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Competition between quenched disorder and long-range connections: A numerical study of diffusion
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The problem of random walk is considered in one dimension in the simultaneous presence of a quenched
random force field and long-range connections, the probability of which decays with the distance algebraically
as pl � βl−s . The dynamics are studied mainly by a numerical strong disorder renormalization group method.
According to the results, for s > 2 the long-range connections are irrelevant, and the mean-square displacement
increases as 〈x2(t)〉 ∼ (ln t)2/ψ with the barrier exponent ψ = 1/2, which is known in one-dimensional random
environments. For s < 2, instead, the quenched disorder is found to be irrelevant, and the dynamical exponent is
z = 1 like in a homogeneous environment. At the critical point, s = 2, the interplay between quenched disorder
and long-range connections results in activated scaling, however, with a nontrivial barrier exponent ψ(β), which
decays continuously with β but is independent of the form of the quenched disorder. Upper and lower bounds on
ψ(β) are established, and numerical estimates are given for various values of β. Besides random walks, accurate
numerical estimates of the graph dimension and the resistance exponent are given for various values of β at
s = 2.
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I. INTRODUCTION

Long-range interactions are known to affect the dynamics
of various systems such as equilibrium spin models [1],
nonequilibrium processes [2], or diffusion [3]. A well-known
generalization of normal diffusion is the Lévy flight [3,4],
where long jumps are allowed with probabilities decaying
algebraically with the distance as pl ∼ l−1−f . These long
jumps lead to superdiffusion with an anomalous dynamical
exponent z = f for f < 2, while for fast enough decay
(f > 2) the diffusion is normal (z = 2). Contrary to long-
range interactions, local heterogeneities, frequently slow the
dynamics, which manifests itself in an increased dynamical
exponent compared to that of the pure system. This is also the
case for diffusion in various types of random environments
[3,5]. Here the most dramatic slowing is induced by the
random-force disorder, where the direction of the local force
acting on the particle is random. This type of disorder is known
to be relevant if the dimension d is less than 2 [6,7]. In one
dimension, the mean-square displacement increases in time as
〈x2(t)〉 ∼ (ln t)4 [8], where 〈·〉 denotes average over stochastic
histories for a given random environment and the overbar
denotes average over random environments. This type of
ultra-slow dynamics corresponds formally to zero dynamical
exponent z = 0.

It is an intriguing question what happens when both long-
range jumps and random force disorder are present in a system
and whether there is a nontrivial dynamical behavior due to
the interplay between them. In case of diffusion, a dynamic
renormalization group analysis showed that the dynamical
exponent equals the Lévy index f even in the presence of weak
disorder for f < 2 [9]. Thus occasional long jumps enable
the particle to escape from trapping regions of the random
environment, and disorder is irrelevant in the above sense.

An alternative form of long-range interactions is realized
when the interaction strength is constant but only certain
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pairs of sites interact with each other, which are selected
randomly with a probability decaying asymptotically with
the distance l of the sites as pl � βl−s . This paradigm
arises, e.g., in the context of magnetic [10] and conducting
[11] properties of linear polymers with cross-links between
certain monomers or in models of social or communication
networks that exhibit the small-world phenomenon [12,13].
The interactions are in this case represented by a random
graph, which is composed of short edges between neighboring
sites and long edges between certain remote sites. This
model carries thus an intrinsic quenched disorder due to the
interaction network as opposed to the former paradigm, which
can be regarded as an annealed counterpart of the latter. Here
even the geometrical properties of the interaction graph are
nontrivial [14–20]. Adding long edges to a one-dimensional
lattice, the resulting graph is quasi-one-dimensional if s > 2,
whereas it is formally infinite-dimensional if s < 2 [19].
These domains are separated by a critical point at s = 2,
where the graph dimension is conjectured to be finite and to
depend on the prefactor β [15]. The geometrical properties of
the underlying interaction network indicate that such models
may show nonconventional dynamical behavior. Indeed, the
contact process with long-range interactions of this type is
conjectured to exhibit activated dynamical scaling at s = 2
with β-dependent critical exponents [21,22].

