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Mean-field calculation of critical parameters and log-periodic characterization
of an aperiodic-modulated model
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We employ a mean-field approximation to study the Ising model with aperiodic modulation of its interactions
in one spatial direction. Two different values for the exchange constant, JA and JB , are present, according to
the Fibonacci sequence. We calculate the pseudocritical temperatures for finite systems and extrapolate them to
the thermodynamic limit. We explicitly obtain the exponents β, δ, and γ and, from the usual scaling relations
for anisotropic models at the upper critical dimension (assumed to be 4 for the model we treat), we calculate
α, ν, ν‖, η, and η‖. Within the framework of a renormalization-group approach, the Fibonacci sequence is a
marginal one and we obtain exponents that depend on the ratio r ≡ JB/JA, as expected; however, the scaling
relation γ = β(δ − 1) is obeyed for all values of r we studied. We characterize some thermodynamic functions
as log-periodic functions of their arguments, as expected for aperiodic-modulated models, and obtain precise
values for the exponents from this characterization.
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I. INTRODUCTION

Nonuniform systems are interesting and important from
both the theoretical and experimental points of view. Ex-
perimentally, there are already several techniques of surface
growth [1–3] that let one control the layout of the layers in
order to follow, for example, an aperiodic sequence. Moreover,
many theoretical issues may be raised concerning the behavior
of systems with random disorder or aperiodic modulations
of their interactions; it is the last case that concerns us in
this work. More specifically, our interest is to calculate the
critical parameters of the Ising model within a mean-field
framework and characterize the log-periodic behavior of
several thermodynamic quantities.

The interactions of the model we treat can assume one of
two different values and are ordered according to the Fibonacci
aperiodic sequence. For models that have a continuous
transition in its uniform version, the influence of aperiodic
modulations on their critical behavior is determined by the
Harris-Luck criterion [4] (which seems to hold true for models
with a first-order transition as well [5]). According to this
criterion, the Fibonacci sequence is a marginal one; several
results show that a marginal perturbation leads to a dependence
of the critical exponents on the ratio between the two different
interactions [6–8]. Using the simplest version of a mean-field
approximation, we confirm these results and expand them
to include other critical exponents, in order to test scaling
relations, and characterize log-periodic oscillations.

The rest of this work is organized as follows. In the
following section we present several properties of aperiodic
sequences, define the model we treat, and outline the mean-
field approximation we use. Our results are shown and
discussed in Sec. III. In Sec. IV we summarize our findings.
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II. APERIODIC SEQUENCES AND MEAN-FIELD
APPROXIMATION

Aperiodic sequences may be used, for example, to model
quasicrystals [9]: interactions vary according to the order
embodied in the sequences. These are built from substitution
rules in such a way that no subset of the sequence is ever
repeated. In our case, we define an Ising model on a hypercubic
lattice, of coordination number z, given by the Hamiltonian

H = −
∑
〈i,j〉

JijSiSj , (1)

such that the sum is over nearest-neighbor pairs on the lattice,
Jij is the exchange constant between spins Si and Sj , which can
assume the values JA and JB in a particular spatial direction
according to the respective letter in the aperiodic sequence,
and Si = ±1 ∀i.

In this work we are particularly interested in the Fibonacci
sequence, which is obtained from the substitution rules

A → s(A) = AB, B → s(B) = A. (2)

This means that from one stage of the construction of the
aperiodic sequence to the next, all A are replaced by AB

and all B are replaced by A. Starting with the letter A,
the first stages of this sequence are A → AB → ABA →
ABAAB → ABAABABA. This last finite sequence corre-
sponds to the following sequence of interaction constants:
JAJBJAJAJBJAJBJA. In one of the spatial dimensions of the
hypercubic lattice (horizontal, say) the exchange constants
follow this sequence, while in the remaining perpendicular
hypersurface all interactions assume the same value, which is
the same as for the succeeding horizontal bonds. An example
of a lattice constructed this way, in two dimensions, is depicted
in Fig. 1.

