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Entropy production and equilibration in Yang-Mills quantum mechanics
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The Husimi distribution provides for a coarse-grained representation of the phase-space distribution of a
quantum system, which may be used to track the growth of entropy of the system. We present a general and
systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct
a coarse-grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically
solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and
calculate the time evolution of the coarse-grained entropy of a highly excited state. We show that the coarse-grained
entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the
system.
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I. INTRODUCTION

Entropy production in isolated quantum systems is an
interesting and important research problem with many ap-
plications. Due to the unitarity of time evolution in quantum
mechanics, the von Neumann entropy of an isolated quantum
system remains fixed. A proper definition of the concept
of entropy growth for an isolated quantum system thus
requires coarse graining, which, in turn, must be grounded
on a correspondence between quantum and classical physics.
Such a correspondence can be constructed from one of the
phase-space representations of quantum theories found since
the classical works of Wigner and Moyal [1,2]. Recently it was
suggested by Kunihiro et al. [3] that the Husimi representation
of the density operator [4–6] is suitable for describing the
entropy production in an isolated quantum system, because
the long-term growth rate of the entropy defined by the
Husimi distribution approaches the classical limit for long
times. Applications of this formalism include the entropy
production in relativistic heavy-ion collisions and inflationary
cosmology.

The process of entropy production in relativistic heavy-ion
collisions has been studied extensively. The final entropy per
unit rapidity produced in high-energy nuclear collisions at
the Relativistic Heavy-Ion Collider (RHIC) is well known
experimentally. The final entropy produced per unit rapidity
produced in central Au+Au collisions at the top RHIC energy
of 200 GeV per nucleon pair in the center-of-mass frame is
5600 ± 500 at midrapidity [7]. Theoretical studies suggest
that at least half of the final entropy is produced during a
rapid equilibration and thermalization period during the initial
phase of the nuclear collision, with a thermalization time about
1.5 fm/c or less [8,9]. Furthermore, it has been pointed out that
the nuclear matter is transformed in this rapid equilibration
stage from saturated gluonic matter in a universal quantum
state, called the color-glass condensate, into a thermally
equilibrated quark-gluon plasma [10,11]. It is an important
theoretical challenge to construct a formalism capable of
describing the entropy production during this equilibration
and thermalization process.

Another interesting exploration relevant to entropy produc-
tion of quantum systems is reheating of the universe after
inflation [12]. The reheating process starts from a preheating

phase [13], where the inflation field is coupled to the matter
fields, and it transfers energy to the matter fields. These
matter fields then undergo further decays into other particles
until the decay products will eventually reach a thermal
equilibrium. Through these stages, the reheating process of
the universe after inflation produces a gigantic amount of
entropy.

To deal with applications to such a wide range of physical
systems, it is desirable to construct a general formalism
describing the coarse-grained entropy production in an isolated
quantum system from the growth of complexity of the quantum
system. In this work we apply the formalism developed in
Ref. [3] to study the coarse-grained entropy production of
a specific nonintegrable quantum system and its approach
to microcanonical equilibrium. As an example, we choose
a simple quantum system that possesses chaotic dynamical
behavior. It is well known that chaotic dynamical behavior
requires that an isolated, conservative dynamical system must
have at least four degrees of freedom (two position and two
momentum variables) [14]. The two-dimensional quantum
system we have chosen, often called the xy model or two-
dimensional Yang-Mills quantum mechanics, has well-known
chaotic properties [15]. We find that the coarse-grained entropy
production of this quantum system saturates, and we obtain a
characteristic time after which the complexity of the system
no longer increases.

