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Diffusional screening in treelike spaces: An exactly solvable diffusion-reaction model
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A renormalization approach is used to derive an analytic formula for the total current crossing the reactive
surface of a Cayley tree of cylindrical tubes under a Helmholtz-type approximation to the full diffusion-reaction
problem. We provide analytic conditions for the emergence of a plateau in the current—a region of maximum
insensitivity of the current to variations in either the reaction rate (membrane permeability) or the diffusivity.
The occurrence of such a plateau is associated with a partial screening regime wherein most of the active surface
is screened to incoming diffusing particles. Large trees trade efficiency for fault tolerance, a valuable feature
which may provide robustness to mammalian respiratory systems and tolerance to catalytic poisoning in chemical
reactors.
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I. INTRODUCTION

Branching treelike structures are commonly found through-
out nature, where they are often the geometry of choice for the
transport and delivery of vital substances—such as oxygen
in mammalian lungs, nutrients and other biomolecules in the
vascular system—from a central source to a distributed target.
Such space-filling, hierarchical networks have been shown to
provide the optimal (e.g., fastest, most uniform, etc.) access
from a single point to a service volume for a variety of
transport phenomena such as heat conduction, convection, and
pressure-driven flow [1]. Moreover, research in engineering
and life sciences has revealed that the particular geometry of
fractal-like distribution networks provides multiple advantages
such as energy efficiency and fault tolerance [2–4], as well as
explaining intriguing properties such as allometric scaling [5].

Here we address the problem of molecular diffusion
within a treelike structure of tubes, with a source for the
diffusing species placed at the entrance of the “trunk” and
a concentration-dependent sink along the surface of the
tubes. As such, the current study falls within the broad
class of diffusion-reaction problems, an active area of re-
search especially within the physics and chemical engineering
communities. Several seminal papers [6,7] have provided
insight into diffusion and reaction in hierarchical or fractal-like
spaces. Notable results from the field of diffusion-reaction in
branching geometries include studies of diffusion on Cayley
graphs [8–10], as well as trees of tubes [11] and square
channels [12]. While most such studies provide recursive
results, the present article delivers a closed-form, analytic
formula for a diffusion-reaction problem in a treelike space.

Without losing their generality, we claim that our results
provide insights into the respiratory physiology of mammalian
lungs. As shown by the exhaustive studies of Weibel [13],
the physiology of the lung crucially depends on scale. The
dominating transport phenomenon in the large-scale bronchi
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and bronchioles (roughly the first 15–16 generations of branch-
ing of the pulmonary tree) is convective flow, driven by the
pressure differences generated by respiration. As the bronchial
airways bifurcate, their total cross section increases exponen-
tially so that the flow rate vanishes with increasing depth, and
stationary diffusion becomes the primary transport mechanism
for respiratory gases. The corresponding mesoscale for which
this occurs (approximately 1 mm) defines the size of the
lung’s gas exchange units, clusters of alveolar sacs known as
acini [14,15]. These acini host an airway network, beginning
with the transitional and respiratory bronchioles (generations
15–18), which connect to a network of alveolar ducts that sub-
divides acini into 8 subacini (at rest) beginning with generation
18. Any further downward scaling of the airway network ends
at the alveolar ducts of these subacini [16], which support the
individual alveoli (approximately 200 μm [14,15]) along their
sidewalls and end caps. The particular choice of geometry
and physics of the present study provide, therefore, a suitable
model for the gas exchange at the level of the pulmonary
subacinus.