One of the interesting theoretical questions one may
pose is about the influence of aperiodic modulations on the
critical behavior of the model when compared to its uniform
counterpart. For the case of a continuous transition on the
uniform model, the Harris-Luck criterion determines whether
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FIG. 1. Example of a lattice with an aperiodic modulation given
by the Fibonacci sequence. In the horizontal direction the exchange
interactions follow this sequence, while in the vertical planes they
assume the same value, equal to the one in the following horizontal
bonds. Dashed (solid) lines represent JA (JB ) interactions.

or not the introduction of a given aperiodic modulation changes
the universality class [4]. This change is determined by the
crossover exponent �, given by

� = 1 + daν(ω − 1), (3)

where ω is the exponent describing the behavior of geometrical
fluctuations of the sequence (see below), da is the number of
dimensions upon which the aperiodic sequence acts (da = 1
in our case), and ν is the correlation-length critical exponent
of the uniform model. When � > 0 the introduction of the
aperiodic sequence changes the critical exponents from the
values assumed for the uniform model (the sequence is said to
be relevant in this case) and when � < 0 the critical behavior
of the aperiodic model is the same as for the uniform one
(an irrelevant sequence). For � = 0, the sequence is marginal
and previous results show that the critical exponents are
nonuniversal: they depend on the ratio r ≡ JB/JA [6]. In the
mean-field framework, ν = 1/2 for the uniform Ising model
and the crossover exponent reduces to [see Eq. (3)]

� = 1
2 (1 + ω). (4)

Therefore, for ω = −1 the sequence is marginal, which is
the case for the Fibonacci sequence, as we will shortly see.
This quantity and others properties of two-letter sequences are
obtained from their substitution matrix M, which is defined
as

M =
(

n
s(i)
i n

s(j )
i

n
s(i)
j n

s(j )
j

)
, (5)

where n
s(j )
i is the number of i that are generated by applying the

rule s(j ). Several features of the sequences are determined by
the eigenvalues of M. The greatest eigenvalue λ1 determines
the rate of growth of the total number of letters N such that
N ∼ λn

1, n 	 1, where n is the number of iterations in the
construction of the sequence. The second greatest eigenvalue

λ2 determines the wandering exponent ω [Eqs. (3) and (4)]
through

ω = ln |λ2|
ln λ1

(6)

such that the fluctuation in one of the letters g is given by [8]

g ∼ N ω. (7)

For the Fibonacci sequence

M =
(

1 1
1 0

)
, (8)

λ1 = (1 + √
5)/2, and λ2 = −λ−1

1 such that ω = −1, as
anticipated. Therefore, the aperiodic modulation obtained with
the Fibonacci sequence, within the mean-field approximation
applied to the Ising model, is a marginal one when the sequence
acts on one of the spatial directions.

We study the present model Eq. (1) within the sim-
plest mean-field approximation. It may be obtained either
from the Bogoliubov inequality [10] with a single-spin trial
Hamiltonian or, in a less rigorous framework, from substituting
the magnetization mi for the spin Si . Due to the aperiodic
modulation, the values of mi vary along the direction upon
which the aperiodic sequence acts (although they are the same
for a given hyperplane perpendicular to this direction). The
system of equations one has to solve is

mi = tanh[Ki−1mi−1 + (z − 2)Kimi + Kimi+1 + h],

i = 1, . . . ,N, (9)

where Kl ≡ βJl , h ≡ βH , β ≡ 1/kBT , H is a uniform
magnetic field, kB is Boltzmann constant, T is the temperature,
and N is the number of hyperplanes on the system (or,
equivalently, the size of the aperiodic sequence).