This article is structured as follows. In Sec. II we briefly
introduce the Husimi representation of the density operator and
explain how it is applied to a definition of the coarse-grained
entropy of a quantum system, also known as the Wehrl-Husimi
entropy. On the way, we propose a novel method to derive the
coarse-grained Hamiltonian whose expectation value serves
as a constant of motion for time evolution of the Husimi
distribution. In Sec. III we discuss the equation of motion
of the Husimi distribution and introduce the test-particle
method for obtaining the numerical solutions to this equation.
After transforming the Husimi equation of motion into a
system of equations of motion for test particles, we solve
these equations to obtain the Husimi distribution and the
Wehrl-Husimi entropy as a function of time in Sec. IV. We
analyze the time dependence of the Wehrl-Husimi entropy
and obtain a characteristic time scale, after which the entropy
is saturated. In addition, we propose a method to investigate
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the value of the saturated Wehrl-Husimi entropy for an
infinitely large test-particle number, which is independent
of the test-particle approximation scheme. Furthermore, we
compare the saturation value of the Wehrl-Husimi entropy
to equilibrium-based definitions of the entropy of the same
quantum system. The difference between the microcanonical
and the Wehrl-Husimi entropy serves as a probe for when and
whether the quantum system equilibrates.

II. GENERAL FORMALISM

A. Husimi distribution and coarse-grained entropy

The main goal of this paper is to study the entropy
production of a quantum system as a function of time. To define
a coarse-grained entropy, it is necessary to construct a mapping
that not only creates a correspondence between the dynamics
of the quantum system and that of the classical system, but
also ensures that the resulting coarse-grained distribution is
non-negative and thus can be used for the definition of the
coarse-grained entropy [3]. A minimal coarse graining of a
quantum system is achieved by projecting its density operator
on a coherent state [4]. The resultant distribution function is
known as the Husimi distribution ρH (t ; q,p), which is positive
semidefinite function on the phase space. We note that the
Husimi distribution is not unique, but depends on the choice
of the canonical variables (q,p). Even for a specific choice of
(q,p) it depends on the smearing parameter α, as discussed
below. For a two-dimensional quantum system, the Husimi
distribution is defined as

ρH (t ; q1,q2,p1,p2) = 〈z1,z2; α|ρ̂(t)|z1,z2; α〉, (1)

where ρ̂(t) denotes the density operator, α is a parameter, and
the coherent state |z1,z2; α〉 satisfies

â1,α|z1,z2; α〉 = z1,α|z1,z2; α〉,
â2,α|z1,z2; α〉 = z2,α|z1,z2; α〉,

with

â1,α = 1√
2α

(
q̂1 + i

α

h̄
p̂1

)
, (2)

â2,α = 1√
2α

(
q̂2 + i

α

h̄
p̂2

)
. (3)

Note that α is related to the smearing parameter � in
Refs. [3,8] by α = h̄/�. The definition (1) ensures that the
Husimi distribution is non-negative within all of phase space.
Throughout this paper, the notion of ρH (t ; q,p) always implies
a dependence on α, as indicated in (1). The Husimi distribution
can also be obtained by Gauss smearing of the Wigner function.
Let W be the Wigner function defined by

W (t ; q,p) =
∫ ∞

−∞
d2x

〈
q − x

2

∣∣∣∣ρ̂(t)

∣∣∣∣q + x
2

〉
e

i
h̄

p·x. (4)

The Husimi distribution is obtained by convolution of the
Wigner distribution with a Gaussian:

ρH (t ; q,p) = 1

π2h̄2

∫ ∞

−∞
d2q′ d2p′ W (t ; q′,p′)

×e−(q′−q)2/α−α(p′−p)2/h̄2
. (5)

Since the Husimi distribution is a minimally (in the sense
of the uncertainty principle) smeared Wigner function, it was
proposed in Ref. [3] that the Husimi distribution can be applied
to the definition of a minimally coarse-grained entropy, the
Wehrl-Husimi entropy. In two dimensions,

SH (t) = −
∫

d2q d2p
(2πh̄)2

ρH (t ; q,p) ln ρH (t ; q,p). (6)

The properties of the Wehrl-Husimi entropy are reviewed in
Ref. [16]. In addition, Wehrl conjectured that SH (t) � 1 for
any one-dimensional system, where the equality holds for
a minimum uncertainty distribution [17]. Lieb proved this
conjecture in Ref. [18]. We here generalize Wehrl’s conjecture
to that of a two-dimensional system:

SH (t) � 2, (7)

where the equality holds for a minimum-uncertainty Husimi
distribution. We confirm in Sec. IV A that our numerical results
satisfy the bound (7). To investigate the time dependence of the
coarse-grained entropy, we now derive the equation of motion
for the Husimi distribution.

