
PHYSICAL REVIEW E 85, 011122 (2012)

Deterministic Josephson vortex ratchet with a load
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We investigate experimentally a deterministic underdamped Josephson vortex ratchet—a fluxon particle
moving along a Josephson junction in an asymmetric periodic potential. By applying a sinusoidal driving
current, one can compel the vortex to move in a certain direction, producing an average dc voltage across
the junction. Being in such a rectification regime, we also load the ratchet, i.e., apply an additional dc bias
current Idc (counterforce) which tilts the potential so that the fluxon climbs uphill due to the ratchet effect. The
value of the bias current at which the fluxon stops climbing up defines the strength of the ratchet effect and is
determined experimentally. This allows us to estimate the loading capability of the ratchet, the output power,
and the efficiency. For the quasistatic regime we present a simple model which delivers straightforward analytic
expressions for the above-mentioned figures of merit.
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I. INTRODUCTION

The discovery of Brownian motion suggested the idea of
extracting useful work out of random motion. As Feynman
et al. demonstrated [1], drawing energy from equilibrium
thermal fluctuations (white noise) is forbidden by the second
law of thermodynamics. The extraction of work out of
nonequilibrium or time-correlated noise (colored noise) is
possible using ratchet systems [2–5]. Such systems, which
either incorporate an asymmetric periodic potential or are
subjected to a drive with temporal asymmetry [6,7], have been
in the focus of attention during the last two decades in various
implementations. In particular, superconducting systems based
on the motion of Josephson vortices [8–17], Abrikosov
vortices [18–20], or the Josephson phase in superconducting
quantum interference devices (SQUIDs) [21–26] have been
suggested and tested experimentally.

Josephson ratchets have some advantages over other ratchet
systems: (I) directed motion results in an average dc voltage
which makes ratchet operation easily accessible in experiment;
(II) Josephson junctions are very fast devices, i.e., they can
be operated in a broad frequency range from dc up to
100 GHz, which allows them to capture a lot of spectral
energy; (III) both underdamped and overdamped systems can
be investigated by proper junction design and the variation of
the bath temperature. We note that, although (I) also applies to
Abrikosov vortex ratchets, (II) and (III) do not. Abrikosov
vortex ratchets offer the advantage of studying directed
motion in two-dimensional potentials. However, typically they
cannot compete with Josephson devices in terms of either
performance or a simple model that describes them.

The deterministic underdamped Josephson vortex ratchet
(JVR) in which a Josephson vortex (fluxon) moves along a
long Josephson junction (LJJ) was implemented earlier [16].
A strongly asymmetric tunable potential was created using
a current injector [10,16]. The periodicity of the potential
is provided by the annular geometry of the LJJ [27–30].
The fluxon was injected into the annular LJJ also in a
controllable way using a pair of tiny current injectors [31,32].
The directional motion of a fluxon was detected by measuring

the (averaged) dc voltage across the junction, which is, due
to the Josephson relation, proportional to the average velocity
of a fluxon, and reached values as high as 0.9c̄0, where c̄0 is
the Swihart velocity (maximum possible velocity of a fluxon).
However, in these experiments the JVR was idle, i.e., was not
delivering any rectified power to a load.

In this paper we investigate several figures of merit of
such a JVR relevant for applications: the rectification window,
maximum dc counterforce against which the ratchet can still
work, output power, and efficiency in both quasistatic and
nonadiabatic regimes. The paper is organized as follows: In
Sec. II we describe the equations for the dynamics of the
Josephson phase in a LJJ with a ratchet potential created by
an injector current. The sample design and characterization
are presented in Sec. III. Experimental and analytical results
for quasistatic driving frequencies are presented in Sec. IV.
Section V covers experimental and numerical results for the
nonadiabatic drive. Section VI concludes this work.

II. THEORY

Our system consists of an annular long Josephson junction
(ALJJ) equipped with injectors to create an asymmetric
potential and to insert a fluxon; see Fig. 1. The dynamics
of the Josephson phase in the system can be described by the
following perturbed sine-Gordon equation [10]:

φxx − φtt − sin φ = αφt − γ − γinj(x) − ξ (t), (1)

where φ(x,t) is the Josephson phase and subscripts x and t

denote derivatives with respect to space and time, respectively.
The curvilinear coordinate x along the LJJ is normalized
to the Josephson penetration depth λJ and the time t is
normalized to the inverse of the plasma frequency ω−1

p . The
quantity α is the dimensionless damping parameter. γ = j/jc,
γinj(x) = jinj(x)/jc, and ξ (t) = j (t)/jc are the dc bias current
density, injector current density, and ac driving current density,
respectively, all normalized to the critical current density jc of
the LJJ. γinj(x) has zero spatial average and is used to create an
asymmetric potential; γ is used to apply an additional dc bias
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FIG. 1. (Color online) (a) Optical image of the ALJJ used in our
experiments. Only one injector of the right pair is used. (b) Sketch of
the ALJJ with a single injector 1 and a double injector 2. Bias leads
for top and bottom electrodes are not shown for clarity.

current while the device is operated in the rectification regime
(see below). ξ (t) is a spatially homogeneous deterministic (or
stochastic) drive with zero time average. The ultimate aim of
ratchet operation is to rectify ξ (t) to produce a nonzero voltage
V ∝ φt �= 0, which is independent of x.