One can pose the question of how the dynamics in general
are affected by the simultaneous presence of this type of long-
range connections and quenched local disorder. In this paper
we shall study this issue by considering a simple dynamical
process, the random walk with random-force disorder on
graphs containing long edges with algebraically decaying
probability. Most efforts will be devoted to the critical point
s = 2, where the graph dimension is finite and which gained
less attention in earlier numerical studies. As the dynamics are
expected to be slow here, we shall mainly apply a numerical
strong disorder renormalization method [23] carried out in
the configuration space [24–27] rather than Monte Carlo
simulations. Besides the above investigations, the nontrivial
geometrical properties such as the graphs’ dimension and the
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random-walk dimension will be estimated at s = 2 as well. Our
results, which are accurate for moderate β at the critical point
s = 2, indicate that the dynamics are still activated; i.e., the
mean-square displacement increases as 〈x2(t)〉 ∼ (ln t)2/ψ(β).
However, the barrier exponent ψ(β) differs from 1/2 and
decreases continuously with the prefactor β.

The rest of the paper is organized as follows. The precise
definition of the model is given in Sec. II. In Sec. III numerical
estimates of the shortest-path dimension are presented. In
Sec. IV bounds on the random-walk dimension are established,
as well as numerical estimates are given. In Sec. V the
strong disorder renormalization group method is reviewed
and applied to the problem of random walks with long-range
connections in random environment. Finally, the results are
discussed in Sec. VI.

II. THE MODEL

The finite connectivity networks to be studied are defined
as follows. Assume that the sites are numbered by the integers
1,2, . . . ,N and define the distance between site i and j as lij =
min(|i − j |,N − |i − j |). In words, the sites are arranged on
a ring with unit spacing between them. Then all pairs of sites
with a distance lij = 1 (i.e., neighboring sites on the ring) are
connected with an edge, and all pairs with lij > 1 are connected
independently with the probability [15,28]

P (l) = 1 − exp(−βl−s), (1)

where β and s are positive constants. For large l, this
probability has the asymptotic form p(l) � βl−s .

On each realization of the above connectivity network a
continuous-time random walk is considered, which is specified
by the set of i.i.d. quenched random transition rates wij

from site i to site j . Note that the transition rates through
long connections (lij > 1) are random just as those through
short connections (lij = 1). Note, furthermore, that the source
of randomness is twofold in this model. First, the random
topology of the connectivity network, and, second, the set of
random transition rates.

III. SHORTEST PATHS

From the point of view of dynamical processes like random
walk, the relevant metric is not the distance lij but the length
� of shortest paths (or chemical distance) between two sites,
which is given by the number of (short or long) edges that
constitute the path. If s > 2, the expected value of the length
of long edges is finite, and therefore the average shortest path
length is asymptotically proportional to the distance l; in other
words, the system is quasi-one-dimensional. At the critical
point s = 2, the mean shortest path length has been conjectured
to grow algebraically with the distance:

� ∼ l1/dg (β), (2)

where the graph dimension dg(β) depends on β [15]. Indeed,
later a lower bound on dg(β) was proven: dg(β) � ln 3/ ln(3 −
δ), where δ = 1 − e−β/9, as well as an upper bound, dg(β) �
1/(1 − β), for β < 1 [18]. The latter inequality is related to the
presence of so-called cut points, which are defined as follows.
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FIG. 1. (Color online) The logarithm of the numerically calcu-
lated mean length of shortest paths between sites in a distance N/2
plotted against ln N for different values β at s = 2. The statistical
errors are smaller than the size of the symbols.

First, instead of the cyclic graphs defined in the previous
section, let us consider acyclic ones, which are defined in
the same way except that the modified distance lij = |i − j |
is used there. In such acyclic graphs, a cut point is a site the
removal of which (and all of its edges) results in that the graph
becomes disconnected. The expected number of such points
tends to zero for s < 2, is O(N ) for s > 2 and O(N1−β) for
s = 2, β < 1 [18,28]. Obviously, the shortest path between site
1 and site N must contain all cut points of the graph, which
implies the above lower bound on dg(β). For s < 2, the graph
dimension is formally infinite; for details see Refs. [15,18,19].

