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Long linear polymers in strongly disordered media are well described by self-avoiding walks (SAWs) on
percolation clusters and a lot can be learned about the statistics of these polymers by studying the length
distribution of SAWs on percolation clusters. This distribution encompasses 2 distinct averages, viz., the average
over the conformations of the underlying cluster and the SAW conformations. For the latter average, there are two
basic options, one being static and one being kinetic. It is well known for static averaging that if the disorder of the
underlying medium is weak, this disorder is redundant in the sense the renormalization group; i.e., differences to
the ordered case appear merely in nonuniversal quantities. Using dynamical field theory, we show that the same
holds true for kinetic averaging. Our main focus, however, lies on strong disorder, i.e., the medium being close
to the percolation point, where disorder is relevant. Employing a field theory for the nonlinear random resistor
network in conjunction with a real-world interpretation of the corresponding Feynman diagrams, we calculate
the scaling exponents for the shortest, the longest, and the mean or average SAW to 2-loop order. In addition,
we calculate to 2-loop order the entire family of multifractal exponents that governs the moments of the the
statistical weights of the elementary constituents (bonds or sites of the underlying fractal cluster) contributing
to the SAWs. Our RG analysis reveals that kinetic averaging leads to renormalizability whereas static averaging
does not, and hence, we argue that the latter does not lead to a well-defined scaling limit. We discuss the possible
implications of this finding for experiments and numerical simulations which have produced widespread results
for the exponent of the average SAW. To corroborate our results, we also study the well-known Meir-Harris model
for SAWs on percolation clusters. We demonstrate that the Meir-Harris model leads back up to 2-loop order to
the renormalizable real-world formulation with kinetic averaging if the replica limit is consistently performed at
the first possible instant in the course of the calculation.
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I. INTRODUCTION

Linear polymers in disordered media have been an impor-
tant topic for experimental and theoretical study for more than
20 years [1]. It is a well-known fact that that the universal
scaling properties of linear polymers in strongly disordered
media are well described by the statistics of self-avoiding
walks (SAWs) on percolation clusters. Usually, the term SAW
implicitly refers to a mean or average SAW for which an
average is taken over the number of steps or intrinsic lengths of
all self-avoiding walks with a specified Euclidian start-to-end
distance or, respectively, over the start-to-end distances of all
self-avoiding walks with a specified intrinsic length. However,
there are other SAWs that are equally interesting. Most notably,
there is the shortest and longest SAW for which the intrinsic
length for given terminal separation is shortest and longest,
respectively. On critical percolation clusters, all these SAWs
are fractals; i.e., their masses (which are proportional to their
intrinsic lengths, of course) as functions of the start-to-end
distance scale with noninteger scaling exponents. Interestingly,
however, it turns out that the mean SAW is more than just
a simple fractal—it is a multifractal. On critical percolation
clusters, the statistical weights of the elementary constituents
(bonds or sites) are nontrivial, and an entire family of
multifractal scaling exponents is required to characterize the
distribution of these weights through its moments.

Although the last two decades have brought great advance-
ment in the understanding of linear polymers in disordered
media, there are certain problems that have caused enduring
controversy. For example it turned out that the famous Meir-
Harris (MH) model [2] which has long been standing as the
only existing field-theoretic model for studying average SAWs
on percolation clusters has trouble with renormalizability
[3,4]. Another example is the puzzling fact that sophisticated
numerical simulations by various groups have produced
widespread results for the scaling exponent νSAW describing
the mean length of the average SAW; see [1].

In this paper, we highlight that one has to be careful
about the notion of average SAW if the disorder of the
underlying medium is strong. Namely, there are essentially
two qualitatively different ways of averaging over all SAWs
between two connected sites for a given random configuration
of a diluted lattice, one being static and the other being kinetic.
It is well known that the exponent νSAW in a nonrandom
medium is the same for static and kinetic averaging [5–8], and
that weak disorder of the medium is redundant in the sense of
the renormalization group (RG) if static averaging is used [9].
Below, we employ dynamical field theory to demonstrate that
the same holds true for kinetic averaging. To discuss the
effects of strong disorder, we present a renormalizable field
theory for SAWs on percolation clusters based on the random
resistor network (RRN). We use this theory to calculate the
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scaling exponents of the shortest, the longest, and the average
SAW as well as the entire family of multifractal exponents
for SAWs on percolation clusters. This theory demonstrates
that kinetic and static averaging may lead to very different
results if the random medium is at the percolation point.
Within the real-world interpretation of Feynman diagrams,
static averaging leads to non-renormalizability, and hence
we argue that the statistics of linear polymers in disordered
media may not have an asymptotic scaling limit, when static
averaging is used. Because the static average has been used
in many simulations, this might explain why the numerical
results for νSAW are so widespread. In fact, recent simulations
by Blavatska and Janke [10,11] using kinetic averaging are
in excellent agreement with our theoretical results. To further
corroborate our findings and to shed some light on them from a
different angle, we include a discussion of the MH model in the
context of kinetic versus static averaging. A brief account of
the work presented here has been given previously in Ref. [12].

II. OBSERVABLES AND AVERAGES

The fundamental question addressed in this paper is that of
the scaling behavior of the length of a (shortest, longest, or
mean) SAW on a percolation cluster when averaged over all
cluster conformation. To this end, one can either consider the
scaling of the mean Euclidian distance RL between the starting
point and a random end point of a SAW of length L,

RL ∼ LνSAW , (2.1)

or one can study averages over the random length L(x,y) of
a SAW (which is proportional to the number of monomers,
the intrinsic length, or the mass of the corresponding polymer)
between a pair of sites (x,y) as a function of their Euclidian
distance |x − y|. The latter approach is more convenient from
the standpoint of field theory [2], and we will take it here.

Let χ (x,y) be the pair connectedness indicator function
which is unity if x and y are connected in the given random
configuration C and zero otherwise. Let Z(w; x,y,C) be the
generating function of the SAWs γ with length L(γ ) = L

belonging to the bundle B(x,y; C) of all SAWs starting at y

and ending at x both on cluster C. This generating function
can be written as

Z(w; x,y,C) =
∑
L

e−wLZL(x,y,C)

=
∑

γ∈B(x,y;C)

p(γ )e−wL(γ ), (2.2)

where p(γ ) is a weight function that depends on the averaging
procedure one uses and which, of course, has to satisfy∑

γ p(γ ) = 1. Special cases are p(γ ) = δγ,γm
if γm is either

the shortest or the longest SAW belonging to the bundle
B(x,y; C). The perhaps most basic averaging procedures are
either static, i.e., all the N

(B)
SAW γ ’s belonging to B(x,y; C) are

weighted equally, p(γ ) = 1/N
(B)
SAW, or kinetic, i.e., a given γ

earns a factor 1/z contributing to p(γ ) at each ramification
where z − 1 other SAWs from the bundle B(x,y; C) split off
and which, in general, leads to different weights for different
γ ’s. Note that in kinetic averaging, the probabilities satisfy
the additivity property p(γ1 ∪ γ2) = p(γ1) + p(γ2) when two

SAWs γ1 and γ2 are identified, e.g., in a coarse-graining
procedure. To the contrary, this is not the case in static
averaging because the number N

(B)
SAW changes when SAWs are

identified, and this fact leads to trouble when coarse-graining
procedures are applied spatial inhomogeneous fractals like the
backbone of a percolation cluster as they are in renormalized
field theory.

In terms of the generating function, the mean length of the
SAWs is given by

[L(x,y)]p = − ∂

∂w

[χ (x,y) ln Z(w; x,y,C)]p
[χ (x,y)]p

, (2.3)

where [· · · ]p denotes an average over the configurations C in
which each bond is occupied with probability p. At criticality,
one expects scaling behavior of the mean length M(x,y) of
long polymer chains,

M(x,y) = [L(x,y)]p|w=wc
∼ |x − y|1/νSAW . (2.4)

For kinetic averaging, in particular, the critical value wc of w

is zero.
It is well known that multifractality can arise when physical

processes unfold on fractals such as critical percolation
clusters. Typical examples are electrical conduction on RRNs
[13–18] and random resistor diode networks [19,20] where
the distribution of currents flowing through the bonds is
multifractal, i.e., is characterized by an infinite set of critical
exponents which are not related in a simple linear or affine
fashion. It turns out that the situation is similar for SAWs on
percolation clusters, where the moments

L(α)(x,y) =
∑

b

sbm
α
b , (2.5)

with sb the length of bond b and

mb =
∑

γ∈B(x,y;C)

χb(γ )p(γ ) � 1 (2.6)

the statistical weight of bond b with χb(γ ) = 1 if b belongs
to the SAW γ and χb(γ ) = 0 if it does not, probe distinct
substructures of the underlying percolation cluster and hence
the average

M (α)(x,y) = [χ (x,y)L(α)(x,y)]p
[χ (x,y)]p

(2.7)

leads to an infinite family of multifractal exponents ν(α):

M (α)(x,y) ∼ |x − y|1/ν(α)
. (2.8)

One has the special cases ν(0) = 1/Dbb, ν(1) = νSAW, and
ν(∞) = 1/Dred = ν where Dbb is the fractal dimension of the
backbone, Dred is the fractal dimension of the red (simply
connecting) bonds, and ν is the percolation correlation length
exponent.

III. SAWS IN DISORDERED MEDIA AS A KINETIC
PROCESS—THE EFFECTS OF WEAK DISORDER

In this section we briefly discuss the effects that weak
disorder of the underlying medium have on the statistics of
SAWs. For static averaging over SAW conformations, it well
known that this disorder is redundant in the sense of the
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RG, i.e., it affects only nonuniversal quantities (in annealed
as well as in quenched disorder averages), although a naı̈ve
application of the Harris criterion [9] apparently signals its
relevance. This redundancy can be shown by introducing
noncorrelated quenched disorder into the usual ϕ4-field theory
of an n-component order parameter which, when the replica
trick with m-fold replication is used to facilitate averaging over
the quenched disorder, generates the statistics of SAWs with
static averaging via the limits n → 0 and m → 0. Here, we are
interested mainly in kinetic averaging, and hence it is of some
interest to demonstrate that this redundancy also holds for
this type of averaging. A field theory for kinetically generated
SAWs in ordered media was formulated by Peliti more than
twenty years ago [6]. Here, we introduce a dynamical field-
theoretic model for kinetically generated SAWs in disordered
media, and we utilize this model to discuss the effects of
weak disorder. To set the stage, we first introduce reaction
diffusion processes that model SAWs in disordered media as
a kinetic process and then we jump to the dynamical response
functional for these processes. Additional background and
some details of its derivation using the creation-destruction
operator formalism are given in Appendix A. It should not go
unnoted that this description of SAWs in disordered media as
a kinetic process completely avoids using the replica trick as
well as the zero-component limit and hence all the potential
difficulties associated with these limits.

On a very basic and intuitive level, kinetic SAWs in disor-
dered media can be described by a set of simple diffusion and
reaction processes. As in the problem of Brownian walks, the
walkers hop on a d-dimensional cubic lattice from a site ri to a
neighboring one ri + δ. This is described by a random process

A(r)
λ→ A(r + δ), (3.1)

where A(r) denotes a random walker at r, and λ is the hopping
rate. Self-avoidance is introduced by production of markers
B(r) at r, and destruction of the walkers by interaction with
a marker

A(r)
α→ A(r) + B(r), (3.2a)

A(r) + B(r)
β→ B(r), (3.2b)

where α and β are reaction rates. In addition to these
processes, there is quenched disorder modeled by static traps
C(r) with a random distribution ρ(r), and this disorder acts
on the walkers via a destruction process with rate γ :

A(r) + C(r)
γ→ C(r). (3.3)

Due to the markers and the traps, walkers living at time t

should avoid sites that they have visited at times t ′ < t as well
as sites which are locations of traps.