In the absence of the right-hand side, the solitonic solution
of Eq. (1) is a Josephson vortex (sine-Gordon kink) φ(x) = 4
arctan (exp{[x − x0(t)]/

√
1 − u2}) situated at x0 and moving

with velocity u = dx0(t)/dt [33]. The right-hand side of
Eq. (1) is usually considered as a perturbation [34]. It does not
drastically change the vortex shape, but defines its dynamics,
e.g., its equilibrium velocity [34]. Such an approximation
essentially treats the vortex as a rigid object, and its dynamics
can be reduced to the dynamics of a relativistic underdamped
pointlike particle [11] (cf. the nonrelativistic case [35]). In
these terms, the ratchet should rectify ξ (t) to produce a nonzero
average velocity u �= 0.

We implement the asymmetric potential using a single
injector (further called inj1); see Fig. 1. A suitable current
profile γinj(x) is equivalent to a nonuniform magnetic field h(x)
along the LJJ, such that γinj(x) = −hx(x). The normalized
potential U (x0) experienced by a fluxon particle is given
by U (x0) ≈ −2π (wJ /λJ )h(x0), where wJ is the junction
width [10].

Such a profile can be realized by applying a current γinj

through a single injector of width 	w situated at x = xinj1 and
extracting the current over the same electrode along the rest of
the LJJ, i.e.,

γinj(x) =
{

γ1 for |x − xinj1| < 	w/(2λJ ),

γ2 otherwise,
(2)

such that γ1	w + γ2(L − 	w) = 0 with the ALJJ circumfer-
ence L = 2πr , where r is the mean radius of the ALJJ. In

this case, U (x0) looks like an asymmetric sawtooth potential
with the steep slope proportional to γ1 and the gentle slope
proportional to γ2, i.e., the asymmetry depends on the width
	w compared to the junction length L; see Fig. 1. The
amplitude of the potential can be varied by changing Iinj1 =
γ1	wwJ , which, in principle, also allows the operation as a
flashing ratchet. Here, we focus on the rocking ratchet only,
i.e., the potential proportional to γinj1 is (almost) constant and
ξ (t) �= 0. To apply the current Iinj1 we use one of the two
injectors visible in Fig. 1. The injector is attached to the bottom
electrode. The current Iinj1 is injected via inj1 into the bottom
electrode of the ALJJ and is used to create the asymmetric
potential as described above.

The periodicity of the potential is provided by using an
annular LJJ and 〈γinj(x)〉x = 0. Note that the latter condition
is automatically satisfied because Iinj1 is applied to the same
electrode so that γ1jc	wwJ = γ2jc(L − 	w)wJ = Iinj1.

In addition, our JVR has a pair of current injectors (further
called inj2) separated by a distance 	x and attached to the top
superconducting electrode; see Fig. 1. They are used to insert
a fluxon (Josephson vortex) in the ALJJ [31,32].

III. SAMPLES

We investigated several Nb-Al-AlOx-Nb junctions with
different parameters. Here, we report the results obtained
for two samples with parameters summarized in Table I.
For all samples, λJ � wJ = 5 μm and λJ � 	w = 	x (see
Table I), i.e., we can treat our ALJJs as one dimensional and
inj2 as an ideal discontinuity [32]. The maximum revolution
frequency for a fluxon inside an ALJJ equals ν0 = c0/L with
the Swihart velocity c0. The corresponding voltage (voltage of
the first fluxon step) is given as

V1 = �0ν0 = �0ωp/l (3)

with the normalized length l = L/λJ .
All measurements have been performed at the temperature

T = 4.2 K. All junctions showed good I -V characteristics
(IVCs) and symmetric Ic(H ) dependences (not shown). Their
Ic(Iinj2) dependences look Fraunhofer-like, in agreement with
the theory [32]. The first minimum of this dependence
corresponds to the phase being twisted by ±2π in a tiny region
between the injector pair inj2 and to a free (anti)fluxon being
inserted into the ALJJ region outside inj2. Thus, we insert a
fluxon into the junction by choosing the corresponding value
of Iinj2.