III. RESULTS

A. Critical temperatures

The first task is to obtain the critical temperature Tc; our
strategy is to calculate pseudocritical temperatures for finite
systems and extrapolate the data to the thermodynamic limit.
Since the transition is expected to be a continuous one and our
goal is to calculate Tc, we can expand Eq. (9) with H = 0 up
to first order on the magnetizations:

K · �m = 0, (10)

where

K =

⎛
⎜⎜⎜⎜⎜⎝

K̃1 K1 0 0 · · · 0
K1 K̃2 K2 0 · · · 0
0 K2 K̃3 K3 · · · 0

...
0 0 0 · · · KN−1 K̃N

⎞
⎟⎟⎟⎟⎟⎠ (11)

and

�m =

⎛
⎜⎜⎜⎜⎝

m1

m2

m3
...

mN

⎞
⎟⎟⎟⎟⎠ , (12)
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with K̃i ≡ (z − 2)Ki − 1 and free boundary conditions
mN+1 = m0 = 0. The interaction parameters K1,K2, . . . ,KN

assume the values KA or KB according to the respective letter
on the Fibonacci sequence. Since we do not expect the critical
exponents to depend on z, we have worked only with z = 6 to
obtain the critical parameters.

For temperatures greater than the pseudocritical one, the
only solution to this system is �m = 0. Thus the matrix K has
an inverse, i.e., det(K) �= 0 for this region of temperatures.
Therefore, coming from above, the first temperature such that
det(K) = 0 is the pseudocritical temperature. This procedure is
applied to systems with different linear sizes L (corresponding
to the length of the aperiodic sequence, N ) and extrapolated
to L → ∞. One has to be sure that the first temperature such
that det(K) = 0 is actually obtained, since many temperatures
satisfy this criterion below the first one and they tend to
accumulate close to the pseudocritical temperature as L

increases.
In order to extrapolate our results to the thermodynamic

limit, we have used the so-called Bulirsch-Stoer (BST)
extrapolation [11] in two different ways (see below). The errors
of our evaluations are obtained as usual for this method of
extrapolation [11].

Since we expect log-periodic oscillations on models with
aperiodic-modulated interactions, the pseudocritical tempera-
tures do not converge monotonically to the thermodynamic
values: on top of an apparent overall convergence, there
are oscillations on the values for finite L. Therefore, we
have also applied the BST procedure to every other value
of the pseudocritical temperatures. Both procedures lead to
the same values in the thermodynamic limit. In Table I we
show our results for the critical temperatures for several values
of the ratio r , extrapolated from pseudocritical temperatures
obtained for L up to 121 393 for r = 0.5 and 1.3 and up to
196 418 for the other values of r . Note that we show ten decimal
figures for r �= 1, which is certainly enough to obtain precise
values for the critical exponents. For r = 1 we show all figures
we are able to obtain since we can compare it to the expected
value within the mean-field approximation: there is agreement
up to 15 decimal figures.

In Fig. 2 we compare our values for Tc with those obtained
in Ref. [6]. The quantity T 0

c is the critical temperature for a
uniform model with the same mean value J̄ for the interaction
constant J for a given r . More precisely, J̄ ≡ JA(pA + rpB),
where pA and pB are the fractions of letters A and B, respec-
tively, on the infinite aperiodic sequence. These fractions are
obtained from the entries of the eigenvector corresponding to

TABLE I. Extrapolated critical temperatures for several values of
the ratio r ≡ JB/JA. For r = 1 (the uniform model) we obtain, within
error bars, the exact value kBTc/J = z = 6.

r kBTc/JA

0.5 5.2939768858
0.7 5.4801586902
1.0 6.000000000000038(64)
1.3 6.8300746634
1.5 7.4992699398

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

T c
/T

c0

r = JB/JA

FIG. 2. Comparison between our values for Tc (dashed line) and
those obtained in Ref. [6] (solid line). We define the quantity T 0

c in
the text.

the greatest eigenvalue of the substitution matrix. We notice
the agreement is quite good; the apparent difference for some
regions of r comes from the fact that we have few data points
and have made an interpolation of our data.