II. THE MODEL

Figure 1 shows an exemplary geometry of a branching
pore space addressed by the present study. The surface-scale
geometry of the branches is not essential to the main result of
this paper, so for simplicity they are considered cylinders. A
diffusing species travels from a source at the entrance of the
trunk to the boundary of the pore space, where it either reacts
(e.g., in a catalytic reaction) or crosses a membrane (e.g., in
gas exchange within the lung). Inside the homogeneous pore
space, the diffusion-reaction process is modeled by the Laplace
equation:

�∇2C(�x) = 0, (1)

where C is the difference in concentration of the diffusing
species between the pore space and its exterior. This concen-
tration is kept constant at the “root” of the tree C(�x = 0) = C0,
while elsewhere on the boundary of the pore space, the bulk
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FIG. 1. A model treelike pore space constructed of identical
cylindrical branches of radius r and length L. Here the number of
daughter branches extending from each parent branch is m = 2 while
the number of branching generations is n = 2. Particles diffuse inside
the cylinders and react (or are absorbed) on the cylinder walls.

flux into the boundary is matched to a local rate of destruction
of the diffusing species:

�∇C(�x) · n̂(�x) = W

D
C(�x) with �x ∈ boundary, (2)

wherein D is the bulk diffusion coefficient of the diffusing
species and the boundary “permeability” W is defined as the
number of molecules disappearing at the boundary per unit
time, unit area, and unit concentration.

Equation (1) gives an exact representation of single com-
ponent diffusion or of a species diffusing throughout a binary
mixture with equimolar counterdiffusion. For multicompo-
nent mixtures, diffusion of each species is driven by the
concentration gradients of all other species, so Eq. (1) is an
approximation of the exact Maxwell-Stefan equations, and D

may be equated with an effective binary diffusivity of the
species under study.

From a chemical engineering viewpoint, boundary condi-
tion (2) can be interpreted as a first-order chemical reaction
catalyzed on the surface of the pore (e.g., an isomerization
reaction), wherein W is the reaction rate coefficient per unit
area, related, for example, to the catalytic efficiency of the pore
surface. In a biological setting such as the mammalian lung,
W is taken to be the membrane permeability to a diffusing
species of the acinar gas (for clarity we choose oxygen, O2).
The transport of O2 from air to blood involves a number of
consecutive processes, the rate-limiting step being diffusion
through the alveolar membrane and blood plasma, wherein
oxygen binds to hemoglobin and the resulting saturation
curve is approximately linear for smaller oxygen partial
pressures.

Under the assumption that transport of respiratory gases
across the lung membrane is mostly passive (unmediated),
Katchalsky [17] gave the expression for the diffusional flux
into a membrane of thickness δ:

J = −Dm

�C

δ
, (3)

where �C is the O2 concentration difference between the air
and blood side. Here Dm is an effective diffusion coefficient
for oxygen:

Dm = φwRTβO2DO2, (4)

wherein φw is the volume fraction of water in the membrane,
βO2 is Henry’s law coefficient for oxygen (the ratio of
the concentration of oxygen dissolved in the membrane
to the partial pressure of oxygen in air at temperature T

[mol/m3 Pa]), R is the universal gas constant, and DO2 is the
diffusion coefficient of oxygen within the membrane [m2/s].
In good approximation, the membrane-plasma system can be
considered as a water barrier, so that φw ≈ 1.0, and DO2 and
βO2 are calculated for oxygen in water. From Eqs. (2)–(4) we
may define a permeability for the alveolar membrane:

W = RTβO2DO2

δ
. (5)

Under physiological conditions (low solute concentra-
tion/partial pressure), βO2 is not dependent on oxygen con-
centration. Also, at the level of the subacinus, the membrane
thickness is roughly constant, so that W is position-
independent, although determined by physiology. The generic
diffusion-reaction model given by Eqs. (1) and (2) therefore
accurately describes gas exchange across the alveolar mem-
branes of the lung, wherein C(�x) should be interpreted as a
position-dependent concentration difference between the air
and the blood side of the alveolar membrane.

Equation (2) defines a characteristic length scale � =
D/W , known as the exploration length, which measures the
length along the surface that a molecule explores before it
reacts [18,19] and which effectively quantifies the diffusional
screening of the surface. The diffusion-limited regime is intu-
itively described by a small exploration length (� → 0), where
the details of a surface’s geometry crucially influence reaction
rate or molecular transport across it. A large exploration length
(� → ∞) describes the reaction-limited regime, in which all
surface details are washed out and only the total surface area
matters to reaction and/or transport rates.