These diffusion and reaction processes can be condensed
into a field-theoretic functional following the work of Peliti. A
series of steps which are sketched in Appendix A leads to the
dynamical response functional

J =
∫

ddx

{
λ

∫ ∞

−∞
dt s̃[λ−1∂t + τ − ∇2]s

+ g

2
[λ

∫ ∞

−∞
dt s̃s]2

}
. (3.4)

s(x,t) is a field that has its origin in the variable A and
encodes the random position x of a walker at time t according
to the above reactions. Its mean value is the probability
density of finding a walker at these coordinates. s̃(x,t) is the
corresponding response field that creates a walker at position
x at time t . The dynamical response functional is invariant
under the duality transformation s(x,t) ↔ s̃(x, − t). λ is the
usual kinetic coefficient. The dependence of J on the disorder
is hidden in the parameter τ and in the coupling constant g. The
latter consists of two parts: a positive part stemming from the
self-avoidance and an additional negative part stemming from
the disorder. Note that the fact that disorder and self-avoidance
generate the same type of coupling in the field-theoretic
functional makes the Harris criterion inapplicable for the
problem at hand.

Analyzing the RG flow, it turns out that the fixed point
value of g which corresponds to the limit of asymptotically
large SAWs is independent of the nonuniversal value of
g and hence of the disorder fluctuations. Because we are
mainly interested in this limit, we can assume that the sole
remaining disorder dependence rests in τ . However, we can
eliminate τ from the dynamical response functional by letting
s(t) → s(t) exp(−λt) and s̃(t) → s̃(t) exp(λt). This implies
that the disorder-averaged Green’s functions—the probability
densities for finding N walkers at positions {x} at times {t} if
they are created at positions {y} at times {t ′}, respectively,

GN ({x,t},{y,t ′}) =
〈

N∏
α=1

s(xα,tα)
N∏

β=1

s̃(yβ,t ′β)

〉(c)

, (3.5)

where 〈· · · 〉(c) denotes the cumulants with respect to the
Boltzmann weight exp(−J ) and · · · denotes disorder
averaging—are of the form

GN ({x,t},{y,t ′}) = GN ({x,t},{y,t ′})0 exp

(
λ

N∑
α=1

(tα − t ′α)

)
,

(3.6)

where the index 0 indicates the Green’s functions without
any disorder. The differences (tα − t ′α) are proportional to
the lengths of the corresponding SAWs, and hence, the
exponential factors correspond to a change in the nonuniversal
fugacities in the statistics of the SAWs. Thus, Eq. (3.6) reveals
that all universal properties remain unaffected by disorder.
This establishes that the universal properties of kinetically
generated and averaged SAWs are independent of weak
disorder as their statically averaged counterparts are [9].

IV. NONLINEAR RANDOM RESISTOR NETWORKS

The RRN is a variant of the usual percolation problem
where occupied bonds are viewed as resistors and open
bonds are viewed as insulators. Here, we consider a nonlinear
generalization nRRN of the RRN for which it is well known
that the total resistance between 2 points becomes proportional
to the length of the shortest and longest SAW between those
2 points, respectively, for specific limits of the nonlinearity. In
previous work [18,21,23,24], we have shown that the Feynman
diagrams for RRNs (including their nonlinear generalization)
have a real-world interpretation; i.e., they can be considered as
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being resistor networks themselves. Based on this real-world
interpretation, we here develop an intuitive and powerful field-
theoretic method to calculate the mean length and multifractal
moments of SAWs on percolation clusters.

To be specific, we consider a d-dimensional lattice where
each bond is randomly occupied with probability p by a
conductor or empty with probability 1 − p. At each lattice
side i there is a voltage Vi . The voltage drop at a bond (ij )
between sites i and j obeys a generalized Ohm’s law [25]

Vj − Vi = ρ(ij )|Ii,j |r−1 Ii,j (4.1)

with a bond resistance ρ(ij ). Equivalently, with s = 1/r the
current Ii,j across the bond is given by

Ii,j = σ(ij )|Vj − Vi |s−1 (Vj − Vi), (4.2)

where σ(ij ) = ρ−s
(ij ) is the nonlinear conductance of the bond.

We restrict ourselves in the following to the case that all
occupied bonds have identical elementary conductances σ =
ρ−s , and the conductances of the unoccupied bonds are zero.
The currents are conserved at each site and obey Kirchhoff’s
first law ∑

j

Ii,j + Ii = 0, (4.3)

where Ii is an external current Ii flowing into site i. If there
are only two ports x and y, these currents are given by Ii =
I (δi,y − δi,x), where I is the current resulting from the voltage
difference U = Vy − Vx between the two ports. The electrical
power P dissipated in the network is given by the bilinear form

P =
∑
(ij )

(Vj − Vi)Ii,j

=
∑
(ij )

σ(ij )|Vj − Vi |s+1 =
∑
(ij )

ρ(ij )|Ii,j |r+1, (4.4)

where the two last equalities follow from Ohm’s law, Eqs. (4.1)
and (4.2). Using Eq. (4.3), one has

P = UI = Rr (x,y)|I |r+1 (4.5)

in the two-port case, where Rr (x,y) denotes the total resistance
of the network between the two ports. Blumenfeld et al. [26]
have shown that the special values r = −∞, −1, −0, +0, 1,
and ∞ describe physically relevant geometric properties of the
diluted lattice. In particular, it is easily demonstrated that for
r → ±0 the internal currents at each ramification flow only in
the direction of the highest (r → +0) or the lowest (r → −0)
voltage gradient (electromotoric force) thereby mapping out
the shortest or the longest SAW between the 2 terminals,
respectively. As a consequence, the resistance Rr (x,y) is
proportional to the length of shortest or longest SAW between
x and y for r → +0 or r → −0, respectively. We will use this
fact for calculating the average length M(x,y) for these SAWs
via calculating the total nonlinear resistance Rr (x,y) averaged
subject to the condition that the two ports are on the same
cluster,

Mr (x,y) = [χ (x,y)Rr (x,y)]p/[χ (x,y)]p. (4.6)

At criticality, the average total nonlinear resistance obeys the
power law

Mr (x,y) ∼ |x − y|1/νr , (4.7)

which will allow us to extract the SAW exponents for the
shortest and the longest SAW simply by taking the appropriate
limit with respect to r .

As far as the average SAW is concerned, the situation is
somewhat more subtle. Obviously, the average length of the
average SAW lies in between the average length of the shortest
and the longest SAW, which are, of course, very different.
Since the average SAW sits somewhere in this discontinuity at
r = 0, it is not known how to extract its average length from
the nRRN by a limit taking. To overcome this problem, we
developed the idea to study the average SAW by using the
real-world interpretation [18,23,24,33] of Feynman diagrams
which we will discuss in detail in the following section.
For studying SAWs on percolation clusters, we extend the
real-world interpretation originally developed for studying
electrical transport on RRNs in that we put SAWs on Feynman
diagrams. As we will explain in detail below, the task of
calculating the average length of SAWs on percolation clusters
then in essence reduces to calculating the average length
of SAWs on Feynman diagrams. For the average SAW in
particular, this approach avoids the aforementioned problems
associated with taking a limit in r .

The resistance Rr (x,y) can be obtained by solving the
circuit equations (4.2), (4.1), and (4.3). The circuit equations
can be viewed as a consequence of the variation principle

∂

∂Vi

[
1

s + 1
P ({V }) − I (Vx − Vy)

]
= 0, (4.8)

where the power P is expressed purely as a function of the
set of all voltages {V }; see Eq. (4.4). Obviously the network
may contain closed loops. Suppose there is a complete set
of independent currents {I (l)} circulating around these loops.
Using Kirchhoff’s first law (4.3) and Eq. (4.4), one can express
the electrical power P entirely as a function of the external
current I and the set of loop currents {I (l)}. Then, one readily
obtains Kirchhoff’s second law as a consequence of the second
variational principle

∂

∂I (l)
P (I,{I (l)}) = 0. (4.9)

This equation is used in the following to determine the loop
currents as linear functions of the external current I . For
r > 0, the variation principle (4.9) has a unique solution which
corresponds, of course, to the global minimum of the power
P . Without ambiguity, this solution leads to Rr→+0(x,y) ∼
Lmin(x,y) where Lmin denotes the length of the shortest
SAW (the chemical length). For r < 0, the situation is less
straightforward. There exist in general several solutions which
are all local maxima of the power P [26]. Only if one selects the
solution corresponding to the global maximum of P , one gets
the length of the longest SAW via Rr→−0(x,y) ∼ Lmax(x,y).
As mentioned above, the average length of the average SAWs
has to lie somewhere in the interval between these two extremal
values and for a correct interpretation of R0(x,y), it seems
natural to demand that it produce the length of the average
SAW, R0(x,y) ∼ LSAW(x,y).
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V. HARRIS MODEL

A field theory for the nonlinear random network was
set up by Harris [27] in analogy to the field theory of
the linear case [28,30]. The network is replicated D-fold:
Vi → �Vi = (V (1)

i , . . . ,V
(D)
i ). One considers the correlation

function G(x,y; �λ) = 〈��λ(x)�−�λ(y)〉 of ��λ(x) = exp(i�λ · �Vx)
with complex currents i�λ = 0:

G(x,y; �λ) =
[
Z−D

∫ ∏
j

D∏
α=1

dV
(α)
j exp

(
− 1

s + 1
P ({ �V })

+ i�λ · ( �Vx − �Vy)

)]
p

. (5.1)

Here P ({ �V }) = ∑
α P ({V (α)}), and Z is the usual configu-

ration dependent normalization. In order to be well defined,
the integrations over replicated voltages are augmented with
extra weight factors exp(iω �V 2

j ). Physically, these weights
correspond to grounding all sites via unit capacitors. In this
picture, ω with Imω > 0 corresponds to the frequency of the
voltages.

Because the electrical power depends only on voltage
differences, the integration over the mean voltage of each
independent cluster of connected conductors leads to current
conservation for this cluster in the limit ω → 0. It follows that
�λx = �λy = �λ if the ports x and y are connected. However in
the case that x and y are not connected, there arise factors
∼exp(c �λ2/iω), where c is some positive constant, which go
to zero in the limit iω → −0. Here, the condition �λ = 0
is essential. Then, as the result of this integration, the pair
connectedness indicator function of the two ports χ (x,y) is
automatically generated along with other factors which go to
one in the limit D → 0. Following the work of Harris [27], the
integration over the voltage differences can now be done by
the saddle-point approximation if we chose λ(α) = −iI + ξ (α)

with
∑

α ξ (α) = 0 under the conditions 1 � ρ|I |r+1 � D−1

and ρ|rI r−1�ξ 2| � 1 which indeed can be satisfied simultane-
ously in the replica limit D → 0. Note that the saddle-point
equations are identical with the variation principle stated in
Eq. (4.8). Thus, the saddle point is determined by the solution
of the circuit equations (4.1), (4.2), and (4.3), and according
to Eqs. (4.4) and (4.5), we obtain

G(x,y; �λ) =
[
χ (x,y) exp

(
�r

r + 1
Rr (x,y)

)]
p

= [χ (x,y)]p

{
1 + �r

r + 1
Mr (x,y) + · · ·

}
, (5.2)

where �r = ∑D
α=1(−iλ(α))r+1 and where we dropped a factor

that goes to 1 in the limit D → 0. Hence, G(x,y; �λ) is
the cumulant generating function for the resistance Rr (x,y)
between the connected ports x and y. Rr (x,y) is proportional
to the elementary resistance ρ. Hence, limρ→0 G(x,y; �λ) =
G(x,y; �λ → 0) = [χ (x,y)]p is the correlation (connected-
ness) function of the percolation problem.