B. Magnetization

Having calculated the critical temperatures, we can now
obtain, from the original system of equations (9), the mag-
netization for each plane. The goal is to solve this system
for mi for different values of the reduced temperature t ≡
(T − Tc)/Tc and the reduced magnetic field h (≡βH ). In
order to accomplish this we test three procedures: the first
one is based on the Newton method [12], the second one
uses the secant method [12], and the third one is the so-called
fixed-point method [13]. We analyze the convergence time, for
large systems and for small values of the reduced temperature,
and the accuracy (with respect to known results for small
lattices). The first method is the less precise, the secant method
is the most efficient for small values of t , and the fixed-point
method is the most efficient for large lattices. We choose the
last one to be able to go to larger systems.

After a predetermined accuracy is achieved, within the
fixed-point method, we stop the iterations and calculate the
mean magnetization as

m(L) = 1

L

L∑
i=1

mi. (13)

As discussed elsewhere [6,8,14], this quantity may be exper-
imentally accessible. We now have to extrapolate the values
obtained for L → ∞. As expected for aperiodic-modulated
models, oscillations occur as depicted in Fig. 3; in order to
obtain the value of m ≡ m (L → ∞), we use the extrapolation
procedure introduced in Ref. [8]. It simply takes the two last
pairs of values for m(L) and makes a linear extrapolation with
each of them. The values m1 and m2 (see Fig. 3), obtained
for 1/L = 0, are then the limits of our estimate for m in the
thermodynamic limit. We then take m = (m1 + m2)/2 and
the error �m = |m1 − m2|/2. From Fig. 3 we clearly see
that this procedure gives an interval for the magnetization
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FIG. 3. Typical behavior for the magnetization, for fixed reduced
temperature t or fixed reduced magnetic field h, as a function of the
linear size of the lattice L. Note the oscillatory convergence to the
thermodynamic limit, as expected for aperiodic-modulated models.

that contains the true value in the thermodynamic limit,
although it overestimates the error. The same procedure was
employed to obtain the magnetization for a nonzero magnetic
field, which is necessary to calculate the critical exponents δ

and γ (see the following section).

C. Critical exponents

1. Critical exponent β

Our first attempt to estimate the critical exponent β is to fit
our data, obtained in the thermodynamic limit, as explained in
the preceding section, to a log-periodic function

m(t) ∼ (−t)βP[log10(−t)], (14)

where we assume the following form for the function
P[log10(−t)]:

P[log10(−t)] ∼ {1 + B cos[2πC log10(−t) + τφ]}. (15)

Therefore, for the magnetization we obtain

m(t) = A(−t)β{1 + B cos[2πC log10(−t) + τφ]}, (16)

where 2π and τ = (
√

5 + 1)/2 are convenient constants for
the fitting.

Our results for β, using Eq. (16), are shown in Table II,
column 2. The amplitude of the log-periodic term is roughly
5 × 10−3 for all values of r except r = 1 (this term is not
present). Two results are worth noting: the exponent for r = 1
(the uniform model) is known to be 1/2; our result, although
near this value, is not consistent with it. Also, the χ2 per
degrees of freedom is much greater than 1. This shows that
our fitting is not a good one for the aperiodic models.

To improve our estimates for β, we follow another proce-
dure, which consists in calculating the so-called logarithmic
derivative, namely,

L(t) � d log10[m(t)]

d log10(−t)
∼ β + B̃ cos[2πC log10(−t) + φ̃],

(17)

TABLE II. Magnetization critical exponent β as a function of
the ratio r , obtained by (a) fitting the data to Eq. (16), (b) using
the logarithmic derivative, and (c) fitting the data to Eq. (16), but
restricting the interval in log10(−t). The numbers in parentheses are
uncertainties in the last digit.