Using the exploration length as a measure of the surface’s
accessibility to the diffusing species, we derive a simple,
analytic formula for the total current crossing the surface of a
branching, hierarchical pore space (tree), as well as a formula
for the efficiency of such a structure, for example, as a gas
exchanger.

III. BRANCH HIERARCHY

A treelike space (Fig. 1) provides an idealized model for
a catalyst pore with reactive walls, or for a gas exchange unit
(e.g., lung acinus) lined with a membrane permeable to O2.
All branches of the tree are identical cylinders of length L

and radius r; each branch bifurcates into m daughter branches
for up to n consecutive generations (Fig. 2). Each bifurcation
point is called a node; they are labeled from i = 0 (the root
of the tree) to i = n + 1 (the ends of the terminal branches,
termed “leaves”). For every branch, labeled by ei , connecting a
node of order i to an adjacent one of order i + 1, the values for
particle current and concentration at the entrance are denoted
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FIG. 2. Elements of the hierarchical model. (a) Mass conservation
within a cylindrical branch, leading to a Helmholtz equation for
the concentration of the diffusing species. (b) Mass conservation
across an exemplary node. (c) Node and branch labeling scheme used
throughout the paper.

by Ient,ei
and Cent,ei

, respectively. Similarly, the exit values
Iext,ei

and Cext,ei
denote these quantities at node i + 1.

IV. HELMHOLTZ TREATMENT
OF AN INDIVIDUAL BRANCH

In an approximation to Eqs. (1) and (2) that exploits
symmetry and ignores radial concentration gradients, mass
balance in a branch (shown in Fig. 2) gives a one-dimensional
Helmholtz equation:

d2

dx2
C(x) −

(
ϕ

L

)2

C(x) = 0, (6)

wherein the branch’s dimensionless Thiele modulus, ϕ, is
related to the exploration length by

ϕ = L

√
2W

rD
= L

√
2

r�
. (7)

The solution of Eq. (6) can be expressed as a function of
the concentrations at the nodes,

C(x) = Cent sinh [ϕ(1 − x/L)] + Cext sinh (ϕx/L)

sinh ϕ
, (8)

as a function of the diffusive currents through the nodes,

C(x) = Ient cosh [ϕ(1 − x/L)] − Iext cosh (ϕx/L)

(πr2D/L)ϕ sinh ϕ
, (9)

or finally, as a mixed expression involving node currents
and concentrations. Node concentrations are related to their
respective currents by

Ient

πr2D
= −dC

dx

∣∣∣∣
x=0

and
Iext

πr2D
= −dC

dx

∣∣∣∣
x=L

, (10)

while the current into the branch’s reactive surface is given by

�I = Ient − Iext =
∫ L

0
WC(x)dx. (11)

A renormalization calculation (Appendix B) built from
equations of type (8)–(11) yields analytical expressions for
the total current and the concentration profile within the tree.
The accuracy of this simplified one-dimensional treatment is
discussed in Appendix A, where the Helmholtz concentration
profile is compared to the exact solution of Laplace’s equation
(1) in a cylinder.

V. RESULTS

A. Total current into the tree

To the chemical engineer, this current represents the yield
of a chemical reaction taking place inside the homogeneous
pore space; to the physiologist, this current corresponds to the
exchange rate of respiratory gases (e.g., oxygen) within the
model acinus. The following expression gives the total current
into the tree:

I = πr2DC0

mLgn+1(�/L)
. (12)

Here C0 = Cent,e0 is the concentration of the diffusing species
at the root, while g is an attenuation function of the exploration
length,

g

(
�

L

)
=

(
�
L

)
ϕ + tanh ϕ(

�
L

)
mϕ2 tanh ϕ + mϕ

, (13)

and the n + 1st power of g is computed as n + 1-fold
function composition: gn+1(·) = g ◦ · · · ◦ g(·). Details of the
renormalization calculation leading to Eqs. (12) and (13) are
provided in Appendix B.