To safely exclude �λ = 0 from the theory it is useful to resort
to a lattice regularization of the voltage integrals [29]. One
switches variables �V to �θ = �√

N
�k and �λ = π

�
√

N
�l taking dis-

crete values on a D-dimensional torus; i.e., �k and �l are chosen
to be D-dimensional integers with −N < k(α),l(α) � N and
k(α) = k(α)mod(2N ), k(α) = k(α)mod(2N ). � is a redundant
variable with arbitrary scaling behavior.

After discretization there are (2N )D − 1 independent state
variables per lattice site, and one introduces the Potts spins

��θ (x) = (2N )−D
∑
�λ =0

exp(i�λ · �θ ) ��λ(x) = δ�θ,�θx
− (2N )−D

(5.3)

subject to the condition
∑

�θ ��θ (x) = 0. It is essential as we
already have remarked above that the limit D → 0 is the first
of all involved limits and, in particular, has to be taken before
N → ∞.

The replication procedure leads to the effective Hamiltonian

Hrep = − ln

[
exp

(
− 1

s + 1
P

)]
p

, (5.4)

which may be expanded in terms of ��θ or, equivalently, ��λ:

Hrep = −
∑
〈x,x ′〉

∑
�λ=0

K(�λ) �−�λ(x)��λ(x ′)

= −
∑
〈x,x ′〉

∑
�θ

��θ (x)K(i∂�θ )��θ (x ′), (5.5)

where ∂�θ is the (discrete) gradient in the replica space. Next
the kernel K(�λ) is expanded in the limit of large conductance
σ (small resistance ρ)

K(�λ) = K0 + K1�r + K2�
2
r + · · · , (5.6)

with Kn ∼ ρn. Therefore, in the limit σ → ∞ we have
K(�λ) → K0, and we recover the (2N )D-state Potts model
which describes percolation in the limit D → 0.

By choosing the redundant variable � appropriately, one
can show that all terms in Eq. (5.6) with Kn>2 are irrelevant
in the sense of the renormalization group. The Kn>2 merely
lead to corrections to the leading scaling behavior that have
been calculated for the linear RRN, r → 1, in Ref. [32]. They
do not lead, however, to a family of crossover exponents as
erroneously concluded in Refs. [30,31]. Bluntly stated, RRNs
are multifractal but they are not multicritical.

VI. FIELD THEORY

To set up a field-theoretic Hamiltonian H, one proceeds
with the usual coarse-graining step and replace the Potts
spins ��θ (x) by the order-parameter field ϕ(x,�θ ) defined on
a d-dimensional spatial continuum. Constructing all possible
relevant invariants of the symmetry transformations of the
model, performing a gradient expansion, and discarding all
irrelevant terms, one arrives at the Hamiltonian

H=
∫

ddx
∑

�θ

[
τ

2
ϕ2+ 1

2
(∇ϕ)2 + w

2
ϕ (−�∂θ )r+1ϕ + g

6
ϕ3

]
.

(6.1)

Here τ and w are the strongly relevant critical control
parameters and (−�∂θ )r+1 := ∑

α(−∂/∂θ (α))r+1. For w = 0
which corresponds to ρ = 0, one has full Potts symmetry,
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which is invariance under all permutations of the symmetric
group S(2N)D . The (2N )D discrete states of the order-parameter
field ϕ(x,�θ ) = ∑

�λ =0 exp(i�λ · �θ ) ψ�λ(x) transform as the funda-
mental representation of this permutation group. This fact is
crucial because it is the irreducibility of this representation that
ensures that there is only one invariant second and only one
invariant third-order coupling with one unique relevant control
parameter τ and coupling constant g, respectively.

Now we set up a diagrammatic expansion. Contributing
elements are the vertex with weight −g and the Gaussian
propagator which reads

1 − δ�λ,0

p2 + τ + w�r (�λ)
= 1

p2 + τ + w�r (�λ)
− δ�λ,0

p2 + τ
(6.2)

in Fourier space. This inclusion-exclusion equation shows that
the principal propagator decomposes into a propagator carry-
ing �λ (conducting) and one not carrying �λ (insulating). This
fact allows for a schematic decomposition of the principal dia-
grams into sums of RRN-like conducting diagrams consisting
of conducting and insulating propagators; see Fig. 1. Note that,
like the momenta p, the (imaginary) currents �λ are conserved
at each vertex of the conducting diagrams. For actual calcula-
tions, it is more practical to use continuous rather than discrete
replica currents �λ. Once the decomposition is done, it is safe
to switch back to integrations over loop replica currents using

∑
�λ

. . . ≈
(

π

�
√

N

)D ∑
�λ

. . . ≈
∫ ∏

dλ(α) . . . , (6.3)

where the limit D → 0 is understood.
The Feynman diagrams resulting from the decomposition

have a simple and intuitive interpretation [21] which is closely
related to the link-node-blob picture of the backbone of a
percolation cluster. The diagrams may be viewed as being
resistor networks themselves with conducting propagators
corresponding to conductors and insulating propagators to
open bonds. In a Schwinger proper time parametrization where
each conducting propagator i is written as

1

p2
i + τ + w�r (�λi)

=
∫ ∞

0
dsi exp

[−(p2
i + τ + w�r (�λi)) si

]
, (6.4)

H

J

DC

E F

1

K

3

A

4
2

5

2

L

B

4
5

1 3

2

1

I

G
2 4− + +

= −

+ 22− +

2= −

4= −

FIG. 1. Decomposition of self-energy diagrams to 2-loop order,
and enumeration of the lines.

the Schwinger parameter si corresponds to its resistance ρi =
si , and the replica variables −i�λi to currents flowing across this
conductor. As mentioned above, this real-world interpretation
is closely related to the link-node-blob picture. The conducting
propagators correspond to the links, the vertices to nodes, and
the self-energy diagrams to blobs which themselves can consist
of a network of links with blobs. The backbone corresponds to
the full Green’s function, i.e., the propagator with all possible
self-energy insertions summed up by the Dyson equation.
When Fourier transformed back from momentum space to
configuration space, the Schwinger parameter (the proper
time) of a conducting propagator is proportional to the intrinsic
length of a tortuous link generated by a diffusional motion, and
thus the real-world interpretation naturally assigns to links
their proper length.

The conserved replica currents may be written as �λi =
�λi(�λ,{�κ}), where �λ is an external current applied at the external
legs of the diagram (and subject to the Harris conditions for
application of the saddle point method) and {�κ} denotes the set
of independent loop currents. The replica current dependent
part of a diagram can be expressed in terms of its power P,

exp

(
−w

∑
i

si�r (�λi)

)
=: exp[−wP (�λ,{�κ})]. (6.5)

For the evaluation of the integrals over the independent
loop currents we employ the saddle-point method. Note that
the saddle-point equations constitute nothing more than the
variation principle stated in Eq. (4.9). Thus, solving the saddle-
point equations is equivalent to determining the total resistance
Rr ({si}) of a diagram, and the saddle-point evaluation yields

exp[−wRr ({si})�r (�λ)]. (6.6)

The Gaussian integration over all internal momenta pi is
a textbook matter. Thereafter, any self-energy diagram, see
Fig. 1, or rather the mathematical expression standing behind
it, is of the form

I (p2,�λ) = IP (p2) − wIW (p2)�r (�λ) + · · ·
=

∫ ∞

0

∏
i

dsi[1 − wRr ({si})�r (�λ) + · · · ]

×D(p2,{si}), (6.7)

where D(p2,{si}) is the �λ-independent part of the integrand
which is identical to the integrand of the corresponding
diagram in the standard φ3 theory.

We use dimensional regularization and the renormalization
scheme

ϕ → ϕ̊ = Z1/2ϕ, τ → τ̊ = Z−1Zττ,
(6.8)

w → ẘ = Z−1Zww, g2 → g̊2 = G−1
ε Z−3Zuuμε,

where ε = 6 − d, μ is an inverse external length scale, and
Gε = (4π )−d/2�(1 + ε/2) is a factor that generically emerges
in the calculation of Feynman diagrams of a φ3 theory. In the
limit D → 0, Z, Zτ , and Zu are the well-known percolation
renormalizations calculated to 3-loop order by de Alcantara
Bonfim, Kirkham, and McKane [22]. It remains to determine
Zw via calculating the part of the self-energy diagrams that is
proportional to w; see Eq. (6.7). Note that the renormalization
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factors have to fulfill several consistency checks for the
field theory to be renormalizable. Using the fact that the
unrenormalized theory has to be independent of μ, one can
set up in a routine fashion a Gell-Mann–Low RG equation[

μ
∂

∂μ
+ β

∂

∂u
+ τκ

∂

∂τ
+ wζr

∂

∂w
+ N

2
γ

]
×GN ({x,w�r (�λ)}; τ,u,μ) = 0 (6.9)

for the connected N -point correlation functions GN , where

β (u) = μ
∂u

∂μ

∣∣∣∣
0

, κ (u) = μ
∂ ln τ

∂μ

∣∣∣∣
0

, (6.10)

ζr (u) = μ
∂ ln w

∂μ

∣∣∣∣
0

, γ (u) = μ
∂ ln Z

∂μ

∣∣∣∣
0

(6.11)

are the corresponding Wilson functions. |0 indicates that
unrenormalized quantities are kept fixed while taking the
derivatives with respect to μ. Then, one can use standard
methods to solve the RG equation at the infrared stable fixed
point u∗, determined by β (u∗) = 0. The Gell-Mann–Low
function given to 2-loop order by

β(u) = μ∂μ u|0 = −εu + β(u)
∂

∂u
ln

(
Z3Z2

g

)
=

(
− ε + 7

2
u − 671

72
u2 + · · ·

)
u =: −εu + β(0)(u)

(6.12)

leads to

u∗ = 2

7
ε + 671

3273
ε2 + O(ε3) (6.13)

for the fixed point. Augmenting the so-obtained solution with
dimensional analysis, one gets the scaling form

GN ({x,w�r (�λ)}; τ,u,μ)

= �(d−2+η)N/2GN ({�x,�−φr/νw�r (�λ)}; �−1/ντ,u∗,μ).

(6.14)

η = γ∗ and ν = (2 − κ∗)−1, where κ∗ = κ(u∗), etc., are the
usual critical exponents for percolation. φr = ν (2 − ζr∗) is the
resistance exponent. Choosing the flow parameter as � = |x −
x′|−1, Taylor-expanding the 2-point function G2 in powers of
w�r (�λ), and comparing Eq. (5.2), one finally obtains

Mr (x,x′) ∼ |x − x′|φr/ν (6.15)

for the scaling behavior of the average total nonlinear
resistance.