To calibrate inj1, we measure Ic(Iinj1) (see Fig. 2). By
measuring Ic(Iinj1) without a fluxon inside the junction (Iinj2 =
0) and comparing it to Ic(Iinj1) measured with a fluxon inside

TABLE I. Parameters of the used junctions. r is the junction
radius, jc is the critical current density at 4.2 K, λJ is the Josephson
penetration depth, and l is the normalized junction length. 	x and
	w describe the injector seperation and width (see text).

r jc λJ 	x = 	w

Sample (μm) (A/cm2) (μm) l (μm)

C3 70 87 47 9.4 5
E3 30 138 29 6.5 2
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FIG. 2. Ic(Iinj1) dependence for sample C3. The range of Iinj1

relevant for ratchet operation, i.e., the region where the picture of a
fluxon particle moving in a potential is valid, is shaded.

the junction (Iinj2 ∝ 	φ = ±2π ), the asymmetry of the ratchet
is determined and the range of Iinj1 (range of the amplitude
of the ratchet potential) relevant to the ratchet operation is
found [10,16]; see Fig. 2. Inside this working range, the
depinning current Ic scales almost linearly with Iinj1, but it
is asymmetric for positive and negative directions of the bias
current I (driving force). Note, that as in Ref. [16], a residual
pinning of the fluxon due to the finite inj2 sizes 	x and 	w

is still visible in Fig. 2 [32].
When the IVC is measured with a fluxon inside the junction

and Iinj1 �= 0, i.e., an applied ratchet potential, a fluxon step
appears on the IVC (not shown) corresponding to the rotation
of a fluxon around the ALJJ with u ≈ c0. The depinning
currents Ic and return currents Ir of the fluxon step depend
on the polarity of the applied bias as well as on Iinj1.

IV. QUASISTATIC DRIVE

For our experiments in the quasistatic regime, we apply a
periodic bias current I (t) = ξ (t)jcLwJ = Iac sin(2πνt) with
the frequency ν = 100 Hz 	 ν0 and measure the rectification
curve V (Iac) by averaging the voltage over 10 ms (1000 data
points sampled at 100 kHz)—one period of the ac drive. For
the junction E3 the dependence V (Iac) = V1u(Iac) is shown in
Fig. 3(a) for different values of Iinj1, i.e., for different
amplitudes of the potential. Note that the absolute maximum
V , which can be obtained with a rectangular-shaped driving
force, is given by 0.5V1, because the fluxon is driven only half
a period in one direction. For a sinelike driving force, as in our
case, the maximum voltage is somewhat smaller [10].

All V (Iac) curves show similar features. For small Iac the
driving force acting on a fluxon is not sufficient to push the
fluxon out of the potential well in either direction so that
u ∝ V = 0. At Iac > Imin

rect the bias is able to push the fluxon in
one direction but not in the other, which results in u ∝ V �= 0.
At Iac > Imax

rect , the junction switches into the resistive state,
generating a high positive or negative dc voltage. The latter
regime is not discussed here as it has nothing to do with the
JVR operation. Rarely, we also observed the typical ratchet
behavior—a decrease of V at Iac > Imax

rect when the driving force
is able to overcome the potential barrier in both directions and

FIG. 3. (a) Typical rectification curves V (Iac) for Iinj1 = ±200,
±400, and ±600 μA (open, black, and gray symbols, respectively).
(b) Figures of merit for different potential amplitudes normalized to
I0 and V0, respectively. 	Irect is shown for both positive and negative
potential amplitude.

rectification thus drops significantly. We rarely observe this
regime since the asymmetry is so large that a negative fluxon
step does not appear in most cases.

For not very large potential heights proportional to Iinj1,
i.e., when the perturbation theory is applicable, the values
Imin

rect and Imax
rect grow approximately linearly with Iinj1; see

Fig. 3(b). Therefore, the size of the rectification window
	Irect = Imax

rect − Imin
rect also grows approximately linearly with

Iinj1. Further, Vmax grows with Iinj1, but it reaches its maximum
value already for medium values of Iinj1; see Fig. 3(b). At high
potential amplitudes the rectification window is becoming
smaller, probably because the ratchet potential cannot be
considered anymore as a perturbation.

The dependence shown in Fig. 3(b) is qualitatively the same
for all measured samples and for both signs of the potential,
as long as the junction length l is large enough. For l � 4 the
asymmetry of the potential is strongly reduced because the
potential is a convolution of the magnetic field profile created
by inj1 and the fluxon shape [10]. The main result of Fig. 3(b)
is that, in order to obtain large Vmax and large 	Irect, one should
operate the ratchet at large amplitudes of the potential, i.e., at
large values of Iinj1.

