2J , all occupied neighbors of the central site
that flipped up because the central site flipped up at h would
flip down but the central site would stay up. If the applied field
decreases further, the central site would turn down before any
of its occupied nearest neighbors. This means that at h − 2J

the system arrives at some point on the upper half of the major
hysteresis loop, and moves on it upon further decrease in the
applied field. The magnetization for hd � h − 2J is given by

m(hd ) = 2p̃(hd ) − c, (12)

where

p̃(hd ) = c

z∑
i=0

(
z

i

)
(1 − c)i

[
z−i∑
j=0

(
z − i

j

)
{cP̃ ∗(hd )}j

×{(1 − cP̃ ∗(hd ))}z−i−jpj (i; hd )

]
(13)

and P̃ ∗(hd ) is given by the fixed point of the following
recursion relation:

P̃ l(hd ) =
z−1∑
i=0

(
z − 1

i

)
(1 − c)i

[
z−1−i∑
j=0

(
z − 1 − i

j

)

×{cP̃ l−1(hd )}j {c − cP̃ l−1(hd )}z−1−i−jpj+1(i; hd )

]
.

(14)

The lower half of the return loop is obtained by reversing
the field from hd to hu (hu > hd ). If hd < h − 2J , the lower
half of the minor loop starts from the major loop, and therefore
it is related by symmetry to the upper half of the return loop
that has been obtained above. We only need to consider the
case hd � h − 2J . In this case, the magnetization on the lower
half of the return loop may be written as

m(hu) = 2{p(h) − q(hd ) + p′(hu)} − c, (15)

where p′(hu) is the probability that an occupied site that is up
at h, down at hd , turns up again at hu:

p′(hu) = c

z∑
i=0

(
z

i

)
(1 − c)i

[
z−i∑
j=0

(
z − i

j

)
{U ∗(hu)}j

×{D∗(hd )}z−i−j {pj (i,hu) − pj (i,hd )}
]
. (16)

Here U ∗(hu) is the conditional probability that an occupied
nearest neighbor of a site x turns up before site x turns up on
the lower return loop. It is determined by the fixed point of the
following equation:

U ∗(hu) = cP ∗(h) − c

z−1∑
i=0

(
z − 1

i

)
(1 − c)i

⎡
⎣z−1−j∑

j=0

(
z − 1 − i

j

)
{cP ∗(h)}j {D∗(hd )}z−1−i−j {pj (i,h) − pj (i,hd )}

⎤
⎦

+ c

z−1∑
i=0

(
z − 1

i

)
(1 − c)i

⎡
⎣z−1−i∑

j=0

(
z − 1 − i

j

)
{U ∗(hu)}j {D∗(hd )}z−1−i−j {pj (i,hu) − pj (i,hd )}

⎤
⎦ . (17)

The rationale for Eq. (17) is as follows. Given an occupied site
x that is down at hd , the first two terms on the right-hand side
account for the probability that an occupied nearest neighbor
of site x is up at hu � hd . Note that the neighbor in question
must have been up at h in order to be up at hd , and if it is
already up at hd , then it will remain up on the entire lower
half of the return loop, i.e., at hu � hd . The last term gives
the probability that the nearest neighbor was down at hd , but
turned up on the lower return loop before site x turned up. It
can be verified that the lower return loop meets the lower major
loop at hu = h and merges with it for hu > h, thus proving the
property of return point memory.

The method of calculating the minor loop may be extended
to obtain a series of smaller minor loops nested within the
minor loop obtained above. The key point is that whenever
the applied field is reversed, a site x may flip only after all

neighbors of site x which flipped in response to the flipping of
site x on the immediately preceding sector have flipped back.
The neighbors of site x which did not flip on the preceding
sector in response to the flipping of site x do not flip in the
reversed field before site x has flipped. We have obtained above
expression for the return loop when the applied field is reversed
from h on the lower major loop to hd (h − 2J � hd � h), and
reversed again from hd to hu (hu � h). When the applied field
is reversed a third time from hu to hdd (hdd < hu), expressions
for the magnetization on the nested return loop follow the same
structure as the one on the trajectory from h to hd .

The analytic results obtained above are depicted in Fig. 2
for σ = 1.7 and z = 4 for two concentrations of magnetic
minerals: (i) c = 1 (no dilution), and (ii) c = 0.8. The fixed
point of Eq. (5) is evaluated numerically for a sufficiently
large and negative applied field h, and used in Eqs. (7) and
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FIG. 2. (Color online) Hysteresis loops on a z = 4 lattice for
σ = 1.7: The larger loop (red/dark) with saturation at m = ±1 and
first-order jumps in the magnetization is for c = 1 (undiluted lattice);
the smaller loop (green/grey) with saturation at m = ±0.8 is for
c = 0.8; Two minor loops within the smaller loop are also shown
which are obtained by making excursions from h = 0.9 to h = −1.1
and h = −0.85 respectively.