VII. SAWS ON FEYNMAN DIAGRAMS

In previous work, we have applied the real-world interpreta-
tion of Feynman diagrams to calculate the scaling properties of
several physically relevant properties of percolation clusters:
their average resistance when the bonds are linear resistors
(r = 1), the fractal dimensions of the backbone (r → −1), the
minimal (chemical) length (r → +0), and the total length of
the singly connected (red) bonds (r → ∞), as well as the mul-
tifractal moments of the current distribution [18,21,23,24,33].
The key step in these studies was to determine the total
linear or nonlinear resistance of the Feynman diagrams (or

their multifractal moments in the study of multifractality)
as described above. In all these cases we verified that our
theory was renormalizable. Furthermore, we have checked
and verified that our results were in conformity with results
obtained by other methods as far as those exist.

Now, we extend the real-world interpretation to study SAWs
on percolation clusters. Instead of viewing them as networks
on which electrical transport takes place, we view the Feynman
diagrams now as media (or rather the backbones thereof)
on which SAWs take place. In this picture, the conducting
propagators correspond to links that are accessible to the
walker and the insulating propagators are inaccessible. The
Schwinger proper time parameter si of an accessible link
corresponds to its internal curled length. The essential task
is then to determine the (shortest, longest, or average) total
lengths

L({si}) =
∑

i

simi, (7.1)

cf. Eq. (2.5), of SAWs on the Feynman diagrams. The
resulting mathematical form of the self-energy diagrams,
in particular, is that of Eq. (6.7) with Rr ({si}) replaced
by L({si}). From there on, after fixing the weights mi of
the propagators of the diagrams, the remaining calculation
is once again textbook matter. Since L({si}) is a linear
form of the Schwinger parameters, this calculation can be
represented diagrammatically through self-energy diagrams
with insertions into the conducting propagators. As indicated
above, the length Lmin({si}) and Lmax({si}) of the shortest and
longest SAW are proportional to Rr→+0({si}) and Rr→−0({si}),
respectively. The length Lave({si}) of the average SAW sits in
the discontinuity at r = 0 and therefore can potentially provide
helpful insights for its proper interpretation.

A. The shortest SAW

For calculating the average length of the shortest SAW
on a percolation cluster, we determine the total length of the
shortest SAWs on Feynman diagrams. For a given self-energy
diagram, that length is

Lmin({si}) = min
SAWs

∑
i∈SAWs

si, (7.2)

where the minimum is taken over all SAWs on conducting
propagators connecting the external legs of that diagram.
Details of the further steps leading from here to the exponent
νmin of the shortest SAW have been given in previous
publications [18,23,24], and we will not repeat them here. The
upshot is that the diagrammatic expansion for the shortest SAW
can be mapped onto that for dynamical percolation, at least
to 2-loop order. This provides for an important consistency
check for the real-world interpretation, and it provides also for
a convenient way of calculating νmin by extracting it from the
dynamical exponent z of dynamical percolation [34,35]. The
result is

νmin = 1

2
+ ε

24
+

[
1231

2352
+ 45

196
(ln 2 − 9

10
ln 3)

](
ε

6

)2

+ · · · . (7.3)
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B. The longest SAW

In this section we calculate the scaling exponent νmax of the
longest SAW on a percolation cluster. As detailed above, the
length of the longest SAW between terminal points x and x′
is proportional to the total nonlinear resistance between x and
x′ on that cluster in the limit r → −0. In the framework of
the real-world interpretation, this means that we can calculate
νmax to 2-loop order via determining the total lengths

Lmax({si}) = max
SAWs

∑
i∈SAWs

si (7.4)

of the longest SAWs on the different self-energy diagrams
depicted in Fig. 1. Some details of this calculation are
presented in Appendix B. It results in the renormalization
factor

Zw = 1 + u

4ε
+

(
15

32ε
+ 3

128
+ 70 ln 2 − 69 ln 3

192

)

× u2

ε
+ O(u3). (7.5)

This result implies that the Wilson function γw is given by

γw = −u

4
−

(
3

64
+ 70 ln 2 − 69 ln 3

96

)
u2 + O(u3). (7.6)

Evaluating ζw = γ − γw at the fixed point (6.13) leads us then
readily to our final result

νmax = ν

φ−0
= 1

2 − ζw∗
= 1

2
+ ε

168

+
[

5365

16 464
+ 15

28

(
ln 2 − 69

70
ln 3

)](
ε

6

)2

+ · · · (7.7)

for the inverse fractal dimension of the longest SAW.

C. The average SAW

As we have discussed above, we can apply the static or
the kinetic rule to calculate the average total length L({si})
of SAWs on a Feynman diagram. At 1-loop order, kinetic
and static averaging lead to identical results. At 2-loop order,
however, the situation changes, because the two averaging
procedures lead to different results for diagram H shown in
Fig. 1. Using the numeration of propagator lines indicated in
Fig. 1, the static rule leads to L

(st)
H ({si}) = (s2 + s4 + s5)/3 +

2(s1 + s3)/3, whereas the kinetic rule gives L
(kin)
H ({si}) =

(s1 + s3 + s5)/2 + (s2 + s4)/4. Having these two expressions
for the averaged length, it is easy to understand that the
static rule does not lead to a renormalizable theory. It is a
basic fact of renormalization group theory that nonprimitive
divergencies arising from sub-integrations of a 1-loop insertion
must be canceled through the counterterms introduced by the
renormalization of this 1-loop insertion. However, the weights
of L

(st)
H ({si}) are not compatible with the weights arising in

the corresponding 1-loop diagram with counterterm insertion:
Crunching the insertion to a point (corresponding to s2 + s4 →
0) leads to L

(st)
H ({si}) → s5/3 + 2(s1 + s3)/3 which is different

from the total length of the 1-loop self-energy diagram with a
point insertion. For kinetic averaging, however, the additivity

property mentioned in Sec. II comes into play, and crunching
the insertion to a point gives L

(kin)
H ({si}) → (s1 + s2 + s3)/2

which is equal to the total length of the 1-loop self-energy
diagram with a point insertion. Hence, the kinetic rule
produces nonprimitive divergencies that are canceled by the
counterterms from the 1-loop renormalization but the static
rule does not. Thus, we have to reject the static rule on grounds
of renormalizability, and we will use the kinetic rule in the
following.

The remaining steps in calculating the scaling exponent for
the average SAW proceed as outlined above. For details, we
refer to Appendix C, where the formulas for the multifractal
moments reduce to those for the average SAW when we set the
multifractal index α equal to 1. We obtain the renormalization
factor

Zw = 1 + u

2ε
+

(
1 − ε

3

)
u2

ε2
+ O(u3) (7.8)

for the parameter w. Having Zw, it is straightforward to extract
the SAW exponent νSAW as described above. We obtain the ε

expansion

νSAW = 1

2
+ ε

42
+ 677

2058

(
ε

6

)2

+ · · · . (7.9)

For comparison to experimental or numerical data, it
is useful to improve the accuracy of our ε expansion by
implementing rigorously known features. To this end, we craft
rational approximations for νmin, νSAW, and νmax by adding
eighth-order terms in ε with coefficients chosen such that
the exponents match the rigorously known result ν... = 1 in
d = 1. Table I compiles numerical values resulting from this
approximation for various dimensions. Figure 2 visualizes our
ε expansions and rational approximations as functions of d.
Note that our rational approximation for νSAW agrees very well
with the available numerical estimates for this exponent which
are also shown in Fig. 2.

D. Multifractality

As mentioned above, the fascinating phenomenon of
multifractality has been found in the past in situations where
transport processes such as electrical conduction take place
on critical percolation clusters. It is reasonable to expect
that multifractality also occurs in the context of SAWs on
percolation clusters, and, indeed, it does [10,12]. The length
of the average SAW that we just computed corresponds to the
first of the multifractal moments defined in Eq. (2.5). Now we
allow the power α with which statistical weights of SAWs enter
in Eq. (2.5) to be arbitrary positive numbers. Doing so, we can
influence the way SAWs contribute to the average over their
bundle and thereby, loosely speaking, map out the different

TABLE I. Numerical values for various dimensions of the SAW
exponents resulting from rational approximation.

d 1 2 3 4 5 6

νmin 1 0.865 0.738 0.634 0.554 0.5
νSAW 1 0.767 0.656 0.584 0.533 0.5
νmax 1 0.641 0.554 0.525 0.509 0.5
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FIG. 2. (Color online) ε expansions of the exponents νmin (blue
top line) [36], νSAW (red middle line), and νmax (green bottom line).
Dashed lines show our rational approximations for these exponents.
The solid squares symbolize numerical results for νSAW compiled
from Refs. [1,11].

fractal substructures of the mean SAW. This approach is guided
by earlier work on RRNs, where multifractality manifests itself
in the moments of the current distribution.

Using the real-world interpretation, we proceed in essen-
tially the same way we did in Sec. VII C with the only
difference that we now determine all moments of the statistical
weights of SAWs on the self-energy diagrams; i.e., we now
keep the α in Eq. (2.5) instead of restricting ourselves to
α = 1. For details of this calculation, we refer the reader to
Appendix C. Here, we would like to point out, however, that
this calculation further underscores the imperative of kinetic
averaging because it leads to a renormalized theory even if all
moments are included whereas static averaging does not. Our
calculation produces the renormalization constants

Zα = 1 +
(

1 − 1

2α

)
u

ε
+

[(
9

ε
− 47

12

)
−

(
11

ε
− 65

12

)
1

2α

+
(

2

ε
− 1

2

)
1

4α

]
u2

4ε
+ O(u3). (7.10)

This result implies the Wilson function

γ (α) = −
(

1 − 1

2α

)
u

+
[

47

24
− 65

24 × 2α
+ 1

4 × 4α

]
u2 + O(u3). (7.11)

Evaluating ζ (α) = γ − γ (α) at the fixed point (6.13) and using
ν(α) = 1/(2 − ζ

(α)
∗ ) leads us then readily to our final result

ν(α) = 1

2
+

(
5

2
− 3

2α

)
ε

42

+
(

589

21
− 397

14 × 2α
+ 9

4α

)(
ε

42

)2

+ · · · (7.12)

for the family of multifractal scaling exponents defined by
Eq. (2.8). As it should, this result for general α reduces in the
special case α = 1 to our result for νSAW given above, and is
perfectly consistent with the known results for the backbone
and red bonds dimensions. This can easily be checked by
setting α equal to 0 and letting α → ∞, respectively.

Note that Blavatska and Janke [10,11] have devised a
Padé-type approximation of our ε-expansion results for the
multifractal exponents which comprise νSAW. This approxi-
mation agrees very nicely with their numerical results.

VIII. MEIR-HARRIS MODEL

In this section we discuss in some detail the RG of
the Meir-Harris model for the average SAW on percolation
clusters. Our motivation to do so is twofold. First, we think that
it is of some interest to shed light on the problem at hand from
a different angle, in particular, because we have no rigorous
justification for our real-world interpretation based approach in
the form of a mathematical proof. We will see below that the
MH model when renormalized properly produces to 2-loop
order the same result for the multifractal exponents as the
real-world interpretation and hence provides a strong positive
consistency check for the latter. Second, the RG of the MH
model is very intricate and not properly understood even
though the model has existed for more that 20 years now.
A recent 2-loop calculation [3] struggled with this intricacy
and produced incorrect results.

