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Critical short-time dynamics in a system with interacting static and diffusive populations
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We study the critical short-time dynamical behavior of a one-dimensional model where diffusive individuals
can infect a static population upon contact. The model presents an absorbing phase transition from an active to an
inactive state. Previous calculations of the critical exponents based on quasistationary quantities have indicated
an unusual crossover from the directed percolation to the diffusive contact process universality classes. Here we
show that the critical exponents governing the slow short-time dynamic evolution of several relevant quantities,
including the order parameter, its relative fluctuations, and correlation function, reinforce the lack of universality
in this model. Accurate estimates show that the critical exponents are distinct in the regimes of low and high
recovery rates.
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I. INTRODUCTION

Classical many-particle systems, stochastically defined by
a set of allowed configurations, are good examples of complex
systems with a master equation governing the transition rates
[1]. Nonequilibrium phase transitions from an active to an
absorbing state have been a topic of great interest in this field
[2–4]. In this class of systems, there is no detailed balance and
the fluctuation-dissipation theorem does not hold, features that
are usually explored in studies of equilibrium phase transitions.
The basic model possessing a dynamic transition from an
active state into an absorbing state is the contact process (CP), a
prototype model for the directed percolation (DP) universality
class [5,6]. If diffusion is allowed, the critical behavior of
the absorbing state phase transition is heavily influenced and
deviations from the DP class have been reported [7–19]. In a
CP in which the active and inactive particles can diffuse, it has
been demonstrated, both by field theoretical renormalization
group arguments [8] and numerical simulations [9], that three
distinct regimes associated with the absorbing state phase
transition emerge depending on the relative diffusivity of the
active and inactive particles.

The critical behavior of one-dimensional diffusive epidemic
processes (DEP) with coupled static and diffusive populations
was recently analyzed and the scaling behavior of quasistation-
ary quantities was explored [11,15,18]. It was obtained from
finite-size scaling arguments that the exponent β/ν⊥ governing
the size dependence of the order parameter at the critical point
is weakly dependent on the model parameters, particularly
the recovery rate at which active individuals become inactive.
By contrast, the correlation length exponent ν⊥ varies from
the diffusive CP universality class value at low recovery rates
to the DP value at large recovery rates. This result points to
distinct critical regimes in these two limits, even though active
and inactive particles have the same diffusivity. However, sim-
ulations based on quasistationary properties are usual limited
to relatively small system sizes and the slow convergence to
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the asymptotic scaling behavior may compromise the accuracy
of the evaluated critical parameters. Therefore independent
estimates of the critical exponents derived from an alternative
procedure are in order to further probe such conjectured lack of
universality.

Here we address the above question by exploring the critical
short-time dynamics. Due to the critical slowing down, the
physical properties evolve in time as power laws. Besides being
able to provide new dynamical critical exponents, scaling
relations can be used to extract the static ones which can
be compared with the estimates based on quasistationary
calculations. In particular, we follow the time evolution of
the order parameter, its logarithmic derivative, and the relative
order-parameter fluctuations starting from the full active state.
These can be used to estimate the order-parameter exponent
β, the correlation length exponent ν⊥, and the dynamical
exponent z. Further, starting from a state with an infinitesimal
order, the critical initial slip exponent θ is estimated. All results
are consistent with a nonuniversal behavior with a distinct set
of critical exponents governing the transition at low and high
recovery rates.

II. MODEL, SIMULATIONS, AND SCALING

We consider a one-dimensinal lattice populated with two
distinct species [18]. One of them is composed of static
individuals that can be in either an active (infected) state Pa

or an inactive (noninfected) state Pi . With no diffusion, the
infected individuals cannot contaminate their neighbors. In
order to spread the infection we consider a second population
(vectors) which also can be found in either an active (infective)
state Va or an inactive (noninfective) state Vi . The vector
population diffuses performing a random walk on the lattice.
Active states are transmitted whenever an inactive individual
of one population occupies the same site of an active individual
of the other population.

We consider chains of size L with periodic boundary
conditions. The diffusion rates of infective and noninfective
vectors are assumed to be equal. The inactive vector becomes
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active whenever its site is occupied by an active individual
Pa . However, it may recover to the inactive state with
probability φ. Within the same lattice sweep, each inactive
individual becomes active if its site is occupied by at least
one active vector. Active individuals become inactive with
probability λ.