The attenuation function g, seen as a function of the
dimensionless exploration length �/L, can be interpreted as
a Möbius transformation of the complex plane. It can then
be shown that the k-fold composition of g can be evaluated
by calculating the kth power of a dimensionless Möbius
matrix [20],

G =
(

ϕ tanh ϕ

mϕ2 tanh ϕ mϕ

)
, (14)
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which can be carried out by matrix diagonalization to yield

gn+1

(
�

L

)
=

sinh ϕ

ϕ
+ 2L

rϕ2

(
1
2 [(1 − m) cosh ϕ + √·] +

√·
[ 1

4m
((1+m) cosh ϕ+√·)2]n+1−1

)
2mL sinh ϕ

rϕ
− 1

2 [(1 − m) cosh ϕ − √·] +
√·

[ 1
4m

((1+m) cosh ϕ+√·)2]n+1−1

. (15)

Here we have abbreviated
√· =

√
[(1 + m) cosh ϕ]2 − 4m.

Expression (15) is exact for sufficiently large exploration
length (r/� < 1), where the Helmholtz approximation holds.

Figure 3 shows the dimensionless current 1/mgn+1(�/L)
plotted against the trunk’s Thiele modulus for varying size. In
the diffusion-limited regime (ϕ → ∞), diffusing particles only
explore the entrance tube (trunk); therefore, all curves collapse
onto one describing diffusion and reaction in a cylinder. At the
other end, in the reaction-limited regime (ϕ → 0), the current
is proportional to the total area of the tree.

We note the branch-by-branch renormalization calculation
leading to Eq. (15) can be adapted to include scaling ratios
between parent and daughter branches [21]. Given such ratios
between successive branch lengths and widths, p = Lei+1/Lei

and q = rei+1/rei
, respectively, a similar renormalization cal-

culation, as used for branches of equal width and length
described in Appendix B, but including these ratios, leads to a
p,q-dependent Möbius matrix, which does not generally give
analytical results unless p = q = 1 (although the condition
p = √

q is a possible exception). This situation (p = q = 1)
is the most biologically relevant, as the “hardware” of mam-
malian acini conform to this equilength and -width scheme
[16]. For this reason, we restrict our discussions here to the
equilength and- width case, p = q = 1.

B. Current plateau

In between the diffusion-limited and the reaction-limited
regimes, the current goes through a flat region defined by
∂I/∂ϕ = 0, which persists across many orders of magnitude
of the Thiele modulus, depending on the geometry of the tree.
Such insensitivity of the current to variations in either the
reaction rate or the diffusivity is a valuable feature, providing
robustness to the respiratory system of mammals, as well as
tolerance to catalyst poisoning or deactivation in chemical
engineering applications. This type of behavior was observed
before in similar diffusion-reaction systems [11,15,22,23], but
here it is quantified analytically.

For large exploration length, the current Eq. (15) may be
approximated as

1

mgn+1(�/L)
∼

2L
r

+ m−1
m

1 + 2L
r

m
m−1 + m−1

mn+1−1

(
�
L

) . (16)

Further manipulation yields

1

mgn+1(�/L)
∼

m−1
m

1 + m−1
m

πr2

Stree

(
�
L

) , (17)

wherein Stree = 2πrL(mn+1 − 1)/(m − 1) + mnπr2 is the to-
tal surface area of the tree. In the ϕ → 0 limit, Eq. (17) gives
the correct asymptote, with the current scaling as the total
surface area. A plateau develops when Stree/πr2 � 1, allowing
the second term of the denominator to remain negligible for
a wide range of exploration lengths. The low-ϕ limit of the
plateau is given approximately by

ϕ =
√

2πrL

Stree
, or

πr2

Stree

(
�

L

)
= 1. (18)

The height of the plateau is given by (m − 1)/m, a result
confirmed by Figs. 3 and 4.

The condition Stree/πr2 � 1 has an elegant intuitive inter-
pretation: A plateau in the current occurs in a system in which
a large surface area is accessible through a relatively narrow
entrance. In other words, in the plateau region of process
parameters, a large proportion of the surface is screened to
incoming particles. With their ability to pack large surface
areas into small volumes, fractal-like objects provide good
candidates (although not the only ones) for this type of
behavior.