It is well known that the statistical properties of SAWs
can be calculated from the m-component spin model with
O(m) symmetry in the limit m → 0. To treat dilution, Meir
and Harris [2] start from the n-replicated version of the
model. They introduce tensor fields �k(x) = {� i1,...ik

k;α1,...αk
(x)},

1 � k � n, conjugate to the product of the replicated spin
components where the vector indices il are running from
1 to m and the replica indices αl = 1, . . . ,n are arranged
such that α1 < · · · < αk . Using the Hubbard-Stratonovich
transformation and passing to the continuum limit, they obtain
the effective Hamiltonian

H =
∫

ddx

{ ∑
k

�k(rk − ∇2)�k + g

6
�3

}
. (8.1)

Here, �3 is a symbolic notation for the sum over products of
three �k fields. Only those cubic terms are allowed for which
all pairs (i,α) appear exactly twice. Diagrammatically, this rule
can be represented as shown in Fig. 3 for the �3�3�2 coupling.
Each of the SAW-representing replicons (thin lines) carries the
indices of the corresponding field �. No two pairs of indices
entering an interaction vertex through a given inbound leg are
permitted to exit the vertex through the same outbound leg.
Furthermore, the SAW limit m → 0 for the i indices implies
that diagrams in which some pairs of indices flow in closed
loops produce vanishing contributions. Overall, any replicons
flowing through an external line into a diagram must flow out
off the diagram through another external line without making
any internal loop. Therefore, the basic task is to count the
different distributions of these self-avoiding replicons under
the condition that each line of the diagram bears at least one
replicon. To circumvent the latter condition, it is useful to split
each internal fat line (propagator with replica index k > 0) into
a difference of a conducting (k � 0) and an insulating (k = 0)
line. This step leads to diagrams that can be drawn in the same
way as those for the RRN; see Fig. 1. After this decomposition,
the next step is to draw all possible self-avoiding replicons on
the conducting diagrams where, of course, replicons can flow
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FIG. 3. Replicons flowing through a vertex.

only through conducting propagators. Then, one has to sum
over all replicon distributions, i.e., all possible arrangements
of internal replica indices by given external ones. Using
elementary combinatorics, one finds that this summation for a
diagram with N external legs produces a factor

Z({kij }) =
∏
(i,j )

[NSAW(i,j )]kij

∏
l

(
kl

{kll′ }
)

, (8.2)

where kij = kji is the number of replicons entering at leg i

(i = 1, . . . ,N ) and exiting at leg j , and ki = ∑
j kij is the

total number of replicons entering at leg i (i = 1, . . . ,N).
NSAW(i,j ) is the number of different SAWs which can be
drawn between the pair (i,j ) of external legs. ( kl

{kll′ } ) is
the multinomial coefficient kl!/(kl1! · · · klN !). Formula (8.2)
reduces to Nk

SAW for self-energy diagrams with k replicons and
NSAW different SAWs between the two legs. We parametrize
the temperature-like control parameters rs by

rs =
∞∑
l=0

(
s

l

)
vl = τ + s

∞∑
l=1

(−1)l−1

l
vl + O(s2), (8.3)

where τ = v0. This parametrization facilitates the summation
over the replicon distributions after rs insertions in the self-
energy diagrams, as well as the limit k � n → 0. The vl part of
a rs insertion into the internal line p of a self-energy diagram
and summation over all distributions of k replicons leads to a
factor

Z(k,l; p)vl
= Nk

SAW

(
k

l

)(
NSAW(p)

NSAW

)l

vl, (8.4)

where NSAW(p) is the number of SAWs going through the
line p. Hence, the vl insertions “measure” the lth power of
the fraction of all SAWs drawn between the two external legs
and going through the line p. In this sense the vl measure
multifractal moments of the diagram using the static rule.

However, the MH Hamiltonian (8.1) is not multiplicatively
renormalizable as it stands. The order parameter fields �k

belong to different irreducible tensor representations of the
direct product of the replica-permutation group Sn and the
rotation group SO(m) for different k. Hence, the fields �k need
k-dependent renormalization factors, and the model is critical
at different values {rc

k } (which are superficially set to zero
in dimensional regularization) of the temperature-like control
parameters. Therefore, the model is highly multicritical. For
an earlier critique concerning this point see Le Doussal and
Machta [4]. Furthermore, one needs independent coupling
constants gk,l,m for each product of three �k,�l,�m as opposed

to a single coupling constant g because it is not possible to
construct from the n-fold replicated m-vector model a higher
simple symmetry group where the order parameters �k for all k
belong to one and the same irreducible representation unlike in
the case of the n-fold replicated m-state Potts model leading to
the mn-state Potts model where such a construction is possible
and commonly applied. The latter model, relevant for the
dilute Ising model (m = 2) and the random resistor network
(m → 0) [37], therefore needs only one “scalar” coupling
constant g and a unique (but mn-dependent) renormalization
factor for all fields, and it is possible to apply the replica limit
at the very end. It is not clear, however, for the MH model at
which stage of its perturbation theory the replica limit should
be taken. There has been hope that if the appropriate stage to
take the replica limit can be identified the renormalizability
of the MH model in the form of a conventional multiplicative
renormalization can be restored [38]. In the following, we
will embark on a quest to identify the proper “timing” for the
replica limit.

One of the most basic facts of RG theory states that
nonprimitive divergences arising at a given loop order in
superficially divergent subdiagrams must be canceled by the
counterterms resulting from lower loop orders. The perhaps
most direct route to understand this fact is provided by the
iterative approach to constructing counterterms invented at
the dawn of RG theory by Bogoliubov, Parasyuk, Hepp, and
Zimmermann (BPHZ); see, e.g., Ref. [39]. We will use a
BPHZ-like construction of counterterms in a massless 2-loop
calculation using t’Hooft’s minimal dimensional renormaliza-
tion [40,41]. For practical purposes, it is useful to split up
the calculation into a part that determines the counterterms
of frames, i.e., those parts of Feynman diagrams that stand
only for momentum integrations, and a part that determines
decorations, i.e., symmetry factors, coupling constants, and
all other parameters that multiply the frames. There are
seven frame counterterms to 2-loop order; see Figs. 4–6. Our
calculation produces

S1 = −Gεμ
−ε

3ε
q2, V1 = Gεμ

−ε

ε
, (8.5)

S2-1 = G2
εμ

−2ε

3ε2

(
1 − ε

3

)
q2, (8.6)

S2-2 = −G2
εμ

−2ε

18ε2

(
1 − 11ε

12

)
q2, (8.7)

V2-1 = −G2
εμ

−2ε

2ε2

(
1 − ε

4

)
, (8.8)

V1

q q

S1
FIG. 4. 1-loop counterterms.
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S2−2:

q q q q q q− −S2−1:

q

q

q

q

−

FIG. 5. 2-loop self-energy counterterms.

V2-2 = G2
εμ

−2ε

6ε2

(
1 − 7ε

12

)
, (8.9)

V2-3 = G2
εμ

−2ε

2ε
(8.10)

for these counterterms. To calculate the corresponding decora-
tions using formulas (8.2) and (8.4), we determine all possible
self-avoiding replicons on the conducting 1-loop diagrams
shown in Figs. 1 and 7 as described above. We obtain for
the 1-loop self-energy counterterm

Self1 = g2

2
(2k − 2)S1 = u

6ε
(2 − 2k)q2, (8.11)

where u = Gεμ
−εg2. The vl insertions into these diagrams

result in the counterterms

Ins1l

(
k

l

)
vl = −g2(2k−l − 2)

(
k

l

)
vlV1

= u

ε
(2 − 2k−l)

(
k

l

)
vl, (8.12)

and the 1-loop vertex counterterm with k, l, and m replicons
in the external legs is

Vert1 × g = −g3(2(k+l+m)/2 − 3)Nk,l,mV1

= u

ε
(3 − 2(k+l+m)/2)Nk,l,mg, (8.13)

where we have used the notation

Nk,l,m = k! l! m![(
k+l−m

2

)
!
(

k+m−l
2

)
!
(

m+l−k
2

)
!
]2 . (8.14)

For the MH model, we use the renormalization scheme

� → �̊ = Z1/2�, (8.15)

vl → v̊l = Z−1Zlvl, (8.16)

g → g̊ = Z−3/2Zgg. (8.17)

To 1-loop order, the above counterterms are related to the
renormalization factors introduced by this scheme via

Z = 1 + Self1 + · · · , (8.18)

Zl = 1 + Ins1l + · · · , (8.19)

Zg = 1 + Vert1 + · · · . (8.20)

In the replica limit n → 0 (which implies vanishing external
replicon numbers k, . . .) we retrieve the well-known percola-

V2−3:

−V2−1:

−V2−2:

FIG. 6. 2-loop vertex counterterms.

tion renormalization factors to 1-loop order. In particular, we
retrieve

Zg = 1 + 2u

ε
+ · · · . (8.21)

Note that the renormalization of τ follows from the identity
Zτ = Z∞.

Now we turn to the 2-loop counterterms using the same
general approach as for the 1-loop part of the calculation.
From the diagrams shown in the middle part of Fig. 1, we
obtain the counterterm

Self2-1 = g4

2
(4k − 5 × 2k + 6)S2-1

= u2

6ε2

(
1 − ε

3

)
(4k − 5 × 2k + 6)q2 (8.22)

The diagrams shown in the lower part of Fig. 1 yield

Self2-2 = g4

2
(hk − 3 × 2k + 3)S2-2

= − u2

36ε2

(
1 − 11ε

12

)
(hk − 3 × 2k + 3)q2 (8.23)

Note the placeholder h appearing in this formula. This
placeholder reflects the fact that there are apparently two
possible choices for taking the replica limit, and the result
we obtain for diagram H of Fig. 1 depends on this choice. We
can let n → 0 in the superficially diverging 1-loop self-energy
subdiagram in H either before or after taking the summation
over the replicon distribution. In the first case, h = 2, whereas
h = 3 in the second. We will return to the issue of these choices
further below. Next, we consider vl>0 insertions into the 2-loop

−3=

FIG. 7. Decomposition of the 1-loop vertex diagram.
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+

FIG. 8. Insertions into the 2-loop self-energy diagram whose
decomposition is shown in the middle part of Fig. 1.

self-energy diagrams, see Figs. 8 and 9. From the diagrams
shown in the middle part of Fig. 1, we obtain

Ins2-1l

(
k

l

)
vl

= −g4

2
[4k(1/2)l − 4 × 2k(1/2)l + 2]

(
k

l

)
vlV2-3

−2g4[4k(1/2)l − 3 × 2k(1/2)l − 2k + 3]

(
k

l

)
vlV2-1

= u2

ε2

{
− (22k−l − 22+k−l + 2)

ε

4

+ (22k−l − 3 × 2k−l − 2k + 3)

(
1 − ε

4

)}(
k

l

)
vl.

(8.24)

Insertions into the 2-loop self-energy diagrams shown in the
lower part of Fig. 1 produce

Ins2-2l

(
k

l

)
vl

= −g4[hkal − 2 × 2k(1/2)l − 2k + 2]

(
k

l

)
vlV2-1

− g4[hkbl − 2 × 2k(1/2)l + 1]

(
k

l

)
vlV2-2

− g4[hkcl − 2 × 2k(1/2)l + 1]

(
k

l

)
vlV2-1

= u2

ε2

{
−(hkal − 21+k−l − 2k + 2)

1

6

(
1 − 7ε

12

)

+ (hkbl − 21+k−l + 1)
1

2

(
1 − ε

4

)

− (hkcl − 21+k−l + 1)

}(
k

l

)
vl, (8.25)

where a, b, and c are further l-independent placeholders
stemming from the two apparent choices for taking the replica
limit as mentioned above. When we let n → 0 in the 1-loop
superficially diverging self-energy subdiagram in diagram H

+ +

FIG. 9. Insertions into the 2-loop self-energy diagram whose
decomposition is shown in the lower part of Fig. 1.

before taking the summation over the replicon distribution, we
obtain a = 1/2, b = 1/4, c = 1/2, and h = 2. Otherwise, we
get a = 2/3, b = 1/3, c = 1/3, and h = 3. We will analyze
the correct “timing” of the replica limit in more detail further
below.