In Ref. [18] we reported numerical data for some qua-
sistationary quantities (density of infected individuals and
its relative fluctuations) from simulations for φ = λ = 0.1
(low recovery rates) and φ = λ = 0.7 (high recovery rates).
For high densities of vectors, the system always remains in
an active phase with a fluctuating finite density of infected
individuals. In contrast, at low density of vectors, the system
evolves toward the absorbing inactive state. Therefore, the
density of vectors is a natural parameter to control the transition
between the absorbing and active states. For the simulation
at a large recovery rate, λ = φ = 0.7, the critical density of
vectors is very high and the diffusive particles do not need
to walk to spread the infection because practically all sites of
the lattice are occupied by a vector. In this case, the usual
exponents of directed percolation were obtained from the
quasistationary calculations. In the limit of low recovery rates,
the critical density of vectors is small. Under this condition
of scarce vectors, the diffusive particles need to walk long
distances to spread the infection. In this regime, the results
are consistent with the renormalization group prediction
of ν⊥ = 2/d = 2 for the diffusive epidemic process with
equally diffusing active and inactive particles [8]. However,
as mentioned in the previous section, the slow convergence
toward the quasistationary state due to the critical slowing
down phenomena restricted the accuracy of the estimated
critical exponents.

In what follows we take an alternative approach that actually
explores the critical slowing down. The slow time evolution
of the physical quantities at criticality can also be described
by power laws with characteristic critical exponents [20,21].
We use such an alternative method of short-time dynamics
and its related finite-size scaling relations to find the critical
exponents characterizing the nonequilibrium phase transition
displayed by the present model. At a critical point, static
as well as dynamic properties of a physical system show
power-law behavior. While the static properties exhibit a
slow power-law dependence on the system size at criticality,
dynamic properties computed at very large system sizes evolve
in time as power laws. Related to the dynamical properties, the
relaxation process is of great importance and may show distinct
trends in the short-time and long-time regimes. Right after the
start of the relaxation, the short-time behavior is governed by
nonuniversal processes. There is an intermediate period which
appears after the initial steps of the relaxation and before the
long-time behavior. This is the critical initial slip described
in Ref. [20]. According to the dynamic scaling approach, the
order parameter (density of infected individuals) ψ(t), at the
critical point, shall obey the scaling form given by

ψ(t) = ψ(0)t θfψ [t θ+β/(ν⊥z)ψ(0)], (1)

where we consider

fψ (x) = 1 if x → 0,

= 1/x if x → ∞. (2)

At the critical point of a continuous phase transition the
average stationary value of the order parameter is zero. The
critical initial increase is a phenomenon that at the critical point
an initially nonzero order parameter will first grow with time
as a power law t θ . The above equations contain the crossover
from the short-time ψ(t) = ψ(0)t θ behavior to the long-time
ψ(t) = ψ(0)t−β/(ν⊥z) behavior. The exponent θ is known as the
critical initial increase exponent (or growth exponent) [21].
At a typical crossover time ψ(0) = t

−[θ+β/(ν⊥z)]
c the order

parameter stops increasing and starts decreasing. Therefore,
for an infinitesimal initial order parameter, the short-time
dynamical regime is quite long. On the other hand, only the
long-time relaxation regime can be probed when the system
starts from its fully ordered state.

In our time-dependent simulation we perform calculations
at the critical vector densities (average number of vector indi-
viduals per site) which are ρc = 0.116(1) for λ = φ = 0.1 and
ρc = 25.89(2) for λ = φ = 0.7 [18]. These critical densities
were evaluated exploring the finite-size scaling behavior of the
statistically stationary order-parameter moment ratio mL(ρ)
(see detailed definition in the next section). In order to achieve
the statistically stationary regime, we disregard the first 10L2

lattice sweeps for all chain sizes and vector densities. After
that, 2 × 105 distinct configurations, separated by L lattice
sweeps, are used to compute the order parameter and its second
moment. Reflecting boundaries are used to avoid the system to
become trapped in the absorbing state. According to finite-size
scaling arguments, the moment ratio becomes size independent
at the critical point, with small corrections to scaling due
to finite-size corrections. The above critical densities were
obtained as the scale invariant point of the order-parameter
moment ratio using lattice sizes up to 2000 sites (for further
detail see Ref. [18]). Here, we tune the system at criticality
and let it to evolve in time, averaging the measured quantities
over a large number nc of copies. Each copy has a different
initialization of the random number generator, thus leading
to distinct evolutions of the stochastic process. We calculate
the average density of infected individuals ψ(t) at time t over
all copies. We do not employed reflecting boundaries in the
present dynamical analysis. The runs in which the system
reached the absorbing state, with all individuals in the healthy
state, are also included in the configurational averages.