In the quasistatic regime, all information about the ratchet
operation can be derived from its IVC. Therefore, we can
derive all figures of merit that we are interested in by using the
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model steplike IVC shown in Fig. 4(a), which is very similar
to a real one. In this IVC, which we express as

Vmod(I ) = V1 ×

⎧⎪⎨
⎪⎩

−1, I < Ic−,

0, Ic− < I < Ic+,

+1, Ic+ < I,

(4)

the fluxon depinning currents Ic+ > 0 and Ic− < 0 have
different values reflecting the asymmetry of the potential. The
fluxon step is roughly approximated by a vertical step with
infinite height. The applied current I (t) = Idc + Iac sin(ωt)
consists of a dc current and an ac current with frequency ω.

To obtain a rectification curve V (Iac), we integrate the
instant voltage over one period T = 2π/ω of ac drive, i.e.,

V (Iac) = 1

T

∫ T

0
Vmod[I (t)] dt. (5)

Within our simple model, this can be integrated explicitly,
resulting in

V =

⎧⎪⎨
⎪⎩

0, Iac < Ic+ − Idc,

V+, Ic+ − Idc < Iac < Idc − Ic−,

V+ + V−, Idc − Ic− < Iac,

(6)

where

V+ = +1

2π

[
π + 2 arcsin

(
Idc − Ic+

Iac

)]
, (7a)

V− = −1

2π

[
π − 2 arcsin

(
Idc − Ic−

Iac

)]
(7b)

describe the part of V rectified during the positive and the
negative semiperiod of ac drive, respectively.

The V (Iac) calculated in this way is shown in Fig. 4(b). First,
for Idc = 0 our simple model gives Imin

rect = Ic+, Imax
rect = −Ic−,

and 	Irect = −Ic− − Ic+. For the chosen values of |Ic−| >

|Ic+| the rectified voltage V � 0.
Second, we apply Idc to try to stop the ratchet operation

at a given value of Iac. The sign of Idc should be opposite to
the sign of V , i.e., Idc < 0 in our case. Rectification curves
V (Iac) calculated using Eq. (6) at different values of Idc < 0
are also shown in Fig. 4(b). One can see that the rectification
window shrinks, i.e., close to the edges of the original window
the ratchet is not strong enough to work against Idc. With
applied Idc

Imin
rect = Ic+ − Idc, (8)

Imax
rect = Idc − Ic−, (9)

	Irect = 2Idc − Ic− − Ic+, (10)

which can also be seen from Eq. (6).
One can also take a different point of view and study

how strong the ratchet is at each particular Iac, i.e., one
varies Idc at fixed Iac. The value of Idc at which the ratchet
stops moving or starts moving backward (V = 0 or changes
sign) is called the stopping force (or stopping current) Istop.
The dependence Istop(Iac) is shown in Fig. 4(f). One can see
that naturally Istop = 0 up to the driving amplitude Iac = Ic+,
because the ratchet has not started working yet, so no force
is needed to stop it. Then Istop grows linearly to a value
of Imax

stop = 	Irect/2 = (−Ic− − Ic+)/2, which is reached at

FIG. 4. (Color online) (a) Model step-function-like IVC (4)
with Ic+ = 0.1I0 and Ic− = −0.4I0; I0 = jcwJ L is the intrinsic
critical current. (b) V (Iac) curves calculated using Eq. (6). (c)
Pin(Iac) [Eq. (15)]. (d) Pout(Iac) [Eq. (13)]. (e) Power efficiency
η = −Pout/Pin for different values of Idc = 0,−0.05,−0.10,−0.14.
(f) Istop(Iac); see Eqs. (11) and (12) with saturation value Istop = −0.15
[Eq. (12)].
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Iac = (−Ic− + Ic+)/2, i.e., at the middle of the rectification
window. In this regime, the ratchet rectifies because during
some fraction of the positive semiperiod I (τ ) exceeds Ic+ and
never exceeds Ic−; see Fig. 4(a). An additional Idc “shifts”
the origin of ac oscillations down along the I axis. Thus, for
Idc < |Iac| − Ic+, the ac sweep does not exceed the depinning
current Ic+ and rectification vanishes. Therefore

Istop = |Iac| − Ic+ for |Iac| > Ic+, (11)

which corresponds to the linear part in Fig. 4(f). The behavior
described by Eq. (11) does not hold for arbitrarily large Iac.
When |Iac| > (Ic+ − Ic−)/2, at some amplitude of Idc the ac
sweep also exceeds the negative depinning current Ic−, which
results in a drastic decrease of rectification and also Imax

rect given
by Eq. (9); see Fig. 4(b). At Idc = (Ic− + Ic+)/2, the ac sweep
experiences symmetric depinning currents and rectification
vanishes. Thus

Istop = (Ic− + Ic+)/2 for |Iac| > (Ic+ − Ic−)/2, (12)

corresponding to a saturation of Istop in Fig. 4(f) and a
completely closed rectification window on the V (Iac,Istop) plot.
For Idc < (Ic− + Ic+)/2, the rectified voltage V changes sign.