To calculate the renormalization factors for the fields to
2-loop order, we collect our various diagrammatic results,

Z = 1 + Self1 + Self2-1 + Self2-2 + · · · , (8.26)

Zl = 1 + Ins1l + Ins2-1l + Ins2-2l + · · · , (8.27)

and take the limit k → 0. In this limit we obtain

Z = 1 + u

6ε
+

(
11 − 37

12
ε

)
u2

36ε2
+ · · · , (8.28)

Zl = 1 + (1 − 2−l)
u

ε
+

[(
9 − 47

12
ε

)
−

(
10 − 29

6
ε

)
2−l

−
(

2

3
− 7

18
ε

)
al+

(
2 − 1

2
ε

)
bl−

(
1

3
− 7

36
ε

)
cl

]

× u2

4ε2
· · · . (8.29)

As usual, these renormalization factors, as well as their
products, have the form of a Laurent series, Z = 1 +∑∞

k=1 Z(k)(u)/εk , etc.
Our ultimate goal is to determine the inverse multifractal

dimensions

ν(l) = (2 − κl∗)−1 (8.30)

of the MH model. Thus, we need to extract from the above
renormalizations the Wilson function

κl = −β(u)
∂

∂u
ln(Z−1Zl), (8.31)

where β(u) = −εu + β(0)(u) is the Gell-Mann–Low function
given to 2-loop order in Eq. (6.12). It follows from Eq. (8.31)
that

κl = u
∂

∂u
(Z−1Zl)

(1) − 1

ε
β(0)(u)

∂

∂u
(Z−1Zl)

(1)

+ 1

2ε
u

∂

∂u
[2(Z−1Zl)

(2) − ((Z−1Zl)
(1))2] + O(ε−2)

(8.32)

has to be free of ε poles. Hence, we obtain the t’Hooft identity
[40]

u
∂

∂u
[2(Z−1Zl)

(2) − ((Z−1Zl)
(1))2] = β(0)(u)

∂

∂u
(Z−1Zl)

(1).

(8.33)

Inserting our 2-loop results into this identity, we find the
condition

2al − 6bl + cl = 3 × 2−l − 6 × 4−l . (8.34)

This condition has the unique solution a = c = 2−1 and b =
4−1. Thus, to make the Meir-Harris model renormalizable, one
necessarily has to take the replica limit n → 0 in the superficial
divergent subdiagram (SDS) appearing in diagram H before
one sums over the replicon distributions of H with vl insertion.
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Remarkably, the renormalization factor Zl obtained this way
is identical to 2-loop order to the renormalization factor Zw

with α = l resulting from the Harris model in conjunction with
the real-world interpretation provided that kinetic averaging is
used. Consequentially, the same holds true for the multifractal
exponents ν(α=l) produced by the two approaches. We rate
this as a strong indication for the validity of the real-world
interpretation with kinetic averaging.

IX. CONCLUDING REMARKS

In summary, we have shown that weak disorder in the
SAW problem is redundant in the sense of the RG for kinetic
averaging as it is for static averaging. We have derived the
scaling exponents of SAWs in strongly disordered media by
field-theoretic methods to second order in the dimensional
expansion below six dimensions. We have shown in the
real-world interpretation of the corresponding diagrams that
in contrast to a static averaging over the SAWs only kinetic
averaging leads to a renormalizable theory. The different
behaviors of these two averaging procedures under renormal-
ization is expected to have important physical consequences
for the statistics of polymers in real disordered media. We
argue that a statistics of polymers based on static averaging
has no asymptotic scaling limit. Based on our findings, we
do not expect experiments and numerical simulations using
static averaging to produce clear scaling behavior. In fact,
we think that the wide spread of simulation results for the
SAW exponent in strongly disordered media is linked to static
averaging.

In closing, we would like to supplement our firm but
conceptually somewhat involved field-theoretic argument for
the imperative of kinetic averaging by a simple hand-waving
argument based on the link-node-blob model of percolation
clusters. In this model, the backbone connecting two terminal
points of a percolation cluster, which is generically very
inhomogeneous and asymmetric, can be envisaged as two
nodes linked by a tortuous ribbon that contains blobs. A blob
itself is constructed from at least two links joined at two
nodes which may again contain blobs. Let us for simplicity
consider an asymmetric blob as sketched in Fig. 10 that
features two links between two nodes, one with and the other
without a blob. Note that this cluster resembles the ominous
diagram H of Fig. 1. Assume that the internal blob has many
ramifications of short links in it. Hence, say N ′ = N − 1 � 1
different SAW configurations are possible on the upper link.
With static averaging the upper link acquires a much larger
weight (N − 1)/N than the other (lower) one (weight 1/N)
even if it may be much shorter than the link without the blob.
Then, the statistics of the mean length is dominated by the
short upper link with its many different SAWs induced by
the blob. However, the weights change drastically upon coarse
graining. Suppose we have some coarse-graining procedure
that culminates in condensing the “microscopic” blob into
a single bond. After that, both links have the same weight.
However, the lower one, since it is longer, now dominates
the statistics. This demonstrates the instability of the weights
of static averaging under real-space renormalization as the
group generated by repeated coarse graining. In contrast,
kinetic averaging does assign the same weight to both links

FIG. 10. A blob in a blob of a percolation cluster in the link-node-
blob picture.

independent of the blob. Thus, kinetic averaging is stable under
coarse graining even in a strongly asymmetric inhomogeneous
disordered medium such as the backbone of a percolation
cluster. All in all, the behavior of the links-nodes-blobs cluster
of Fig. 10 under coarse graining resembles in a nut shell
the issues we encountered in our discussion of diagram H
of our field theory and thereby corroborates the imperative
of kinetic averaging on an intuitive level. Note that real-
space RG approaches as employed in Refs. [2,3] generically
use symmetric configurations, and hence static and kinetic
averaging lead to equal results in these approaches as they do
in ordered media such as regular lattices which are trivially
homogeneous and symmetric.
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APPENDIX A: DYNAMICAL RESPONSE FUNCTIONAL
FOR SAWs IN RANDOM MATTER

In this Appendix we generalize Peliti’s derivation of
a field theory for the statistics of kinetically generated
SAWs [6]. An excellent review of the method can be find
in Ref. [42]. To have a starting point, let us revisit the
diffusion and reaction processes introduced in Sec. III. First,
the rules (3.1), (3.2), and (3.3) for these processes are
reformulated in terms of a master equation that describes the
time dependence of the probability P ({n,m},t) for a given
configuration of site occupation numbers {n} = (. . . ,ni, . . .)
and {m} = (. . . ,mi, . . .) of the walkers A and the markers
B, respectively. Then, the master equation is transformed
in the “second quantization” formalism developed by Doi
[43], Rose [44], and Grassberger and Scheunert [45] as
follows. The configuration probability is encoded in the
state vector |P (t)〉 = ∑

{n,m} P ({n,m},t) |{n,m}〉 in a bosonic
Fock space spanned by the basis |{n,m}〉. These vectors
as well as the stochastic processes in the master equation
are expressed through the action of bosonic creation and
annihilation operators {a+,b+} and {a,b}, respectively, which
are defined via a+

i |. . . ,ni, . . . ,{m}〉 = |. . . ,ni + 1, . . . ,{m}〉
and ai |. . . ,ni, . . . ,{m}〉 = ni |. . . ,ni − 1, . . . ,{m}〉 , etc. |0〉 is
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the vacuum state without walkers and markers. Subsequently,
the master equation can be written in the form

∂

∂t
|P (t)〉 = H |P (t)〉 , (A1)

with an appropriate non-Hermitian pseudo-Hamiltonian oper-
ator

H = λ
∑
〈ij〉

(a+
j − a+

i )ai +
∑

i

{α(b+
i − 1)a+

i ai

+β(1 − a+
i )aib

+
i bi + γ (1 − a+

i )aiρi}. (A2)

Here 〈ij 〉 denotes a pair of neighboring sites. The for-
mal solution of the master equation (A1) reads |P (t)〉 =
exp(tH ) |P (0)〉. Suppose we wish to calculate the 1-walker
probability P1(i,t) to find the walker at site i at time t if he
starts from site 0 at time 0 not taking into account the resulting
distribution of the markers at t . Since a walker can be destroyed
but not spontaneously generated over the course of time, we
have P1(i,t) = 〈ni〉(t) where ni = a+

i ai is the number operator
of walkers at site i and where 〈· · · 〉 denotes an average whose
precise definition will become clear shortly. To compute such a
statistical average, it is useful to introduce the projection state
〈·| = 〈0| ∏i exp(ai + bi). Using the identities 〈·| a+

i = 〈·| and
H |0〉 = 0 one easily finds

P1(i,t) = 〈·|a+
i aie

tH a+
0 |0〉 = 〈·|aie

tH (a+
0 − 1)|0〉. (A3)

Changing from the occupation-number basis to a
Bargmann-Fock space representation with the coherent states
(the eigenstates of the annihilation operators) as the basis,
and following standard procedures [6,39,42], the expectation
value (A3) can be expressed as a path integral

P1(i,t) =
∫

D[ã,a,b̃,b]ai(t)ã0(0) exp(−S[{ã,a,b̃,b}])
= : 〈ai(t)ã0(0)〉. (A4)

Here the variables {ã(t) = a+(t) − 1,a(t),b̃(t) = b+(t) −
1,b(t)} are classical quantities which correspond to the
coherent-state eigenvalues, and the functional integral (A4)
is performed subject to the conditions ãi(∞) = ai(−∞) =
b̃i(∞) = bi(−∞) = 0. The action S results from the
Hamiltonian (A2) as

S =
∫ ∞

−∞
dt

{ ∑
i

(ãi∂tai +b̃i∂tbi)+ λ

2

∑
〈ij〉

(ãi − ãj )(ai − aj )

+
∑

i

[−αb̃i(1 + ãi)ai + βãiai(1 + b̃i)bi + γρiãiai]

}
.

(A5)

It is easily seen that the coupling induced by the number 1 in
the term αb̃i(1 + ãi)ai of the interaction part of (A5) does not
contribute to the calculation of the expectation values (Green’s
functions) GN ({i,t},{j,t ′}) = 〈∏N

α=1 aiα (tα)
∏N

β=1 ãjβ
(t ′β)〉, es-

pecially to P1(i,t) = G1({i,t},{0,0}), by perturbational series.
Hence we neglect this destroying coupling in the following.
Furthermore, the variables bi and b̃i can be integrated out. For
example, performing the functional integral

∫
D[b] exp(−S)

leads to a factor
∏

i,t δ(∂t b̃i − βãiai(1 + b̃i)). These δ condi-
tions can be easily integrated [remember b̃i(∞) = 0] to

b̃i(t) = exp

[
−β

∫ ∞

t

dt ′ (ãiai)(t
′)
]

− 1. (A6)

The remaining term in S which contains b̃i(t) yields then

−α

∫ ∞

−∞
dt b̃i(t)(ãiai)(t) = αAi + α

β
b̃i(−∞)

= αβ

2
A2

i + O
(
A3

i

)
, (A7)

where Ai := ∫ ∞
−∞ dt (ãiai)(t).