We considered networks of size N = 2n with n =
4,5, . . . ,12 and calculated the length of the shortest path
between pairs of sites in a distance l = N/2 numerically by
a breadth-first search. Here 106 independent networks have
been generated for each size, and � between N/8 pairs of sites
has been calculated in each realization. The mean length of
shortest paths obtained in this way is plotted against N in
Fig. 1.

As can be seen, the data are compatible with the power
law in Eq. (2), and the estimated graph dimensions, which
are obtained extrapolating the effective two-point exponents
to N → ∞, lie between the rigorous bounds quoted above;
see Fig. 2 and Table I.

IV. RANDOM WALK AND ELECTRICAL RESISTANCE

Before discussing the random walk with quenched random
transition rates, we investigate the homogeneous model, where
the transition rates are equal, e.g., wij = 1. For this model,
the random walk is known to be recurrent if s � 2 and
transient if 1 < s < 2 [29,30]. On the grounds of calculations
in similar but analytically tractable random networks [31],
superdiffusion is expected for s = 2; i.e., the mean-square
displacement in an infinite network is expected to behave
asymptotically as

〈x2(t)〉 ∼ t2/dw , (3)
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FIG. 2. (Color online) Graph dimensions estimated from the data
shown in Fig. 1 for different values of β. The solid lines represent the
rigorous bounds on dg(β) [18].

where the random-walk dimension dw [32] is less than 2.
Although the exact value of dw is unknown, we can establish
bounds on it in terms of the graph dimension, and then we
will give numerical estimates. In order to do this, we make
use of the well-known relationship between diffusion and
resistor networks [3,5]. For symmetric random walks (where
wij = wji holds) on an arbitrary graph, a resistor network can
be defined where the edges of the graph are resistors with a
resistance Rij = 1/wij . In the case of homogeneous transition
rates, the mean first-passage time from one site to another one
whose distance is on the order of the graph diameter (e.g., site
1 and site N/2 + 1 for cyclic graphs) is related to the effective
resistance R(N ) of the corresponding resistor network between
the two sites as t ∼ NR(N ) for large N [31,33]. Assuming
that Eq. (3) holds, the average effective resistance behaves

TABLE I. The estimated values of 1/dg , ζ and ψ for dif-
ferent values of β. The estimate for ψ has been obtained by
the finite-size-scaling of ln(1/�N ) using discrete randomness with
r = 0.1.

β 1/dg ζ ψ

0.1 0.906(2) 0.902(3) 0.452(5)
0.2 0.825(3) 0.809(4) 0.405(5)
0.3 0.739(4) 0.719(4) 0.352(5)
0.4 0.667(3) 0.633(5) 0.315(10)
0.5 0.604(3) 0.550(8) 0.265(10)
0.6 0.552(3) 0.473(10) 0.224(10)
0.7 0.509(3) 0.405(13) 0.185(10)
0.8 0.475(3) 0.343(13) 0.158(10)
0.9 0.448(3) 0.299(14) 0.135(10)
1.0 0.426(3) 0.257(16) 0.115(10)
1.1 0.408(4) 0.220(17) 0.09(1)
1.2 0.393(3) 0.204(19) 0.075(20)
1.3 0.381(3) 0.18(2) 0.07(2)
1.4 0.371(3) 0.16(2) 0.065(20)
1.5 0.361(3) 0.15(2) 0.055(20)

asymptotically as

R(N ) ∼ Nζ , (4)

where the resistance exponent ζ is related to the random-walk
dimension as

dw = 1 + ζ. (5)

Bounds on the random-walk dimension at s = 2 can be
obtained by simple considerations as follows. In a cyclic graph
of size N let us consider two sites in a distance l = N/2.
The length of the shortest path between them is O(N1/dg )
according to Eq. (2). From Eq. (3) we obtain that the mean
first-passage time from one site to the other one is O(Ndw ).
Deleting now all edges other than those contained in the
shortest path, one obtains a one-dimensional system in which
the diffusion is normal. So the expected first-passage time in
this one-dimensional chain is O(N2/dg ), and it is easy to see
that this time must not be greater than that in the original
network, implying the inequality

dw � 2/dg. (6)

Consider again the above one-dimensional chain between the
two sites. The effective resistance of this chain is O(N1/dg ),
and this must be larger than the effective resistance between
the two points in the original network, which is O(Nζ ), since
removing links from the original network does not decrease
the effective resistance. So we have the relation 1/dg � ζ or,
using Eq. (5),

dw � 1 + 1/dg. (7)

Since, for β > 0, dg(β) > 1 holds, we have dw < 2, i.e.,
superdiffusion when β > 0. Furthermore, since both the lower
and upper bounds decrease with β and for β = 0 the above
relations hold as equalities, we conclude that the random-walk
dimension must also depend on β.