β

r (a) (b) (c)

0.5 0.56872(4) 0.5683(2) 0.56824(4)
0.7 0.5439(3) 0.54558(2) 0.545553(6)
1.0 0.489(1) 0.49989(4) 0.49984(2)
1.3 0.5270(4) 0.53033(5) 0.53041(2)
1.5 0.5465(3) 0.54884(4) 0.54892(2)

where it is assumed that B � 1 in Eq. (15). This derivative
is obtained numerically and the data are fitted to Eq. (17).
Examples of the type of behavior we obtain are depicted in
Figs. 4(a) and 4(b) for r = 0.7 and 1.5, respectively. There is a
clear oscillation, as predicted by Eq. (17); the mean value of the
fitted curve is the exponent β. Note, however, that for values
of log10(−t) close to −1 the behavior departs from the one
predicted. Therefore, this interval is not in the scaling region
and should not be used to study the critical behavior. Our fitting
is then obtained with the data points in the proper interval.

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

−6 −5 −4 −3 −2 −1

log10(−t)

r = 0.7

(a)

(t)

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

−6 −5 −4 −3 −2 −1

log10(−t)

r = 1.5

(b)

(t)

FIG. 4. Logarithmic derivative of the magnetization for (a)
r = 0.7 and (b) r = 1.5. The solid lines are fittings using Eq. (17),
while the points are our numerical data.
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 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

log10(−t)

r = 1.0

(t)

FIG. 5. Logarithmic derivative of the magnetization for r = 1.
The solid lines are fittings using Eq. (17), while the points are our
numerical data. Error bars are approximately the same size as the
points.

For comparison, we show the graph of the log-derivative for
r = 1 in Fig. 5: no oscillation is present, but the deviation
from the expected behavior (in this case, a horizontal line) is
obtained for −t big enough. Results for β with this procedure
are shown in Table II, column 3. Although the value for
r = 1 does not include the known value for the mean-field
approximation, it is closer to the expected value than for the
previous procedure and correct up to the third decimal place.
Another improvement with respect to the previous procedure
is that the values obtained for χ2 are orders of magnitude
smaller: they range from 10−3 to 10−1. The amplitude of the
log-periodic term is small, as expected (the maximum value for
the values of r we studied is approximately 10−2, for r = 0.5)
and increases as we move further away from the uniform case,
as expected [15].

As a final check, we make fittings using Eq. (16), but
now with a restricted interval of the reduced temperature t .
We use the interval in which the log-derivative behavior is
well described by the data. In Fig. 4(a), for example, this
interval is −4.9 � log10(−t) � −2.5. The values so obtained
of β are shown in Table II, column 4: although the result for
r = 1 is closer to the expected value within the mean-field
approximation than for the first fitting procedure, it is not
better than the second one. Also, χ2 has decreased a great
deal compared to the first procedure, but it is still orders of
magnitude greater than for the log-derivative fitting. Therefore,
we take as our results for β those in Table II, column 3.
Finally, we would like to stress the excellent agreement
between our results for this exponent and those in Ref. [6]
(see Fig. 6).

2. Critical exponent δ

In order to calculate the exponent δ, one has to study
the dependence of the magnetization on the external uniform
magnetic field h. As a log-periodic dependence is expected,
we also make all three fitting procedures described above for
this case. Again, the best results are obtained for the second
one.

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.6  0.8  1  1.2  1.4

r = JB/JA

β

FIG. 6. Exponent β as a function of r from the data obtained in
this work (solid line) and from the results of Ref. [6] (dashed line).

More precisely, we assume the dependence of m on H to
be [a sgn(H ) term is present in the following equation, but we
have omitted it for clarity]

m(H ) = A|H |1/δ{1 + B cos[2πC log10 |H | + τφ]}. (18)

Therefore, the log-derivative is given by (again, taking into
account that the amplitude of the log-periodic oscillation is
small)

L(H ) � d log10(m)

d log10 |H | = 1

δ
+ B̃ cos[2πC log10 |H | + φ̃]. (19)

The typical behavior is depicted in Fig. 7: again, log-periodic
oscillations are present and the critical exponent δ is obtained
from the previous function Eq. (19).