III. RESULTS

A. Long-time dynamics

We start by letting the system evolve from a totally ordered
state [ψ(0) = 1] where all individuals are in an infected state.
In this case, only the long-time critical relaxation regime can
be probed. The following scaling relations hold at the critical
point [20,21]:

ψ(ρc,t) =
〈

1

N

N∑
n=1

Pn(t)

〉
∝ t−β/(ν⊥z),

d

dρ
ln ψ(ρc,t) ∝ t1/ν⊥z,

m(ρc,t) =
〈(

1
N

∑N
n=1 Pn(t)

)2〉
(〈

1
N

∑N
n=1 Pn(t)

〉)2 − 1 ∝ td/z, (3)
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FIG. 1. (Color online) Long-time relaxation of the order param-
eter at criticality. We considered chains with L = 10 000 sites and
nc = 2000 for the case of a low recovery rate (φ = λ = 0.1) and
nc = 1000 for the case of a high recovery rate (φ = λ = 0.7). The
relaxation exponents are distinct in these two regimes: β/(ν⊥z) =
0.12(1) for φ = λ = 0.1 and β/(ν⊥z) = 0.161(4) for φ = λ = 0.7.

where, in the present one-dimensional simulations, d = 1. Pn

represents the state of the static individual located at the nth
site which is taken to be Pn = 0 for an inactive individual and
Pn = 1 for an active one. From the above scaling relations (3)
we can extract the exponents z, ν⊥, and β. In Fig. 1 we show
the time evolution of the density of sick individuals ψ(t).
For the case φ = λ = 0.1 we considered a chain with L =
10 000 sites and averaged over nc = 2000 copies. The best fit
to a power law of the asymptotic decay provides β/(ν⊥z) =
0.12(1). Notice that the actual asymptotic regime only sets up
after a short transient of the order of 102 lattice sweeps. The
decay exponent was estimated from the power law fitting in the
interval between 103 and 105 lattice sweeps. For the case φ =
λ = 0.7 we considered the same system size with L = 10 000
sites but averaged over a smaller number of copies nc = 1000
because the fluctuations are rather smaller in this case (large
critical vector density) as compared with the previous one
(small critical density). For such a large recovery rate the
asymptotic regime sets up rather fast. The dynamical exponent
governing the long-time relaxation of the order parameter is
estimated to be β/(ν⊥z) = 0.161(4). Although the difference
between these exponents is larger than the estimated error
bars, which points to distinct universality classes in these two
regimes, they are still close to each other. At this point, one
cannot exclude the possibility of such a difference being due
to small corrections to scaling that would require simulations
on much larger system sizes to become irrelevant.

In Fig. 2 we present our results for the time evolution of the
slope of the derivative of the logarithm of the order parameter
at criticality. Its power-law growth gives an estimate of the
critical exponent ratio 1/ν⊥z. The best fit of the data provides
1/(ν⊥z) = 0.264(8) for φ = λ = 0.1 and 1/(ν⊥z) = 0.54(3)
for φ = λ = 0.7. These two exponents are quite distinct (a
factor of 2), thus giving solid numerical support that these two
regimes indeed belong to distinct universality classes.

In Fig. 3 we present the data for the long-time growth of the
order-parameter fluctuations at the critical point. According
to its scaling behavior, the dynamical exponent 1/z can be
extracted from these data. For the case of a low recovery

FIG. 2. (Color online) Long-time relaxation of dlnψ(ρc,t)
dρ

at criti-
cality. Its power-law growth allows us to estimate the critical exponent
ratio 1/(ν⊥z). For φ = λ = 0.1 we obtain 1/(ν⊥z) = 0.264(8), while
for φ = λ = 0.7 we obtain 1/(ν⊥z) = 0.54(3). Lattice size and
sampling were the same as those used in Fig. 1.

φ = λ = 0.1 we get z = 2.00(1). On the other hand, we
estimate z = 1.59(3) for φ = λ = 0.7. All three exponent
ratios are distinct for the cases of low and high recovery
rates. The results for a low recovery rate are consistent with
the renormalization group prediction of z = ν⊥ = 2 for the
DEP with equally diffusing active and inactive particles [7,8].
On the other hand, the estimated exponents for the case of a
high recovery rate are similar to those of the usual directed
percolation universality class [6].

B. Short-time dynamics

In order to probe the short-time critical dynamics we let the
system evolve after starting with only one infected individual
[ψ(0) = 1/N]. In this case, the critical initial slip persists
during a period long enough to allow us to compute the critical
exponent related to the initial growth of the order parameter.
Besides following the time evolution of the order parameter,
we also compute the temporal evolution of the autocorrelation

FIG. 3. (Color online) Long-time relaxation of the order-
parameter relative fluctuation at criticality. From its power-law growth
the dynamical exponent 1/z can be estimated. For φ = λ = 0.1 one
obtains 1/z = 0.500(3), which implies z = 2.00(1). For φ = λ = 0.7
one gets 1/z = 0.63(1), thus giving z = 1.59(3). Lattice size and
sampling were the same as those used in Fig. 1.
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FIG. 4. (Color online) Initial increase of the density of infected
individuals starting from a configuration with a single infected
individual. For φ = λ = 0.1 we considered L = 10 000 and nc =
20 000. The straight line represents the power law with exponent θ =
0.33(1). For φ = λ = 0.7 we considered L = 10 000 and nc = 5000.
The power-law fitting led to θ = 0.32(1).