In order to estimate dw(β), we have numerically calculated
the effective resistance between sites 1 and N/2 + 1 in cyclic
networks of size N by the method described in the next section.
We considered system sizes N = 2n with n = 4,5, . . . ,14 and
generated 106 independent networks for n � 12 and 105 for
n = 13,14. The average resistance is plotted against N for
different values of β in Fig. 3. As can be seen, the data are
agreement with the power law in Eq. (4) with a β-dependent
resistance exponent. The estimated values of ζ (β) obtained by
extrapolating the two-point effective exponents are plotted for
different values of β in Fig. 4 and are given in Table I. The
numerical estimates of dw(β) and dg(β) are found to satisfy
the inequalities (6) and (7).

V. RANDOM WALK IN RANDOM ENVIRONMENT

A. Finite graph dimension (s � 2)

After having studied the geometry and homogeneous
random walks we turn to the full problem, where the transition
rates are quenched random variables. In one dimension, which
corresponds to β = 0 in our model, the mean-square displace-
ment in an infinite system behaves as 〈x2(t)〉 ∼ (ln t)4 [8].
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FIG. 3. (Color online) The logarithm of the numerically calcu-
lated average resistance between sites in a distance N/2 plotted
against ln N for different values β at s = 2. The statistical errors
are smaller than the size of the symbols.

It is intuitively obvious that adding long edges to the one-
dimensional chain results in the mean-square displacement
increasing faster with time since considerably shorter paths
between far away sites are opened. For s > 2, on the other
hand, the number of cut points, which must be contained in
shortest paths, is O(N ). Therefore the logarithm of the typical
time to travel through a domain of length N is at least O(N1/2).
As a consequence, for s > 2, the dynamics must obey the
asymptotic law

〈x2(t)〉 ∼ (ln t)2/ψ , (8)

with the barrier exponent ψ = 1/2 as in one dimension, and
only the proportionality constant is expected to be modified
by the presence of long edges.

At the critical point s = 2, β > 0, the form in Eq. (8) with
ψ = 1/2 is a lower bound on 〈x2(t)〉. An upper bound for
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FIG. 4. (Color online) Resistance exponents estimated from the
data shown in Fig. 1.

β < 1 can be easily established since the number of cut points
is O(N1−β); thus the logarithm of mean first-passage time
must be typically at least O(N (1−β)/2). Hence we expect for
s = 2 and at least for β < 1 the activated dynamics given in
Eq. (8) to hold with some barrier exponent ψ(β), which may
depend on β and lies in the range

(1 − β)/2 � ψ(β) � 1/2. (9)

This type of ultra-slow dynamics suggests that a strong dis-
order renormalization group (SDRG) method can be applied
to the process. This method has been originally constructed
for studying disordered quantum spin chains [34], and later
it was adapted for investigating dynamical processes; for a
review see Ref. [23]. For random walks in one-dimensional
random environments the method has been formulated in
terms of the potential barriers [35]. Apart from tree-like
graphs, however, potential cannot be defined in general,
and the method has to be formulated in terms of transition
rates [24–27].

In the SDRG procedure, sites with short waiting time are
successively eliminated, and the remaining transition rates are
modified such that the long-time dynamical behavior of the
system remains unaltered. The detailed scheme of the method
is the following. Let us introduce the exit rate from site i

as �i = ∑
j wij , where the summation goes over all sites

connected with site i. The inverse of �i gives the expected
waiting time at site i: τi = 1/�i . The elementary step of
the procedure is that the site that has the smallest waiting
time is chosen and removed from the network together with
their edges. The transition rates wjk between sites that were
connected to the eliminated site i are modified as

w̃jk = wjk + wjiwik/�i. (10)