(8) to obtain the magnetization at the start of the lower
half of the hysteresis loop (m∗

l ≈ −c). The applied field h

is then increased in small steps, and the process is repeated
to determine m∗

l (h) along the lower half of the hysteresis
loop. Similarly, minor loops are obtained using Eqs. (9)
to (17). The upper half of the hysteresis loop is obtained
by the relation m∗

u(h) = −m∗
l (−h). Hysteresis on a z � 4

lattice is qualitatively different from the case of z = 2 and
z = 3. For z � 4 there exists a nonequilibrium critical point
(σ = σc,h = hc) on the lower half of the hysteresis loop, and
another symmetrically placed critical point on the upper half.
At these nonequilibrium critical points the response of the
system to a slowly varying driving field is singular. Critical
points do not exist on lattices with z = 2,3. Let us focus on the
critical point on the lower half of the hysteresis loop. For z = 4
and c = 1, we have σc ≈ 1.78. For z > 4, σc increases with
increasing z. For σ < σc, the two halves of the hysteresis loop
have first order jumps in the magnetization as shown in Fig. 2.
For c < 1, there is extra disorder in the system on account of
the dilution of magnetic sites. This causes the first order jumps
at σ = 1.78 for c = 1 to vanish at c = 0.8, and the major
hysteresis loop becomes smooth as seen in Fig. 2. We have
also shown two minor hysteresis loops for c = 0.8. If c < 1 but
sufficiently large to form spanning clusters of occupied sites
on the lattice, the qualitative behavior of hysteresis is similar to
that on the undiluted lattice with c = 1 but with an effectively
reduced value of σc. These results are verified by numerical
simulations of the model for the corresponding choices of
the parameters z,J,c, and σ . As stated earlier, we performed
numerical simulations on random graphs to eliminate surface
effects. A random graph of N sites has no surface, but the
price we pay is that it has some loops. However, for almost
all sites in the graph, the local connectivity up to a distance
of log(z−1)N is similar to the one in the deep interior of the
branching tree. Thus the the theoretical results depicted in
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FIG. 3. (Color online) Hysteresis loops on a lattice with z = 4
and c = 0.1 as may be appropriate for magnetic rock samples.
The saturation m = ±0.1 is controlled by the fractional content of
magnetic minerals in the rock (c = 0.1) but the shapes depend on σ .
Three representative cases are shown: (i) ferromagnetic shape shown
in red (loop with the largest width at m = 0 for σ = 0.5); (ii) a very
pronounced wasp-waisted loop in blue (loop with the smallest width
at m = 0) for σ = 0.05; and (iii) a wasp-waisted loop in green (having
intermediate width at m = 0 for σ = 0.2).

Figs. 2–4 perfectly matched the corresponding results from
the simulations of the model on random graphs. Indeed, the
theoretical and simulation results are indistinguishable on the
scale of the figures.

IV. APPLICATION TO ROCK MAGNETISM

There are a variety of models in the literature that explain
the shape of hysteresis loops in magnetic rock samples. Our
objective is not merely to add to this list of models but also
to simplify the situation. Our point is that extant models of
ferromagnetic hysteresis also explain hysteresis in magnetic
rocks if we add the ingredient of dilution to them. We
have chosen the random-field Ising model of hysteresis in
ferromagnets at zero temperature and in the limit of zero
frequency of the driving field. The advantage of this model
is that it can be solved exactly on a Bethe lattice of an
arbitrary coordination number z [10]. The model has only
a few parameters; the coordination number z of the lattice,
the interaction energy J that aligns nearest neighbor spins
parallel to each other, and a parameter σ that tends to disorder
the system. In spite of its simplicity, this model explains a
number of experimental observations regarding return point
memory, Barkhausen noise, nonequilibrium critical points on
hysteresis loops, and universal behavior in the vicinity of these
points [2,3]. All we have done is diluted this model, i.e., only
a fraction c of the sites are occupied by magnetic entities.
We have solved the dilute model exactly. Drawing upon the
empirical observation that the magnetic minerals in a rock
account for only a few percent of its mass, one may ask if
the predicted hysteretic behavior of our model in the range
0.01 � c � 0.1 is reasonably close to the observed behavior
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of magnetic rocks. It indeed appears to be the case considering
the minimal number of free parameters in our model.