Let us now discuss the power balance in our ratchet. Since
Idc = const, the average dc output power

Pout = 1

T

∫ T

0
V (t)Idc dt = V Idc � 0, (13)

where V (Iac,Idc) is given by Eq. (6). Pout is negative because
the ratchet delivers the power to the dc source (load) instead
of consuming it. Simultaneously, the input power is given by

Pin = 1

T

∫ T

0
V (t)Iac sin(ωt) dt � 0. (14)

Within our simple model, this can be integrated explicitly,
resulting in

Pin =

⎧⎪⎨
⎪⎩

0, Iac < Ic+ − Idc,

P +
in , Ic+ − Idc < Iac < Idc − Ic−,

P +
in + P −

in , Idc − Ic− < Iac,

(15)

where

P +
in = 1

πIac

√
I 2

ac − (Idc − Ic+)2, (16a)

P −
in = 1

πIac

√
I 2

ac − (Idc − Ic−)2 (16b)

describe the part of Pin consumed during the positive and the
negative semiperiod of ac drive, respectively.

Both Pin(Iac) and Pout(Iac) at different values of Idc are
shown in Figs. 4(c) and 4(d). One can see that Pin(Iac) has
two characteristic branches corresponding to the dissipation
during the positive semiperiod and during both the positive and
negative semiperiods. In contrast, Pout(Iac) is nonmonotonic
and has an extremum given by

V
[
Imax

rect (Idc)
]
Idc = Idc

[
1

2
+ 1

π
arcsin

(
Idc − Ic+
Idc − Ic−

)]
(17)

at Iac = Imax
rect (Idc) [Eq. (9)], which depends on Idc nonmono-

tonically. One can see that Pout = 0 not only at Idc = 0, but

also at Idc = Istop where V = 0; cf. Eq. (13). Therefore, the
maximum power is reached for some intermediate values of
Istop < Idc < 0. The exact value can be derived by looking
for the extremum of expression (17) with respect to Idc.
It is reached for I

opt
dc , which is a solution of the following

transcendental equation:(
Ic+ − Ic−
I

opt
dc − Ic−

)
I

opt
dc

π
+

[
1

2
+ 1

π
arcsin

(
I

opt
dc − Ic+

I
opt
dc − Ic−

)]

×
√

1 −
(

I
opt
dc − Ic+

I
opt
dc − Ic−

)2

= 0. (18)

For our parameters, I
opt
dc ≈ −0.104I0 and Pmax(I opt

dc ) =
−0.028V1I0.

Another important figure of merit is the efficiency, defined
as η = −Pout/Pin. The plots η(Iac) are shown in Fig. 4(e).
Obviously, the efficiency has a maximum just at the beginning
of the rectification window and falls with increasing |Idc|. To
derive the approximate behavior of η(Iac) at the beginning of
the rectification window analytically, we Taylor-expand Pout

and Pin near Iac = Imin
rect (Idc) [Eq. (8)]. As a result, we get

η(Iac,Idc) ≈ Idc

Idc − Ic+
− 1

6

Idc

(Idc − Ic+)2

(
Iac − Imin

rect

)
. (19)

The first term represents the exact expression for the efficiency
at the left edge of the rectification window for given Idc. To find
the maximum efficiency, we vary Idc from 0 down to Imax

stop =
(Ic+ + Ic−)/2. At Idc → Imax

stop , the efficiency approaches it
ultimate maximum value

ηmax = Ic− + Ic+
Ic− − Ic+

, (20)

although the rectification window 	Irect vanishes; see
Figs. 4(b)–4(e). For our values of Ic− and Ic+ (see the caption
of Fig. 4) ηmax = 0.6.

V. NONADIABATIC DRIVE

We use a microwave generator with an emitting antenna
close to the ALJJ to drive the ratchet at frequencies as high
as ν � 1 GHz. With this geometry, the bias leads of the ALJJ
act as a pickup antenna. Note that the microwaves are also
picked up by the injector electrodes but due to the geometry
of the setup this causes only a negligible “flashing” part in our
ratchet behavior [16]. We average the dc voltage V over 2000
data points at a sampling rate of 100 kHz (∼108 periods) and
measure it vs the applied power P ∝ Iac of the generator.

Rather than growing smoothly as in Fig. 3(a), the rectified
voltage V is now quantized as

V n = − sgn (Iinj1)n�0ν (21)

(Shapiro-like steps) [10]. Each step corresponds to an integer
number n of turns of a fluxon around the ALJJ per one period
of the ac drive. The prefactor −sgn (Iinj1) is chosen so that
n > 0 corresponds to the motion of a fluxon in the “easy”
direction of the potential, while n < 0 corresponds to the
difficult direction (particle’s current-reversal, which, in our
particular setup, corresponds to voltage reversal); cf. Fig. 2. If
the time τ0 required for one revolution of a fluxon around the
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FIG. 5. Rectification curve with positive potential sign. Stopping
force Istop(P ) and support force Isupp(P ). Black triangles: P is swept
up; gray triangles: P is swept down.