If these sites were not connected before the decimation (i.e.,
wjk = wkj = 0), then a new edge is created between them
with the rates given above. Through the transition rates, the
exit rates and the waiting times of sites neighboring to the
decimated one are also renormalized. This decimation step is
then iterated starting from a finite system of size N until only
one site remains with an effective waiting time τN = 1/�N .
The renormalization rule in Eq. (10) can obtained from the
condition that the ratios of steady-state probabilities of all
sites not yet decimated (active sites) remain unchanged when
a site is eliminated. Concerning the dynamics, the replacement
of the original system by the one site smaller effective one
is an approximation in the sense that the waiting time in
the eliminated site is neglected. In certain systems, however,
the distribution of the logarithm of waiting times becomes
broader and broader as the ratio of active sites is decreased. In
these systems, which are described by an infinite randomness
fixed point, the above approximation becomes more and more
accurate as the fraction of active sites tends to zero and the
SDRG is said to be asymptotically exact [23]. The last effective
waiting time obtained by this method τN is then on the order
of the expected escape time from the system embedded in a
larger environment, or in the case of an acyclic network, it is
on the order of the mean first-passage time from site 1 to site
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N . So, in the case of the activated dynamics given in Eq. (8),
the last exit rate must scale with N as

ln(1/�N ) ∼ Nψ (11)

for large N . It is easy to show that, in case of symmetric rates
wij = wji , the renormalization rules in Eq. (10) reduce to the
rules of calculating the effective resistance in the equivalent
resistor network. This method has been used for calculating
the effective resistance discussed in the previous section. A
simplification in that case is that the sites can be eliminated in
an arbitrary order.

We have performed the above SDRG procedure numerically
in finite systems and calculated the distribution of the last
effective exit rate and the average of its logarithm. In most of
the numerical calculations, the random transition rates have
been drawn from a discrete distribution, where the rates on
the edge (ij ) are either wij = 1 and wji = r with probability
1/2 or wij = r and wji = 1 with probability 1/2. Here r is
constant that lies in the range 0 < r < 1. We also considered a
continuous distribution, namely, a uniform one in the domain
(0,1), from which all transition rates are drawn independently.
The size of systems was N = 2n with n = 6,7, . . . ,13. The
number of independent realizations was 106 for n � 12 and
β < 1, while for larger β and larger N , where the SDRG
procedure is slower, it was less; nevertheless, in all points it
was at least a few times 104.

The distributions of ln(1/�N ) for β = 0.7 and for different
system sizes are shown in Fig. 5. As can be seen, they broaden
with increasing N , which justifies the applicability of the
SDRG method a posteriori. The distributions are qualitatively
similar for all considered values of β in the range [0,1.5]. The
probability densities have the scaling property

ρ[ln(�0/�N ),N ] = N−ψρ̃[ln(�0/�N )Nψ ], (12)

in accordance with the assumption written in Eq. (11). Here,
the constants �0 and ψ are found to depend on β.

Instead of the optimal data collapse, we have estimated the
barrier exponent ψ systematically by the finite-size scaling
of the average ln(1/�N ). Here the form ln(�0/�N ) = cNψ

has been fitted to triples of data points for sizes N , 2N ,
4N , and the effective values of ψ have been extrapolated to
N → ∞.

In one dimension it is known that the barrier exponent
ψ = 1/2 is universal; i.e., it is independent of the distribution
of transition rates. In order to test this property for β > 0
we have studied the point β = 0.7 with discrete randomness
with r = 0.1,0.02 and with the uniform one. The estimated
values of ψ for these three cases are in order: 0.185 (10),
0.189 (10), and 0.19 (1). The differences are not significant,
which suggests universality with respect to the distribution
of transition rates. So the barrier exponent is expected to be
a characteristic of the connectivity network. Next, we have
determined the barrier exponents for different values of β; see
Figs. 6, 7, and Table I. As can be seen, ψ varies with β, and
even for β � 1, where we do not have a lower bound on ψ(β)
at our disposal, the estimated values differ significantly from
zero.