Equation (17) has a very simple form,

I ∝ A

1 + B�
, (19)

wherein A and B are functions of geometry alone, while
the exploration length � quantifies all the information about
process parameters. In the partial screening (plateau) regime,
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FIG. 3. Total (cumulative) current (dimensionless) for the Cayley
tree model as a function of the trunk’s Thiele modulus, shown for
several trees with fixed branch aspect ratio r/L, fixed number of
daughter branches m = 2, and varying branching generation n. (Inset)
Effectiveness factors for the corresponding trees shown.
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FIG. 4. (a) An exemplary current plateau described by the
asymptotic approximation [Eq. (17)] (dashed line). (b) Illustration
of the three screening regimes for the tree: no screening (NS), partial
screening (PS), or complete screening (CS).

Eq. (19) is noninvertible, in the sense that given the current I ,
one cannot uniquely determine the trunk’s Thiele modulus
ϕ, or the process parameters D and W , for that matter.
Thus, partially screened diffusion-reaction systems may pose
particular experimental challenges.

Figure 3 further shows that in partial screening, the current
is also rather insensitive to the pore network (e.g., to n). In
other words, even when � is known, the current does not
univocally determine the geometry of the pore space; many
different trees of tubes produce approximately the same total
current I .

The notion that this insensitivity is generated by screening
of the active zones suggests it is not restricted to trees. For
example, diffusive currents transported across fractal surfaces
display similar “robustness” [15]. This should be contrasted
with the case of bimodal pore distributions for porous (first-
order) catalytic reactors [24,25]: Local variations in the pore
diameters and porosity do not significantly improve the current
when compared to pore networks maximizing the reaction
yield (i.e., the optimized ones).

C. Effectiveness factor and effective surface area of the tree

An effectiveness factor for the tree is defined as the ratio of
the total current to the current in the absence of diffusion

limitations [12], quantifying the performance of the pore
surface as a reactor/gas exchanger:

η = W
∫

tree CdS

WC0Stree
= I

WC0Stree
= Seff

Stree
. (20)

Equation (20) also defines an “effective” area of the pore,
Seff , that is, the area of an equivalent pore which produces
the same current in the absence of diffusion limitations.
Following Eq. (12), the tree’s effective surface area is Seff =
πr2�/mLgn+1(�/L), and its effectiveness factor is given by

η = πr2

Stree

[
�/L

mgn+1(�/L)

]
. (21)

The effectiveness factors of several trees are shown in the
inset in Fig. 3. The most efficient trees are those with either
the smallest number of branch generations n or number of
daughter branches m (small to moderate screening). A similar
conclusion relating small trees to high efficiencies has been
reported for another model of a human lung acinus [3].

This change in efficiency provides a major advantage to
mammalian lungs under variable breathing conditions and may
be another determining reason for the treelike design of the
acinar airways. The transition from convection to diffusion is
pushed deeper into the lung as a result of exercise, from about
the 18th branching generation at rest to the 21st generation
under maximum exercise [2,13]. As a result, the oxygen
“source” is pushed deeper into the treelike structure, activating
previously inactive surface area for the gas exchange, therefore
drastically increasing the current and efficiency; plateaus in
the current indicative of robustness are eliminated as this effi-
ciency increases. The lung’s ability to accommodate moderate
alterations to the membrane’s permeability, resulting from
changing physiological conditions, is traded for an increased
transport efficiency to help meet the body’s increasing oxygen
demands. So, mammalian lungs pay a high price for increasing
efficiency between rest and exercise, in that they are less able to
adapt to stress, becoming more “fragile.” A tradeoff between
robustness and fragility is ubiquitous among other forms of
biological regulation [26].