It remains to perform the average of the expectation values
GN over the disorder distribution of the ρi . Note that the
normalization factor of the path integral is defined so that∫
D[ã,a,b̃,b] exp(−S) = 1, and is purely numeric. Hence,

there is no need for the replica trick. The average can be
taken directly over exp(−S). We use a Poissonian disorder
distribution

p(ρi = k) = ρ̄k

k!
exp(−ρ̄) (A8)

of independent traps on each site i, characterized by the mean
value ρ̄. We get

∞∑
k=0

p(k) exp

(
−γ

∫ ∞

−∞
dt k(ãiai)(t)

)

= exp[ρ̄(exp(−γAi) − 1)]

= exp

[
−ρ̄γAi + ρ̄γ 2

2
A2

i + O
(
A3

i

)]
. (A9)

Using this expression, we arrive at a reduced action for the
calculation of the disorder averaged Green’s functions

Sred =
∫ ∞

−∞
dt

{ ∑
i

ãi∂tai + λ

2

∑
〈ij〉

(ãi − ãj )(ai − aj )

+
∑

i

[
ρ̄γAi + αβ − ρ̄γ 2

2
A2

i + O
(
A3

i

)]}
. (A10)

As long as αβ − ρ̄γ 2 > 0 the third-order terms O(A3
i ) be-

comes irrelevant in the RG sense.
To obtain a proper field-theoretic functional, it remains

to transcribe the formulation from the lattice to the spatial
continuum. Performing a naive continuum limit of Sred, several
rescalings, and a renaming of the variables and parameters, we
finally arrive at the dynamical response functional (3.4).
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APPENDIX B: THE RENORMALIZATION OF THE LONGEST SAW

Here, we present some details of our diagrammatic calculation for the longest SAW. The general formula of the diagrammatic
contributions related to the various SAWs we consider in this paper is

I (q2,τ,wλ) =
∫ ∞

0

∏
i

dsi D(q2,τ,{si}) exp[−iλwL({si})], (B1)

where {si} is the set of Schwinger parameters of a given diagram. λ is defined through �0(�λ) = −i
∑D

α=1 λ := −iλ. L({si}) is
a placeholder for the shortest length Lmin({si}), the longest length Lmax({si}), or the average length Lav({si}), respectively, and
w is a shorthand for the corresponding limit of wr . Here, we will focus on Lmax({si}). The average SAW and the corresponding
multifractal moments are treated in the following appendix.

First, let us focus on the 1-loop part of the calculation. For simplicity, we set q = 0 in the following because we are not
interested in reproducing the well-known field renormalization Z. Moreover, we will neglect all contributions to diagrams
proportional to τ because we are not interested in reproducing the well-known Zτ . At 1-loop order, there are only two conducting
diagrams, namely diagrams A and B of Fig. 1. These diagrams give

S0 = A − 2B = g2

2

∫ ∞

0
ds1ds2

exp[−(s1 + s2)τ ]

[4π (s1 + s2)]d/2
[exp[−iλw max(s1,s2)] − 2 exp[−iλws1]]

= −g2

2

∫ ∞

0
ds1ds2

exp[−(s1 + s2)τ ]

[4π (s1 + s2)]d/2
[1 − 2iλws1θ (s2 − s1) + O(w2)] = Gεg

2

ε
τ−ε/2 iλw

4
, (B2)

where w = w−0 and where λ is defined through �−0(�λ) = −i
∑D

α=1 λ := −iλ. Using the renormalization scheme (6.8), we get
the w part of the renormalized self-energy

�2|(1l)
w = Z �̊2

∣∣(1l)

w
= iλwZw

[
1 − Z−3+ε/2Z−ε/2

τ Zu

u

4ε

(
μ2

τ

)ε/2]
= iλwZw

{
1 −

[
1 +

(
7

2ε
− 5

12

)
u

]
u

4ε

(
μ2

τ

)ε/2

+ O(u3)

}
.

(B3)

It follows the renormalization factor Zw to 1-loop order:

Zw = 1 + u

4ε
+ O(u2). (B4)

Now, we turn to 2-loop order. First, we consider the diagrams C, D, E, F, G. These diagrams lead to the integral

S1 = C − 4D − E + 2F + 4G = g4

(4π )d

∫ 5∏
i=1

dsi

�1({si}) exp(−τ
∑

i si)

[(s1 + s2)(s3 + s4) + s5(s1 + s2 + s3 + s4)]d/2
, (B5)

where we have used some invariance under permutations of indices to reduce the number of terms and where we have
defined

�1({si}) = exp[−iλw(s1 + s3)]{θ (s1 − s2 − s5)θ (s3 − s4 − s5) − 2θ (s3 − s4 − s5) − θ (s1 + s3 − s2 − s4) + 2}
+ exp[−iλw(s1 + s4 + s5)]{θ (s1 + s5 − s2)θ (s4 + s5 − s3)θ (s1 + s4 − s2 − s3) − 2θ (s4 + s5 − s3) + 1}. (B6)

To simplify the integrations, we introduce new variables,

s1 = xt1, s2 = (1 − x)t1,
(B7)

s3 = yt2, s4 = (1 − y)t2, s5 = t3.

The integrations over x and y are cumbersome but manageable and produce after expansion to linear order in w

S1 = g4

(4π )d

∫ 3∏
i=1

dti
exp [−τ (t1 + t2 + t3)]

[t1t2 + t2t3 + t3t1]d/2

{
t1t2 + iλw

12

(
t1t2t3 − 9t2

1 t2
)

(B8)

+ iλw

12
θ (t1 − t2)θ (t2 − t3)

[
3t2

1 (t2 + t3) + 3t2t
2
3 + t3

2 + 2t3
3

]}
. (B9)
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In the same manner we find for the second group of diagrams, H, I, J, K, L,

S2 = H − I − 2J + 2K + L = g4

(4π )d

∫ 5∏
i=1

dsi

�2({si}) exp(−τ
∑

i si)

[(s1 + s3 + s5)(s2 + s4) + s2s4]d/2
, (B10)

with

�2({si}) = exp[−iλws5]
{

1
2θ (s5 − s1 − s2 − s3)θ (s5 − s1 − s4 − s3) − θ (s5 − s1 − s2 − s3) + 1

2

}
+ exp[−iλw(s1 + s2 + s3)]{θ (s1 + s2 + s3 − s5)θ (s2 − s4) − θ (s1 + s2 + s3 − s5) − θ (s2 − s4) + 1}. (B11)

Here, we chose new integration variables

s1 = (1 − x)yt1, s3 = (1 − x)(1 − y)t1,
(B12)

s2 = t2, s4 = t3, s5 = xt1,

and the integration over x and y yields

S2 = g4

(4π )d

∫ 3∏
i=1

dti
exp [−τ (t1 + t2 + t3)]

[t1t2 + t2t3 + t3t1]d/2

{
1

4
t2
1 − iλw

12
t3
1 + iλw

24
θ (t1 − t2)θ (t2 − t3)[(t1 − t3)3 + (t2 − t3)3]

}
. (B13)

Next we turn to the integration over the t variables. In part, these integrations can be done in an efficient and elegant manner by
taking derivatives of the parameter integral

M(a,b,c) = 1

(4π )d

∫ 3∏
i=1

dti
exp(−at1 − bt2 − ct3)

[t1t2 + t2t3 + t3t1]d/2

= G2
ε

6ε

{ (
1

ε
+ 25

12

)
(a3−ε + b3−ε + c3−ε) −

(
3

ε
+ 21

4

)
[a2−ε(b + c) + b2−ε(a + c) + c2−ε(a + b)] − 3abc

}
(B14)

introduced by Breuer and Janssen [46]. The remaining parts can be tackled in the same spirit by introducing a second parameter
integral:

N (a,b,c) = 1

(4π )d

∫ 3∏
i=1

dti
exp(−at1 − bt2 − ct3)

[t1t2 + t2t3 + t3t1]d/2
θ (t1 − t2)θ (t2 − t3). (B15)

In ε expansion, we obtain

N (a,b,c) = G2
ε

6ε

{
1

ε

(
1

2
a − 9

4
b − 3

4
c

)
a2−ε +

(
35

24
− 1

4
ln 3

)
a3 +

(
− 1

3
+ 1

2
ln 3 − 1

2
ln 2

)
b3 +

(
− 1

12
− 1

4
ln 3 + 1

2
ln 2

)
c3

+
(

− 61

16
+ 9

8
ln 3 − 3

4
ln 2

)
a2b +

(
− 1

4
− 3

2
ln 3 + 3

2
ln 2

)
ab2 +

(
− 31

16
+ 3

8
ln 3 + 3

4
ln 2

)
a2c

+
(

1

2
+ 3

8
ln 3 − 3

2
ln 2

)
ac2 +

(
1

2
− 3

2
ln 3 + 3

2
ln 2

)
b2c +

(
− 1

4
+ 9

8
ln 3 − 3

2
ln 2

)
bc2 − 1

2
abc

}
. (B16)

Via differentiating the parameter integrals with respect to their parameters, we get the w parts

S1|w = −G2
εg

4τ−ε

12ε
iλw

[
6

ε
+

(
− 1

4
− ln 2 + 21

8
ln 3

)]
(B17)

and

S2|w = −G2
εg

4τ−ε

12ε
iλw

[
− 3

8ε
+

(
− 41

32
− 27

8
ln 2 + 27

16
ln 3

)]
. (B18)

Collecting the 1- and 2-loop contributions, we find

�2|(2l)
w = iλw

{
Zw −

[
1

4
+

(
15

16ε
− 5

48

)
u

]
u

ε

(
μ2

τ

)ε/2

+
[

15

32ε
+

(
− 49

384
− 35

96
ln 2 + 69

192
ln 3

)
u

]
u2

ε

(
μ2

τ

)ε}
(B19)

for the w part of the renormalized self-energy to order u2. This form makes evident that nonprimitive divergencies drop out and
the ε poles are canceled by choosing

Zw = 1 + u

4ε
+

(
15

32ε
+ 3

128
+ 70 ln 2 − 69 ln 3

192

)
u2

ε
+ O(u3). (B20)
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APPENDIX C: RENORMALIZATION OF THE MULTIFRACTAL MOMENTS

Now, we present some details of our diagrammatic calculation for the multifractal moments. Our calculation here is based on
Eq. (B1) with L({si}) specified to

Lav({si}) =
∑
γ∈B

p(γ )Lγ ({si}) =
∑

i

misi, (C1)

where Lγ ({si}) = ∑
i∈γ si is the length of SAW γ of the bundle B of all SAWs on the conducting part of the diagram, p(γ ) its

probability, and mi the statistical weight of line i of the diagram. More generally, we are interested in all averaged moments of
the weights, and hence we consider

L(α)
av ({si}) =

∑
i

mα
i si, (C2)

with α left general. For the 1- and 2-loop diagrams A to L shown in Fig. 1 the probabilities of the SAWs according to the kinetic
rule are

p({γ })(A) = {1/2,1/2}, p({γ })(B) = {1},
p({γ })(C) = {1/4,1/4,1/4,1/4}, p({γ })(D) = p({γ })(E) = {1/2,1/2},
p({γ })(F ) = p({γ })(G) = {1}, (C3)

p({γ })(H ) = {1/2,1/4,1/4}, p({γ })(I ) = p({γ })(J ) = {1/2,1/2},
p({γ })(K) = p({γ })(L) = {1}.