After presenting the numerical results we close this section
with a heuristic reasoning, which is based on the SDRG
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FIG. 5. (Color online) Top: Histogram of the logarithm of the last
exit rate obtained by numerical renormalization, for s = 2, β = 0.7,
and different system sizes N . The rates were drawn from the discrete
distribution with r = 0.1 described in the text. Bottom: Scaling plot
of the same data with ψ = 0.19 and ln �0 = 5.5.

procedure and yields an upper bound on ψ(β). Let us consider
an acyclic network of size N and find the last site, which the
SDRG ends up with. The last effective waiting time is in the
order of the expected first-passage time from site 1 to site N , as
we have already mentioned. Let us find now the shortest path
that connects site 1 with site N and goes through the last site
obtained by the SDRG. Its length is O(N1/dg ). Then, following
the rules of the SDRG method, we eliminate all sites except
those contained in the shortest path. The elimination of the rest
of the graph will generate new (long) edges between the sites of
the path, but the initial rates on the edges of the path are never
decreased. Furthermore, it is obvious that applying the SDRG
procedure to this effective system ends up with the same site
as when it was applied to the initial network. It is plausible to
assume that adding long edges to a one-dimensional system
decreases the expected first-passage time. Therefore the last
effective waiting time of the system must not be longer than
that of the above one-dimensional path (without the generated
long edges). In the latter system the logarithm of the mean
first-passage time is O(N1/(2dg )), so we obtain

ψ(β) � 1/[2dg(β)]. (13)
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FIG. 7. (Color online) The estimated values of ψ(β) given in
Table I plotted against β. The straight line is the lower bound
(1 − β)/2.

The numerical estimates are found to satisfy this relation for
all β; see Table I.

B. Infinite graph dimension (1 < s < 2)

In the domain 1 < s < 2, the number of edges of the graph
is still O(N ), but the shortest path length increases with the
distance poly-logarithmically [15,19]. For an even smaller
decay exponent, s < 1, the number of edges is O(N2−s), and
the shortest path length is bounded [15]; therefore we have
restricted ourselves to the range 1 < s < 2. Here the graph
dimension is formally infinite. According to our numerical
results, the average resistance seems to saturate with N , which
corresponds to a vanishing resistance exponent, ζ = 0. Using
Eq. (5) it follows that the random walk with homogeneous
transition rates is ballistic here, i.e., dw = 1.

In case of random transition rates, we have calculated the
distribution of the last exit rate by the SDRG method at
several points. For s = 1.5, β = 1, the results are shown in
Fig. 8. As can be seen, the distributions do not broaden with
increasing N , indicating that the system is not described by
an infinite randomness fixed point. In this case, the waiting
times neglected in the procedure may be considerable, and
the last waiting time is not necessarily on the order of the
first-passage time through the system, but it may be only a
vanishing fraction of the latter. The last waiting time is found
to scale algebraically with N as τN ∼ Na; see the scaling plot
in Fig. 8. It is remarkable that the data fit well to the Fréchet
distribution given by the probability density

f (τ̃ ) = bτ̃−1−be−τ̃−b

, (14)

where τ̃ = cτNN−a and b, c are constants. This is well known
for the random walk and other processes in one-dimensional
random environments in the driven phase [36], where the
environment can be divided into roughly independent trapping
regions with random trapping times having the asymptotical
probability density ρ(τ ) ∼ τ−1−b. The number of trapping
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FIG. 8. (Color online) Scaling plot of the distribution of the
logarithm of the last exit rate obtained by numerical renormalization,
for s = 1.5, β = 1, and different system sizes N . The rates were
drawn from the discrete distribution with r = 0.1. The scaling
exponent is a = 0.3. The solid line is the Fréchet distribution given
in Eq. (14) with b = 2. The unscaled data are shown in the inset.

011118-6



COMPETITION BETWEEN QUENCHED DISORDER AND . . . PHYSICAL REVIEW E 85, 011118 (2012)

-8

-6

-4

-2

0

6420

ρ[
ln

(〈
t N

〉/N
)]

ln(〈tN〉/N)

N=128
N=256
N=512

N=1024
N=2048

-8

0

210

ρ[
ln

(〈
t N

〉/N
)]

ln(〈tN〉/N)

FIG. 9. (Color online) Scaling plot of the distribution of the
logarithm of the mean first-passage time 〈tN 〉 obtained by Monte
Carlo simulation in networks with s = 1.5, β = 1 for different system
sizes. For the transition rates discrete randomness has been used with
r = 0.1. The inset shows the same quantity in the same type of
networks but with homogeneous transition rates (r = 1).

regions is proportional to N in one dimension; thus the
distribution of largest waiting time follows Eq. (14) with
a = 1/b. In our model with 1 < s < 2, however, the latter
relation seems not to be valid. Applying the above assumption
on independent trapping regions with a power-law trapping
time distribution this implies that the number of effectively
independent trapping regions is not proportional to N but is
only O(Nab).