Figure 3 shows three hysteresis loops for c = 0.1; and
σ = 0.05,0.2, and 0.5, respectively. We have set J = 1 for
convenience. Let us focus on σ = 0.05 first. As the applied
field h increases from h = −∞ the magnetization stays at
its saturation value m = −0.1 until h ≈ −3σ . It rises sharply
from m ≈ −0.1 to m ≈ 0.03 around h ≈ 0, and from m ≈
0.03 to m ≈ 0.1 around h ≈ 1. The rise around h = 0 is due
to isolated spins in the system. The quenched field has a
Gaussian distribution with average value zero and standard
deviation σ . Therefore some of the isolated sites turn up at
h ≈ −3σ , and almost all of them are up at h ≈ 3σ . The
fraction of isolated sites is c(1 − c)4. This is approximately
equal to 0.034. Occupied sites in clusters of size larger
than unity account for the remaining fraction 0.066. After
all isolated sites have turned up the magnetization per site
increases to −0.1 + 2 × 0.034 = 0.032. It stays at this plateau
value until the applied field increases further by an amount
2J − 3σ enabling some surface sites of a connected cluster of
down spins (dangling bonds) to turn up. Nearly all sites turn
up at h = 2J + 3σ and we get the saturated magnetization
m = 0.1 as shown in Fig. 3. The same mechanism applies
to hysteresis loops for other values of σ . With increasing σ

the sharp corners tend to get more rounded and the middle
(pinched) portion of the loop broadens. We get a gentle pinched
loop for σ = 0.2. For σ = 0.5 the constriction in the middle
disappears completely and we get a normal ferromagnetic
type of hysteresis loop as shown in Fig. 3. Thus our model
reproduces various shapes of hysteresis loops observed in
magnetic rocks with a minimum number of parameters and
without invoking different mechanisms for different shapes.
Figure 4 (see caption) shows another way of representing
the same data as shown in Fig. 3. In this representation, the
constriction in the middle of the hysteresis loop appears as a
more pronounced dip in the middle of the plot and therefore it
may be of some value in the analysis of experimental data.

Can we deduce the magnetic composition of the rock
from the shape of its hysteresis loop? This is not possible in
general because the hysteresis loop contains the information
in an integrated form. Information is irreversibly lost in the
process of integration and can not be retrieved. There is no
unique way to obtain the components of a sum from the
sum. However, our model provides a few guiding principles.
Ferromagnetic shapes of hysteresis loops indicate a larger
random-field disorder σ in the system. On the other hand a
wasp-waisted loop especially with a long and narrow waist
and sharp bends indicates relatively small disorder σ . In this
case the connectivity of spins at the surface of clusters has
the larger effect on the shape of hysteresis loops. It should
be possible to deduce the magnitude of interaction J from
the locations of sharp turns in the magnetization along the
applied field. Similarly, it should be possible to deduce the
relative size of clusters from the plateaus in the magnetization.
The distribution of cluster sizes and the plateaus of the
magnetizations are known exactly in our model in terms of
the two parameters (J and σ ) of the model. However, more
complex rock samples may not be adequately characterized
by a simple two-parameter Hamiltonian. Also, there may be
systems whose frozen disorder is not represented adequately
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FIG. 4. (Color online) This is a different representation of Fig. 3.
For a fixed magnetization m along the x-axis, the y-axis shows the
difference of corresponding applied fields on the upper and lower
halves of the hysteresis loop. The red line (nearly horizontal thin
line) corresponds to σ = 0.5, the blue line (thick line with two nearly
vertical jumps) corresponds to σ = 0.05. The green line (intermediate
dotted line) corresponds to σ = 0.2.

by a Gaussian distribution. We have focused on the Gaussian
distribution because it applies to many systems [2,3] and its
use is justified by the central limit theorem. The effect of
the shape of random-field distribution on critical hysteresis
in the random-field Ising model (c = 1) has been examined
by Liu and Dahmen [28]. They find that the Lorentzian and
parabolic distributions of random fields yield the same critical
exponents in three dimensions as the Gaussian random fields.
This is not entirely surprising because a renormalization group
analysis in 6 − ε dimensions [29] shows that for random-
field distributions with a single maximum, it is only the
curvature of the distribution at its maximum that determines
the critical exponents. Therefore it is reasonable to use the
Gaussian distribution as a common representative of smooth
single-peaked distributions which all give the same critical
exponents that agree with experiments. In the same vein,
we have used the Gaussian distribution to understand the
shapes of hysteresis loops in the strongly diluted limit of the
random-field model. Before ending, we also wish to mention
that wasp-waisted loops are not a property of magnetic rock
samples only. Such loops are also seen in random magnets
with the order parameter having a continuous symmetry
[11], shape memory alloys [30,31], and martensites [32].
Indeed the physics behind hysteresis in the random field
Blume-Emery-Griffiths model [32] is very similar to that
discussed here in the case of the dilute random-field Ising
model.
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