Note that only for the three SAWs on diagram H does the kinetic rule lead to different probabilities than the static rule, which
yields p({γ })(H )

stat = {1/3,1/3,1/3}. This fact is discussed in detail in the main text. The statistical weights of the lines of the
different diagrams follow from Eq. (C1) as

m
(A)
1 = m

(A)
2 = 1

2
, m

(B)
2 = 1,

m
(C)
i=1,2,3,4,5 = m

(D)
3,4,5 = m

(E)
1,2,3,4 = 1

2
,

m
(F )
2,3,5 = m

(G)
2,3,5 = 1, (C4)

m
(H )
2,4 = 1

4
, m

(H )
1,3,5 = m

(I )
2,4 = m

(J )
1,2,3,5 = 1

2
,

m
(I )
1,3 = m

(K)
1,2,3 = m

(L)
5 = 1.

Using these weights as well as the symmetries of the diagrams, we obtain form Eq. (C2) the following averaged moments of the
weights:

L(α)
av (A − 2B,{si}) = −

(
1 − 1

2α

)
(s1 + s2),

L(α)
av (C − 4D − E + 2F + 4G,{si}) =

(
1 − 1

2α

)
(s1 + s2 + s3 + s4) +

(
2 − 3

2α

)
s5, (C5)

L(α)
av (H − I − 2J + 2K + L,{si}) =

(
1 − 1

2α

)
(s1 + s3 + s5) +

(
1 − 1

2α

)2

(s2 + s4).

In the following, we replace the control parameter w by vα to emphasize the fact that the multifractal index α is kept general
in our calculation. Using the substitutions s1 = xt , s2 = (1 − x)t , the part of the 1-loop self-energy that is linear in vα becomes

I0,v = −iλvα

g2

2

∫ ∞

0
ds1ds2

exp[−(s1 + s2)τ ]

(s1 + s2)d/2
L(α)

av (A − 2B,{si}) = iλvα

g2

2(4π )d/2

∫ ∞

0
dt t2−d/2 exp(−τ t)

(
1 − 1

2α

)

= iλvα

Gεg
2

ε
τ−ε/2

(
1 − 1

2α

)
. (C6)

Using the renormalization scheme (6.8) with the w renormalization replaced by

vα → v̊α = Z−1Zαvα, (C7)
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we get

�2|(1l)
v = Z �̊2

∣∣(1l)

v
= iλvαZα

{
1 − Z−3+ε/2Z−ε/2

τ Zu

(
1 − 1

2α

)
u

ε

(
μ2

τ

)ε/2}

= iλvαZα

{
1 −

[
1 +

(
7

2ε
− 5

12

)
u

](
1 − 1

2α

)
u

ε

(
μ2

τ

)ε/2

+ O(u3)

}
(C8)

for the vα part of the renormalized vertex-function to 1-loop order. It follows

Zα = 1 +
(

1 − 1

2α

)
u

ε
+ O(u2) (C9)

for the renormalization factors of the vα .
Now, we turn to 2-loop order. First, we consider the diagrams C, D, E, F, G. These diagrams lead to the integral

I1,v = −iλvα

g4

2(4π )d

∫ 5∏
i=1

dsi

L(α)
av (C − 4D − E + 2F + 4G,{si}) exp(−τ

∑
i si)

[(s1 + s2)(s3 + s4) + s5(s1 + s2 + s3 + s4)]d/2
. (C10)

Switching to the integration variables defined in Eq. (B7) and integrating over x and y, the integrals I1,v can be expressed once
again in terms of the mother integral M . Taking the appropriate derivatives thereof, we obtain

I1,v = −iλvα

g4

2(4π )d

∫ 3∏
i=1

dti
t1t2 exp[−τ (t1 + t2 + t3)]

(t1t2 + t2t3 + t3t1)d/2
×

[
2

(
1 − 1

2α

)
(t1 + t2) +

(
2 − 3

2α

)
t3

]

= −iλvα

G2
εg

4

ε
τ−ε

{(
1 − 1

2α

)
2

ε
+

(
1 − 5

2α+2

)}
.

Proceeding similarly, we get for the second group of diagrams H, I, J, K, L

I2,v = −iλvα

g4

2(4π )d

∫ 5∏
i=1

dsi

L(α)
av (H − I − 2J + 2K + L,{si}) exp(−τ

∑
i si)

[(s1 + s3 + s5)(s2 + s4) + s2s4]d/2
. (C11)

Using the integration variables defined in Eq. (B12), we obtain

I2,v = −iλvα

g4

4(4π )d

∫ 3∏
i=1

dti
t2
1 exp[−τ (t1 + t2 + t3)]

[t1t2 + t2t3 + t3t1]d/2

[(
1 − 1

2α

)
t1 +

(
1 − 1

2α

)2

(t2 + t3)

]

= −iλvα

G2
εg

4

4ε
τ−ε

(
1 − 1

2α

){(
1 − 1

2α−1

)
1

ε
−

(
7

4
+ 1

2α+1

)}
. (C12)

Collecting the 1- and 2-loop contributions, we find

�2|(2l)
v = Z �̊2

∣∣(2l)

v
= iλvα

{
Zα −

(
1 − 1

2α

)[
1 +

(
9

2
− 1

2α
− 5ε

12

)
u

ε

]
u

ε

(
μ2

τ

)ε/2

+
[(

1 − 1

2α

)(
9

2
− 1

2α

)
+ ε

(
9

8
− 15

2α+3
+ 1

4α+1

)]
u2

2ε2

(
μ2

τ

)ε

+ O(u3)

}

= iλvα

{
1 −

(
1 − 1

2α

)
u

ε
−

[(
9

ε
− 47

12

)
−

(
11

ε
− 65

12

)
1

2α
+

(
2

ε
− 1

2

)
1

4α

]
u2

4ε
+ O(u3)

}
(C13)

for the vα part of the renormalized self-energy to order u2. It is free of nonprimitive divergencies as it should be, and the ε poles
are canceled by the renormalization factors stated in Eq. (7.10).

[1] Statistics of Linear Polymers in Disordered Media, edited by
B. K. Chakrabarti (Elsevier, Amsterdam, 2005).

[2] Y. Meir and A. B. Harris, Phys. Rev. Lett. 63, 2819 (1989).
[3] C. von Ferber, V. Blavats’ka, R. Folk, and Yu. Holovatch, Phys.

Rev. E 70, 035104(R) (2004); and in Ref. [1], p. 103.
[4] P. Le Doussal and J. Machta, J. Stat. Phys. 64, 541

(1991).

[5] I. Majid, N. Jan, A. Coniglio, and H. E. Stanley, Phys. Rev. Lett.
52, 1257 (1984).

[6] L. Peliti, J. Phys. Lett. 45, L925 (1984); J. Phys. (Paris) 46, 1469
(1985).

[7] K. Kremer and J. W. Lyklema, Phys. Rev. Lett. 55, 2091 (1985).
[8] L. Pietronero, Phys. Rev. Lett. 55, 2025 (1985).
[9] A. B. Harris, Z. Phys. B 49, 347 (1983).

011123-18

http://dx.doi.org/10.1103/PhysRevLett.63.2819
http://dx.doi.org/10.1103/PhysRevE.70.035104
http://dx.doi.org/10.1007/BF01048306
http://dx.doi.org/10.1007/BF01048306
http://dx.doi.org/10.1103/PhysRevLett.52.1257
http://dx.doi.org/10.1103/PhysRevLett.52.1257
http://dx.doi.org/10.1051/jphyslet:019840045019092500
http://dx.doi.org/10.1051/jphys:019850046090146900
http://dx.doi.org/10.1051/jphys:019850046090146900
http://dx.doi.org/10.1103/PhysRevLett.55.2091
http://dx.doi.org/10.1103/PhysRevLett.55.2025
http://dx.doi.org/10.1007/BF01301596


LINEAR POLYMERS IN DISORDERED MEDIA: THE . . . PHYSICAL REVIEW E 85, 011123 (2012)

[10] V. Blavatska and W. Janke, Phys. Rev. Lett. 101, 125701 (2008);
Physics Procedia 3, 1431 (2010).

[11] V. Blavatska and W. Janke, Europhys. Lett. 82, 66006 (2008);
J. Phys. A 42, 015001 (2009).

[12] H. K. Janssen and O. Stenull, Phys. Rev. E 75, 020801(R) (2007).
[13] R. Rammal, C. Tannous, and A.-M. S. Tremblay, Phys. Rev. A

31, 2662 (1985); R. Rammal, C. Tannous, P. Breton, and A.-M.
S. Tremblay, Phys. Rev. Lett. 54, 1718 (1985).

[14] L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 31,
4725 (1985).

[15] Y. Park, A. B. Harris, and T. C. Lubensky, Phys. Rev. B 35, 5048
(1987).

[16] O. Stenull and H. K. Janssen, Europhys. Lett. 51, 539 (2000).
[17] O. Stenull and H. K. Janssen, Phys. Rev. E 63, 036103 (2001).
[18] O. Stenull, Renormalized Field Theory of Random Resistor

Networks, Ph.D. thesis, Universität Düsseldorf (Shaker, Aachen,
2000).

[19] O. Stenull and H. K. Janssen, Phys. Rev. E 65, 036124 (2002).
[20] H. Hinrichsen, O. Stenull, and H. K. Janssen, Phys. Rev. E 65,

045104(R) (2002).
[21] O. Stenull, H. K. Janssen, and K. Oerding, Phys. Rev. E 59, 4919

(1999).
[22] O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane, J.

Phys. A 13, L247 (1980); J. Phys. A 14, 2391 (1981).
[23] H. K. Janssen, O. Stenull, and K. Oerding, Phys. Rev. E 59,

R6239 (1999).
[24] H. K. Janssen and O. Stenull, Phys. Rev. E 61, 4821 (2000).
[25] S. W. Kenkel and J. P. Straley, Phys. Rev. Lett. 49, 767 (1982);

J. P. Straley and S. W. Kenkel, Phys. Rev. B 29, 6299 (1984).
[26] R. Blumenfeld and A. Aharony, J. Phys. A 18, L443 (1985); R.

Blumenfeld, Y. Meir, A. B. Harris, and A. Aharony, J. Phys. A
19, L791 (1986).

[27] A. B. Harris, Phys. Rev. B 35, 5056 (1987).
[28] M. J. Stephen, Phys. Rev. B 17, 4444 (1978).
[29] This step also helps to avoid factors like [δ(0)]D . When

interpreted properly, i.e., when δ(0) is interpreted as the limit of a
finite quantity and the replica limit D → 0 is taken at first, these
factors reduce to unity and are hence harmless. Nevertheless,
avoiding these factors helps to keep calculations clutter free.

[30] A. B. Harris and T. C. Lubensky, J. Phys. A 17, L609 (1984);
Phys. Rev. B 35, 6964 (1987).

[31] J. Wang, J. Phys. A 22, 219 (1989).
[32] H. K. Janssen and O. Stenull, Phys. Rev. E 69, 026118 (2004).
[33] O. Stenull and H. K. Janssen, Europhys. Lett. 51, 539 (2000);

Phys. Rev. E 63, 036103 (2001).
[34] H. K. Janssen, Z. Phys. B 58, 311 (1985).
[35] H. K. Janssen and O. Stenull (unpublished).
[36] Note that in the figure shown in Ref. [3] a factor 1/36 of the

second order term is missing.
[37] A. B. Harris and T. C. Lubensky, Phys. Rev. B 35, 6987

(1987).
[38] A. B. Harris, Phys. Rev. B 28, 2614 (1983).
[39] C. Itzykson and J.-B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980).
[40] G. t’Hooft, Nucl. Phys. B 61, 455 (1973).
[41] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields

(McGraw-Hill, New York, 1965).
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