We have found that the above properties of the distribution
of the largest waiting time are generally valid in the region
1 < s < 2; however, the exponents a and b depend on s

and β.
In order to reveal the dynamics we have carried out Monte

Carlo simulations in cyclic networks and measured the first-
passage time from site 1 to site 1 + N/2. For each system
size, 105 independent networks with random transition rates
have been generated, and the mean first-passage time has been
calculated in each network from 100 measurements. First, we
have determined the distribution of the mean first-passage time
in networks with homogeneous rates. As can be seen in the
inset of Fig. 9, the mean first-passage time scales as 〈tN 〉 ∼ N ,
in accordance with dw = 1.

The same quantity for random transition rates is shown in
the same figure. As can be seen, the distributions are broader
than in the homogeneous case, but the motion is still ballistic,
i.e., 〈tN 〉 ∼ N . Thus we conclude that although the steady-state
probabilities are inhomogeneous and there are trapping regions
with large waiting times in case of random environments,
the random-walk dimension is not altered compared to the
homogeneous model (dw = 1). So in this sense the disorder in
the transition rates is irrelevant for s < 2.

VI. DISCUSSION

In this work we have studied one-dimensional random
walks in the simultaneous presence of quenched disordered

transition rates and quenched long-range connections. The
effects of these two components when they are present
separately are known to be antagonistic: The former induces
ultra-slow activated dynamics while the latter leads to su-
perdiffusion. According to our results obtained mainly by
a strong disorder renormalization group method, the scaling
exponents are independent of the distribution of transition rates
in general, but they do depend on the decay exponent s and the
prefactor β of the probability of long connections. For s > 2,
the long-range connections are irrelevant, and the dynamics
follows activated scaling with a barrier exponent ψ = 1/2 like
in one-dimensional random environments. For s < 2, where
the graph dimension is formally infinite, the disorder in the
transition rates still leads to the formation of trapping regions
with large waiting times; however, the dynamical exponent
is not altered compared to the homogeneous environment, so
the disorder is irrelevant in this sense. At s = 2, the effects
of disorder and long-range connections are comparable, and
their interplay results in activated scaling with a nontrivial
barrier exponent, which varies continuously with β. The
barrier exponent is found to decrease with β, and a positive
lower bound on ψ(β) has been established only for β < 1.
The numerical estimates are found to be above this exact
lower bound, and the smooth decrease with β seems to
continue also beyond β = 1 all the way to the largest value
(β = 1.5) studied in this work. The numerical investigations
are, unfortunately, limited to moderate β since, for larger β,
the number of edges is larger as well, and consequently the
SDRG procedure becomes more and more time consuming.
In addition to this, the effective strength of disorder decreases
with β, which would necessitate the investigation of larger and
larger systems in order to see the correct asymptotical behavior.
So it is still an open question whether ψ(β) remains positive for
arbitrarily large β or it becomes zero above some finite critical
value.

In the light of the nontrivial results obtained here at
the point s = 2, one can pose the question whether similar
marginal behavior can be observed in the corresponding
annealed model, i.e., in the simultaneous presence of quenched
disordered transition rates and Lévy-flight-type long-range
transitions at the index f = 2, which separates the phases
where one of the above two components is irrelevant. Further-
more, the marginal behavior found at s = 2 suggests that an
analogous behavior is possible in the case of more complex
interacting systems with quenched disorder and long-range
connections.

Throughout this work we have assumed that the average of
the random force acting on the particle is zero. On the basis
of the results, we expect the interplay between random forces
with nonzero average and long-range connections also to result
in nontrivial dynamics. The investigation of this issue is left
for future work.
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