ALJJ (in the best case τ0 = c0/L) becomes comparable with
the period of the driving force, i.e., if the voltage V = �0ν is
approaching V1, the fluxon has time for only one revolution, so
n = 1 and only one step can be observed on the V (P ) curves. In
the nonadiabatic regime, current reversal can also be observed,
i.e., n = −1 resulting in a “negative” voltage [36–40].

Being in the rectification regime, we apply an additional
bias current Idc which tries either to stop the ratchet operation
(i.e., with sign opposite to V ) or to “help” it (i.e., with
the same sign as V ). In the nonadiabatic regime it makes
sense to associate Istop and Isupp with a particular mode of
operation (step n) rather than with the ratchet as a whole.
Therefore, a particular mode of operation is ending when the
voltage V (Idc �= 0) �= V (Idc = 0). The value of Idc at which
this condition is met is called the stopping force Istop(P ) or
support force Isupp(P ) respectively.

Figure 5 shows a typical rectification curve measured
using the sample C3 at Idc = 0. The voltage step corresponds
to n = −1. In addition, we show the Istop(P ) and Isupp(P )
dependences for this area. Figure 6 shows the curves for
the same parameter setting, but with the potential amplitude
reversed in comparison to Fig. 5.

The rectification curves V (Iac) show the expected discrete
values of rectified voltage. An inverted potential causes an
inverted voltage step. Different sweeping directions of P result
in almost identical curves, which suggests that we are not
observing a simple synchronization of the fluxon movement
with the drive (for which we can lock to the n = ±1 step
randomly) but rather a true rectification with well-defined
direction independent of the history. We check this for every
voltage step to ensure that we are observing a real ratchet
effect and also measure Istop and Isupp for different sweeping
directions to avoid regimes of synchronization.

In both plots, Istop = 0 at the lower edge of the rectification
window—a feature that we observe in almost all measure-
ments. From this point, the stopping force Istop grows smoothly
throughout the rectification window. It vanishes when we leave
the rectification regime of n = −1.

FIG. 6. Rectification curve with negative potential sign. Stopping
force Istop(P ) and support force Isupp(P ). Black triangles correspond
to sweep up, gray triangles to sweep down.

The support force Isupp also looks similar in both plots (but
with opposite sign). It has a minimum value at the upper edge
of the rectification window. At lower driving amplitudes Isupp

stays ≈const and drops very fast (or even jumps abruptly)
down to its minimum at the upper edge of the rectification
window.

The maximum value of Istop in all our measurements
was |Imax

stop | = 215 μA = 0.112I0 (reached at the edge of the
rectification window) and |Imax

supp| = 298 μA = 0.155I0 (both
in sample C3, not shown). Note that |Imax

supp| > |Imax
stop | in all

measurements.
In sample E3, we observed both direct rectification (n =

+1) and reversal (n = −1) in one rectification curve at a driv-
ing frequency ν = 16.9 GHz; see Fig. 7(a). The voltage jumps
directly from one step to the other, showing a small hysteresis
(indicated by the arrows) when P is swept back and forth. We
measured Istop(P ) and Isupp(P ) for both voltage steps. Also
note the data point at

√
P ≈ 0.0048

√
W . The step with n =

−1 is metastable in the interval
√

P = (0.0054−0.0057)
√

W ,
so one can see the system jump there sometimes.

Figure 7(b) shows Istop(P ) and Isupp(P ) for n = +1. The
shape of Istop(P ) is similar to the previous plots. In the middle
of the rectification window, the curve gets more noisy and,
at the upper edge, Istop shows a small hysteresis for different
sweep directions of P . Isupp(P ) is almost constant throughout
the major part of the plot and jumps close to the upper edge of
the rectification window.

Figure 7(c) shows Istop and Isupp for the step n = −1.
Isupp(P ) has a well-known shape—the curve remains at high
values within the whole rectification window. The Istop(P )
curve vanishes at both ends of the rectification window. In
fact, one can see that it consists of two branches that join at
a value of driving amplitude where the voltage step n = −1
is ending, i.e., the left branch of Istop(P ) shows rectification
with n = −1, although the V (P ) curve has switched already
to n = +1 dynamics in this region. The reason is that we are
tracking the n = −1 mode, which is not visible for Idc = 0,
but appears for Idc �= 0. The fact that we can track it shows
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FIG. 7. (Color online) Rectification curve for ν = 16.9 GHz (a).
Stopping force Istop(P ) and support force Isupp(P ) for voltage step
corresponding to n = +1 (b) and n = −1 (c).

that the presence of the n = −1 mode depends on the history
of the system and the value of Idc in a nontrivial way.