D. The tree as an effective medium

In what can be seen as an effective medium approximation
of the tree, the tree is shown to behave as an equivalent tube,
or an equivalent patch of reactive surface with appropriately
rescaled values of the reaction rate. From Eq. (B5) of the
Appendix, the current into a terminal tube may be expressed as

Ient = Dπr2Cent

mLgn+1(�/L)
. (22)

In view of Eq. (22) and Eq. (12) can be rewritten as

I = Dπr2C0

mLg
(
�tube

eff

/
L

) ; (23)
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that is, the tree behaves like a single branch (the “trunk”) with
an effective exploration length defined by

�tube
eff

L
= gn

(
�

L

)
. (24)

Rescaling the exploration length corresponds to rescaling the
reaction rate (or membrane permeability) W to a much higher
value and leads therefore to stronger diffusion limitations:
ϕtube

eff � ϕ. Concentration profiles in the equivalent tube
decrease more steeply than in the actual tree, resulting in
a significantly smaller penetration depth of the diffusing
particles. Similarly, Eq. (12) reveals that the tree works as
an equivalent patch of reactive surface with area (the root),
with an effective exploration length defined by

�
patch
eff

L
= mgn+1

(
�

L

)
. (25)

VI. CONCLUSIONS

A diffusion-reaction problem was solved in a Cayley tree
of cylindrical tubes, modeling a branched catalytic pore, or
a gas exchange unit of the lung (acinus). A renormalization
approach was shown to provide analytical expressions for the
concentration profile, the particle current, and the effectiveness
factor for the tree of tubes.

Trees with a large surface area (e.g., a large number of
branch generations n) feature a current plateau, a range of
moderate surface reactivity wherein the current across the
tree’s surface depends only weakly, if at all, on the Thiele
modulus of the entrance branch (equivalently, the exploration
length). This phenomenon coincides with a partial screening
regime, wherein a significant portion (but not all) of the
surface of the tree is screened from access by incoming
diffusing particles. Insensitivity of the current with respect
to surface reactivity may translate into major advantages, such
as tolerance to catalyst deactivation, or robustness of a lung
gas-exchange unit against pollution, damage, and disease.

APPENDIX A: VALIDITY OF THE
HELMHOLTZ APPROACH

The Helmholtz treatment of individual branches, Eq. (6),
ignores any radial dependence of the concentration. Here we
show a comparison between the Helmholtz approximation and
the exact solution of the Laplace equation, Eq. (1), in a single
cylindrical tube to reveal the limits of the model’s applicability.

If we provide reflecting boundary conditions at the deep end
of the tube, and a constant concentration across its entrance,

dC

dx

∣∣∣∣
x=L

= 0 and C(r,x)|x=0 = Cent,

respectively, then a solution to Eq. (1) is

C(ρ,x) = 2rCent

�

∞∑
i=1

J0
(
δi

ρ

r

)
cosh

(
δi

L−x
r

)
J0(δi) cosh

(
δi

L
r

)(
δ2
i + (

r
�

)2) . (A1)

Here J0 are Bessel functions of the first kind, and δi labels the
ascending positive roots of

δiJ1(δi) − r

�
J0(δi) = 0. (A2)

The same boundary conditions result in a corresponding
solution to the Helmholtz equation, Eq. (6):

C(x) = Cent
cosh

[
ϕ

(
1 − x

L

)]
cosh ϕ

. (A3)

The Helmholtz solution, Eq. (A3), is a good approximation
of Eq. (A1) if Eq. (A1) is radially independent, that is, if
the term J0(δiρ/r) is approximately constant for all values of
the radial coordinate 0 � ρ � r . Since the concentration of the
diffusing species varies only slowly at length scales equal to the
exploration length [15,18,19], we expect any radial gradient
to vanish as the exploration length approaches the radius of
the cylinder. Indeed, an approximation for the first root of
Eq. (A2),

δ1 ≈
√

2r

�

[
1 + 1

8

(
r

�

)
+ 3

64

(
r

�

)2

+ · · ·
]
,

gives δ1 ≈ √
2r/� = ϕr/L for r/� < 1. Under this condition

we have J0(δ1ρ/r) ≈ J0(δ1) ≈ 1, and we can rewrite Eq. (A1)
as

C(ρ,x) ≈ Cent
cosh

[
ϕ

(
1 − x

L

)]
cosh ϕ

+ 2rCent

�

∞∑
i=2

J0
(
δi

ρ

r

)
cosh

(
δi

L−x
r

)
J0(δi) cosh

(
δi

L
r

)[
δ2
i + (

r
�

)2 ] .