The critical exponents are shown in Table III. The mean-
field value for r = 1 is 1/3; our numerical evaluation agrees
with this result up to the fourth decimal place. For the
uniform model, as expected, no oscillation is present in the
log-derivative. Finally, for the values of r quoted in Table III,
B̃ [see Eq. (19)] varies from 10−3 to 10−4 and increases as we
move away from the uniform model. The values of χ2 (not
shown) vary from 10−3 to 10−5 for the aperiodic models and
equals 10−9 for the uniform case. These results are evidence
of good fittings.

3. Critical exponent γ

We have calculated the susceptibility χ (t) using two
different methods. First, for each reduced temperature t , we
calculate the magnetization for two different (small) magnetic
fields and perform a numerical derivative to obtain χ (t).
Alternatively, we can differentiate Eq. (9) with respect to H

and obtain a system of equations with χi(T ),i = 1, . . . ,N,

as the variables. Solving for these, we can calculate the
susceptibility χ (t) ≡ ∑

i χi(T )/N .
For the first method, we used the first two procedures quoted

in Secs. III C 1 and III C 2, namely, fitting the data to the
functions

χ (t) = A|t |−γ {1 + B cos[2πC log10 |t | + τφ]} (20)
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 0.35

 0.36
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(H)

FIG. 7. Field logarithmic derivative of the magnetization for (a)
r = 0.7 and (b) r = 1.5. The solid lines are fittings using Eq. (19),
while the points are our numerical data. Error bars are approximately
the same size as the points.

and

L(t) = d log10[χ (|t |)]
d log10 |t | = −γ + B̃ cos[2πC log10 |t | + φ̃].

(21)

However, contrarily to what happened for the two previous
critical exponents, it is not possible to identify a clear log-
periodic oscillation for the log-derivative of χ (t). This may
be due to the importance of more than one harmonic in the
behavior of this function [15]; we cannot test this hypothesis
because we do not have enough data to obtain one period of
the log-periodic oscillation.

TABLE III. Critical exponent δ as a function of r for fittings to
log-derivative functions Eq. (19). The numbers in parentheses are
uncertainties in the last digit.

r 1/δ

0.5 0.37402(2)
0.7 0.358745(3)
1.0 0.33328(1)
1.3 0.34995(2)
1.5 0.360770(5)

TABLE IV. Susceptibility critical exponent as function of r . The
term γ stands for the critical exponent calculated using the fitting
procedure described in the text; γcalc stands for the calculation using
the equality between exponents γ , β, and δ; and the last column
shows the percentage difference between the two estimates for γ .

r γ γcalc = β(δ − 1) �γ (%)

0.5 0.9557(8) 0.9511(5) 0.5
0.7 0.9812(8) 0.97522(5) 0.6
1.0 1.0010(3) 1.0000(2) 0.1
1.3 0.994(2) 0.9851(2) 0.9
1.5 0.9772(7) 0.9725(1) 0.5

Therefore, for the γ critical exponent we obtain results only
from the fitting to a log-periodic function as in Eq. (21). These
results, although not as precise as the ones obtained from
the log-derivative function, should not differ from the correct
values by more than 0.6%, according to the comparison made
for the critical exponents β and δ. Our results are shown in
Table IV. The mean-field value for the critical exponent of the
uniform case is 1; our evaluation is 0.1% off.

We also calculate γ using the usual scaling relation
γ = β(δ − 1), which still holds true for anisotropic models
(see Sec. III C 4), with β and δ taken from the log-derivative
fittings. The comparison is in Table IV: note that the discrep-
ancy is 0.9% for the worst case, which confirms our evaluation
that the values would not differ by much more than 0.6%.