function at criticality A(ρc,t) defined as

A(ρc,t) ≡ 1

N

N∑
n=1

〈Pn(t)Pn(0)〉 − 〈Pn(t)〉〈Pn(0)〉. (4)

In the short-time critical regime, these quantities satisfy the
following scaling relations:

ψ(ρc,t) ∝ t θ , (5)

A(ρc,t) ∝ t θ−d/z, (6)

from which we estimate the exponents θ and z. We followed
the initial power-law growth of the order parameter over 3
decades, as shown in Fig. 4. Calculations of the initial growth
regime exhibit stronger fluctuations than those displayed in
the long-time relaxation regime. In order to account for such
stronger fluctuations, we considered a larger number of copies
in order to achieve good statistics. However, the error bars in
the estimated exponents are usually larger than those derived
from the long-time regime.

In Fig. 4 we show the initial increase of the density
of infected individuals starting from [ψ(0) = 1/N ]. For the
case φ = λ = 0.1 (low recovery rate) we considered a chain
size with L = 10 000 sites and averaged over nc = 20 000
copies at the critical density ρc = 0.116(1). The power-law
fitting provides the growth exponent θ = 0.33(1). For the case
of a high recovery rate, φ = λ = 0.7, a smaller number of
nc = 5000 copies was required to achieve similar statistics. In
this case, for which the critical density is ρc = 25.89(2), we
obtained θ = 0.32(1). These two estimates are quite closer,
differing only 3% from each other. The present accuracy is not
high enough to exclude the possibility of these two exponents
being the same.

Finally, in Fig. 5 we present our results for the evolution of
the autocorrelation function, from which we can give a second
independent estimate of the dynamical exponent z using the
previous values of θ . Contrary to the previous quantities,
the autocorrelation function displays larger fluctuations in
the regime of high recovery rates. Its calculation is also
more time-consuming which has restricted its use in past

FIG. 5. (Color online) Time evolution of the autocorrelation
function started from ψ(0) = 1/N . For φ = λ = 0.1 we considered
chains with L = 10 000 sites and averaged over nc = 2500 copies.
The best-fit power law provides θ − 1/z = −0.18(1) from which we
obtain z = 1.96(8). For φ = λ = 0.7 we averaged over nc = 16 000
copies. In this case we obtained θ − 1/z = −0.33(1), which gives
z = 1.54(5).

studies of absorbing state second-order phase transitions.
For φ = λ = 0.1 we averaged over nc = 2500 copies, while
nc = 16 000 copies were required to obtain reasonably good
statistics for φ = λ = 0.7. For the low recovery rate we
obtained θ − 1/z = −0.18(1), from which we get z = 1.96(8).
For the case of a high recovery rate the autocorrelation
function exponent is estimated to be θ − 1/z = −0.33(1),
thus providing z = 1.54(5). Although less accurate, these two
estimates of the dynamical exponent z from the short-time
dynamics scaling are consistent with the values found from
the long-time relaxation dynamics.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the dynamical critical
behavior of an interacting two-species diffusion-limited re-
action one-dimensional model which mimics the propagation
of a disease in a static population mediated by a population
of diffusive vectors. The model presents a transition from an
absorbing to an active state at a critical density of vectors
which depends on the typical recovery rate. At low recovery
rates the critical vector density is small and diffusivity is
a relevant mechanism to spread the infection. On the other
hand, the critical vector density is large at high recovery rates
and the process is mainly activated by contact. We used the
short-time dynamics scaling relations to obtain accurate esti-
mates of the stationary and dynamical critical exponents. Our
results give further support that the absorbing state transition
exhibited by this model belongs to distinct universality classes
in the regimes of low and high recovery rates. The long-time
dynamical critical exponent ratios β/(ν⊥z), 1/(ν⊥z), and 1/z

are distinct in these two regimes. In the case of a low
recovery rate they are compatible with the diffusive contact
process that, according to field-theoretical renormalization
group calculations, shall have ν⊥ = z = 2 in one-dimensional
systems. In the high recovery rate case, the exponents are
compatible with the usual directed percolation universality
class. Further, we computed the critical exponent θ governing
the initial growth of the order parameter in simulations starting
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from a state with an infinitesimal order parameter. The data
give quite close estimates for the growth exponent θ in the
two regimes of recovery rate. Within our numerical accuracy,
we are not able to decide if these two exponents are indeed
distinct in the thermodynamic limit. However, the present
results bring additional evidence that absorbing state phase
transitions occurring in systems with diffusive populations
may display a multitude of universality classes and that models
with coupled diffusive and nondiffusive populations appear

to be good candidates to investigate the crossover between
distinct nonequilibrium critical points.
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