(A4)

The leading term of Eq. (A4) coincides with the Helmholtz
solution (A3), confirming that the Helmholtz approach used
throughout the paper is accurate in the domain of reasonably
small Thiele moduli ϕ (i.e., r/� < 1). The result is confirmed
numerically in Fig. 5.

In the opposite limit of high Thiele modulus (� → 0),
the problem of diffusion and reaction in a treelike space
is irrelevant, since the diffusing species practically never
penetrate beyond the entrance branch (refer to the collapse
of all curves into a single one shown in Fig. 3).
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FIG. 5. Relative error between concentrations calculated using
the Helmholtz and Laplace (evaluated at ρ = r , and truncated at
n = 100 terms) descriptions of the diffusion-reaction problem, across
a single cylindrical pore, for various values of the ratio r/�.
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APPENDIX B: RENORMALIZATION CALCULATION
FOR DIFFUSION CURRENT IN A BRANCHED TREE

We view the Cayley tree model as composed of three classes
of tubes: an entrance tube (i.e., trunk), mn-many terminal tubes,
and “intermediate” tubes residing between the trunk and the
terminal tubes of the tree. We begin at the “end” of the tree
and work our way up to the trunk, which allows the current
entering the trunk to be found exactly.

To proceed, we first define the concentration profile within
a given terminal branch. The tips of these terminal branches
compose a canopy of reactive surface area; we specify the
current leaving through the reactive surface of these tips is
given by

Iext,en
= πr2WCext,en

= Dπr2

L
(

�
L

)Cext,en
. (B1)

At the entrance of a terminal branch we give the current that
enters it:

dC

dx

∣∣∣∣
x=0

= − Ient,en

πr2D
. (B2)

Equations (B1) and (B2) define the terminal branches. The
intermediate branches are defined by specifying the current
entering/leaving through the open ends, and the trunk is defined
by providing its entrance concentration, Cent,e0 , and the current
leaving through its open end. For example, the solution of
Eq. (6) for an intermediate branch is given by Eq. (9)

Solving Eq. (6) with conditions (B1) and (B2) gives the
following relationships:

Cent,en
= L

[
Ient,en

sinh (ϕ) + (
�
L

)
ϕIext,en

]
ϕπr2D cosh ϕ

, and (B3)

Ient,en
=

[
cosh ϕ +

(
�

L

)
ϕ sinh ϕ

]
Iext,en

. (B4)

These equations, Eqs. (B3) and (B4), can be solved to give the
current entering a terminal branch:

Ient,en
= Dπr2

mLg
(

�
L

)Cent,en
, (B5)

wherein the function g involves the Thiele modulus Eq. (7):

g

(
�

L

)
=

(
�
L

)
ϕ + tanh ϕ(

�
L

)
mϕ2 tanh ϕ + mϕ

. (B6)

Now, since Cent,en
= Cext,en−1 and Ient,en

= Iext,en−1/m (conser-
vation of current at node n), Eq. (B5) can be written as

Iext,en−1 = Dπr2

Lg
(

�
L

)Cext,en−1 . (B7)

Comparing Eqs. (B1) and (B7), it is clear that we have
achieved a renormalization of the problem by transforming
a tree with n generations into a tree with n − 1 generations of
branches, the new terminal branches described by a boundary
condition given by Eq. (B7). The transformation also rescales
the dimensionless exploration length �/L to a new exploration
length g(�/L) [e.g., Eqs. (24) and (25)]. By applying the
renormalization iteratively to all generations of the tree, one
recovers the current entering the root I as a function of its
entrance concentration, C0 = Cent,e0 :

I = πr2DC0

mLgn+1
(

�
L

) , (B8)

wherein gn+1 denotes the n + 1-fold functional composition
gn+1(�/L) = g ◦ · · · ◦ g (�/L).
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