The reason for this might be the measurement itself: For
the measurement of V (P ), the current Idc = const ≈ 0 (a small
current offset is always possible), while for the measurement
of Istop(P ) or Isupp(P ) the current Idc is ramped up for each
amplitude of the drive P and then set to Idc ≈ 0 again for
the next value of P . This subtle difference can influence the
fluxon dynamics inside the junction and therefore the n = −1
dynamics can apply for longer than was seen in the rectification
curve. In this sense, the measurement of the stopping force or
support force can be used for further investigation of possible
modes of operation while measuring the loading capability of
the ratchet.

For the nonadiabatic regime, numerical simulations show a
behavior similar to the experimental results (for the quasistatic
regime, these simulations are very time consuming and can
be avoided by using an analytical approach similar to the
one discussed in Sec. IV). These simulations were performed
using an explicit numerical scheme for Eq. (1) with damping
coefficient α = 0.1 (weakly underdamped limit). The numer-
ical technique and simulation software are discussed in detail
in [41].

In Fig. 8 we show simulated V (Iac) as well as Istop(Iac)
and Isupp(Iac) dependences. In our simulation of V (Iac)
dependences shown in Fig. 8, the sweep of Iac was performed
from 0.3I0 to 0.6I0 and back. The value of V was calculated

FIG. 8. (a) Numerically simulated V (Iac) for ALJJ of l = 8.0
and driving frequency ω/ωpl = 0.25. Black data points correspond to
sweeping Iac upward, and the gray points to a downward sweep.
The value of Iac where the simulation is restarted (see text) is
indicated by the dotted line. (b) Istop(Iac) and Isupp(Iac) for the voltage
step corresponding to n = −1. Black (gray) symbols correspond to
positive (negative) sweeping direction of Iac. Istop is reduced by a
region of instability (marked by the dashed line).

by averaging V only over one period of ac drive. Therefore,
if we are in the chaotic regime, we will observe a finite value
of the voltage in our simulation, while in the experiment these
will be averaged to some finite value which is often equal to
zero. The chaotic voltage distribution in Fig. 8 at Iac > 0.48
shows such a chaotic regime. For this simulation, the (discrete)
step in Iac was chosen very tiny so that the system still has
time to come into equilibrium, although one sees the transient
processes in V (Iac). A large discrete change of the system
parameters (e.g., the driving power or Idc) may give a different
result than a small one, i.e., the resulting value of Istop or Isupp

can be much smaller than for smooth parameter changes. This
happens because the dynamics is close to chaotic and thus
even a small kick (steplike change of parameters) may drive
the system into a different state. Our simulations use a small
step size of 10−5I0.

Then, for the simulation of Istop(Iac) and Isupp(Iac) we started
by recalling the state of the system at Iac/I0 = 0.425 (where
rectification takes place) and then sweeping Iac into each
direction and, for given Iac, looking for Istop or Isupp. For the
interpretation of the plots, the curves at Iac < 0.425 have to be
interpreted by looking at the V (Iac) curve swept in the negative
direction, while Istop(Iac) and Isupp(Iac) at Iac > 0.425 have to
be followed looking at the positive sweep of V (Iac).

The V (Iac) curve reproduces the n = −1 step observed
in the experiment; cf. Figs. 5 and 6. At 0.34 < Iac < 0.41
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FIG. 9. (Color online) (a) Numerically simulated V (Iac) for ALJJ
of l = 10.0 and driving frequency ω/ωpl = 0.23. Black data points
correspond to sweeping Iac upward, and the gray points to a downward
sweep. (b) Istop(Iac) and Isupp(Iac) for the voltage step corresponding
to n = +1. Black (gray) symbols correspond to positive (negative)
sweeping direction of Iac.

one can see period-2 dynamics in the V (Iac) curve. Again,
this can be observed only in simulations as these values are
averaged to their mean in our experiment. One can see that the
Istop(Iac) curve is similarly shaped as in our measurement (see
Fig. 6), showing an increasing value at larger driving power.
At high driving amplitudes, one can see a jump in the Istop(Iac)
curve to lower values of Istop, which we did not see in our
particular measurement. This jump is related to the presence
of an island in the Idc-Iac plane (marked by the dashed line)
where the dynamics is not n = −1 anymore. The Isupp(Iac)
curve shows large values over the whole rectification window.
We believe that in our experiment we also meet the island
where the solution for n = −1 is not stable.

We have also been able to reproduce a situation in which
both n = +1 and n = −1 dynamics are present on one
rectification curve as in our measurements on sample E3. The
corresponding numerical simulation results for a LJJ of the
normalized length l = 10.0 are presented in Fig. 9(a).