As mentioned earlier, another possible method to obtain
the susceptibility is to perform a field derivative of the
system of equations for the magnetization Eq. (9) in order
to obtain a system of equations for χi . These are given by
the solution of this system in the same manner that we did
for the magnetization. The results are the same as for the
previous method, as expected. In particular, we are not able to
characterize the log-periodic oscillations either.

4. Other critical exponents

We now turn to the calculation of other critical exponents
using the scaling relation for the free energy for anisotropic
systems. Due to the presence of the aperiodicity in one dimen-
sion, we expect different correlation lengths in the direction of
the aperiodic modulation, ξ‖ ∼ tν‖ , and along the other direc-
tions ξ⊥ ∼ tν , with q ≡ ν‖/ν �= 1 [16]. Assuming the scaling
ansatz for a system in d dimensions (see Ref. [17], where the
scaling relation is proposed for two-dimensional models),

fs(t,h,L) = b−(d−1+q)fs(b
1/ν,byh ,L/b), (22)

where fs is the singular part of the free energy, b is the
rescaling factor, yh is a scaling exponent, and L is the linear
size of the lattice. From Eq. (22) one can show, in the usual
way, the following relations between critical exponents [18]:

γ = β(δ − 1), α + 2β + γ = 2, α = 2 − ν(d − 1) − ν‖.
(23)

Therefore, assuming ν = 1/2 (since the aperiodic sequence
we study is a marginal one [6]) and d = 4, the exponents α

and ν‖ assume the values shown in Table V. Note the good
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TABLE V. Critical exponents calculated from scaling relations
for anisotropic systems.

r 0.5 0.7 1.0 1.3 1.5

α −0.0877(9) −0.06638(9) 0.0002(2) −0.0458(3) −0.0701(2)
ν‖ 0.5877(9) 0.56638(9) 0.4998(2) 0.5458(3) 0.5701(2)
η‖ −0.066(4) −0.0734(4) 0.0004(9) −0.057(2) −0.0746(8)

accordance with the mean-field values for the uniform model
(r = 1) and the expected increase of ν‖ and decrease in α when
we move away from r = 1.

Assuming a similar scaling form for the two-point cor-
relation function �(x,y), where x is the distance along the
aperiodic direction and y is the distance along the remaining
d − 1 directions,

�(x,y,t) � t2βG(x/|t |−ν‖ ,y/|t |−ν), (24)

one can show that

d − 2 + η‖ = 2β/ν‖, d − 2 + η = 2β/ν, (25)

where �(x,0,0) ∼ xd−2+η‖ and �(0,y,0) ∼ yd−2+η. There-
fore, the exponent η assumes the usual mean-field value,
namely, η = 0. The values obtained for the exponent along
the aperiodic direction η‖ are shown in Table V, assuming
d = 4, as before. As expected, the value for the uniform
model is consistent with the known value for the mean-field
approximation. However, note that the value for r = 0.5 is
closer to the uniform results than for r = 0.7. Since η‖ is close

to zero and it is obtained from ν‖, which itself is calculated
from scaling relations, one expects a higher inaccuracy.

IV. CONCLUSION

We employ a mean-field approximation to treat an Ising
model with aperiodic modulation in one spatial direction. The
particular aperiodic sequence we use is a marginal one, in
the context of the Harris-Luck criterion. We calculate many
equilibrium critical exponents, including ν‖ and η‖, assuming
d = 4 to be the upper critical dimension of the model and a
particular scaling form for the singular part of the free energy
per site and for the two-point correlation function, suitable
for anisotropic models. As expected, the exponents (with
the exception of ν and η) depend on the ratio r = JB/JA,
but obey the usual scaling relations for anisotropic models
whenever possible to test these relations. Our results are in
accordance with the known values for the mean-field procedure
(for the uniform model, r = 1) or with previous results for the
exponent β and critical temperatures [6].
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