In this simulation, the sweep of Iac was performed also from
0.3I0 to 0.6I0 and back with the same step in Iac as in Fig. 8(a).
For the interpretation of the plots, for Iac < 0.50I0 one has to
refer to the V (Iac) curve swept in the negative direction; for
Iac > 0.50 the positive sweep of V (Iac) has to be followed.

In Fig. 9(a) the transition between the voltage steps
n = +1 and n = −1 shows a small hysteresis. Moreover,
for the negative sweeping direction of Iac, a bifurcation to

period-2 dynamics is visible. In our experiment with much
longer integration time, this is averaged to the same step
voltage and is not distinguishable from period-1 dynamics.
The same applies to the region (outside the n = ±1 voltage
steps) where the system shows chaotic dynamics—due to the
averaging in our experiments, one observes just an average
voltage of the chaotic fluxon motion.

Figure 9(b) shows the Istop(P ) and Isupp(P ) dependences
for the n = +1 step. They confirm the behavior observed in
our measurements. Namely, the stopping force Istop(Iac) grows
almost linearly from the lower edge of the rectification window
to larger values and then jumps down to zero. The support
force Isupp(Iac) also shows the well-known behavior and drops
smoothly to smaller values on approaching the upper edge of
the rectification window.

Figure 9(c) shows the Istop(P ) and Isupp(P ) dependences
for n = −1. They look very similar to those measured using
the sample E3; cf. Fig. 7(c). The stopping force Istop(Iac) also
grows from the lower edge of the rectification window and at
some point jumps to a branch growing from the upper edge—in
our simulation, the curves also show a jump. This jump is
located at a driving amplitude Iac where the rectification curve
V (Iac) has a bifurcation and is right inside the hysteretic area.
The support force Isupp(Iac) again drops to lower values with
increasing driving amplitude Iac and goes down to zero at
the upper edge of the rectification window. One can see that
the curve consists of several pieces that may be related to
switching into different dynamical regimes. This is in contrast
to the experimental results where Isupp(Iac) falls abruptly down
to zero.

The maximum values Imax
stop = 0.049I0 and Imax

supp = 0.167I0

in Figs. 9(b) and 9(c) are similar to those obtained in our
measurements; other simulations also confirm the scale of
these values.

In both simulation and experiment, the maximum power
delivered to the load in the nonadiabatic regime can be obtained
by using large driving powers P . As shown in Fig. 7(c),
sometimes the maximum value is reached around the center
of the rectification window. A combination of these findings
suggests that a good value to start is a large value of P on the
rectification step with some variations for optimization in the
actual experiment. The estimated maximum Pout = IstopV ≈
50 μA × 34 μV = 1.7 nW for n = +1 and Pout ≈ 3.3 nW for
n = −1 in Fig. 7 and Pout ≈ 5.7 nW for n = −1 in Fig. 6. Note
the difference from the adiabatic case where V tends to zero
smoothly as a function of Iac, so that Pout → 0 too. In the
nonadiabatic case the maximum Pout may be reached at the
edge of the step as in Fig. 6.

VI. CONCLUSION

We implemented the Josephson vortex ratchet using an
annular long Josephson junction equipped with current in-
jectors used to create the ratchet potential and inject a fluxon
into the junction. In comparison with our previous studies
(and, actually, in comparison with most studies of ratchets in
general) we have not only demonstrated rectification and some
figures of merit in the idle regime, but also loaded the ratchet
to study the maximum dc force that the ratchet can overcome
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as well as its ac to dc power conversion efficiency in both
quasistatic and nonadiabatic regimes.

In the quasistatic regime we derived the dependence of the
stopping force Istop(Iac) analytically using a reasonable model
for the IVC. This model predicts that, in order to increase the
value of the stopping force (and other figures of merit), the
amplitude of the ratchet potential should be rather large.
The stopping force is directly related to the loading capability
of a ratchet and to the maximum rectified power that it
can deliver to the load. The maximum output power Pout is
also reached at the upper end of the rectification window
for intermediate values of Idc. However, the ratchet works
with maximum efficiency at the lower end of the rectification
window. The ultimate efficiency that can be reached in
principle is defined only by the asymmetry of the potential;
see Eq. (20).

In the nonadiabatic regime, we have measured rectification
curves and sometimes observed a transition between n = +1

and n = −1 dynamics with a small hysteresis. By applying
an additional dc bias current Idc in the rectification regime,
we have measured the stopping force. Both Istop and Pout have
maxima near the upper edge of the rectification window. The
support force, i.e., the current with the same sign compared
to the rectification voltage, where the ratchet stops working
does not change very drastically throughout the rectification
window.

Therefore, if one wants to have a robust ratchet operation
tolerant to additional bias currents, the ratchet should be
operated at the upper end of the rectification window and the dc
bias current (flowing to the load) should not exceed Istop(Iac).
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