B. Time evolution of Husimi distribution

In quantum mechanics, the Liouville equation

ih̄
∂ρ̂(t)

∂t
= [Ĥ,ρ̂(t)], (8)

where Ĥ denotes the Hamiltonian operator, describes the time
evolution of the density operator. One can study the time
evolution of a quantum system by mapping the equation of
motion of the density operator in the Hilbert space onto that of
the corresponding density distribution in the phase space. The
Husimi equation of motion is obtained by subjecting both sides
of Eq. (8) to the Husimi transform (1). For a one-dimensional
quantum system, the Husimi equation of motion was first
derived by O’Connell and Wigner [19]. Here we derive the
the Husimi equation of motion for two-dimensional quantum
system. For a single particle in two dimensions, the classical
counterpart of the Hamiltonian Ĥ reads

H = 1

2m

(
p2

1 + p2
2

) + V (q1,q2), (9)

where m is the mass of the particle and V (q1,q2) is the potential
energy. For the Hamiltonian system whose potential energy
V (q1,q2) is a C∞-differentiable function of (q1,q2), we apply
(4) and (5) to (8), perform a series expansion of V in powers
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of q1 and q2, and finally obtain the equation of motion for the Husimi distribution:

∂ρH

∂t
= − 1

m

2∑
j=1

(
pj + h̄2

2α

∂

∂pj

)
∂ρH

∂qj

+
∑

λi ,μi ,κi

[
(ih̄)λ1+λ2−1

2λ1+λ2+μ1+μ2−1

αμ1+μ2−κ1−κ2

λ1!λ2!κ1!κ2! (μ1 − 2κ1)! (μ2 − 2κ2)!

× ∂λ1+μ1

∂q
λ1+μ1
1

∂λ2+μ2

∂q
λ2+μ2
2

V (q1,q2)
∂λ1

∂p
λ1
1

∂λ2

∂p
λ2
2

∂μ1−2κ1

∂q
μ1−2κ1
1

∂μ2−2κ2

∂q
μ2−2κ2
2

ρH

]
, (10)

where λi , μi , and κi are summed over all non-negative integers,
with the constraints that (λ1 + λ2) is odd, (μ1 − 2κ1) � 0,
and (μ2 − 2κ2) � 0. We note that Eq. (10) is exact. This
closed form was obtained by Sinitsyn and Tsukernik [20], and
the pioneering results were obtained by Agarwall and Wolf
[21–23]. When the potential energy is of polynomial form,

V (q1,q2) =
n1∑

i=0

n2∑
j=0

aij q
i
1q

j

2 , (11)

with the coefficients aij and non-negative integers n1 and n2,
one finds that the additional constraints (λ1 + μ1) � n1 and
(λ2 + μ2) � n2 apply to the sum in (10).

We now specialize our investigation to the Hamiltonian

H = 1

2m

(
p2

1 + p2
2

) + 1

2
g2q2

1q2
2 , (12)

which describes a dynamical system known as Yang-Mills
quantum mechanics [15]. The Hamiltonian in (12) is almost
globally chaotic, except for a tiny portion of the phase space
in which stable orbits have been discovered [24,25]. For the
potential energy in the last term of (12), the order of the
derivatives of V (q1,q2) in (10) is restricted by the relations
(λ1 + μ1) � 2 and (λ2 + μ2) � 2. Therefore, we can rewrite
the Husimi equation of motion (10) as

∂ρH

∂t
= −

2∑
j=1

[
pj

m

∂ρH

∂qj

+
(

h̄2

2mα
− α2

8

∂4V

∂q2
1∂q2

2

)
∂ρH

∂pj∂qj

]
+

2∑
j=1

(
∂V

∂qj

∂ρH

∂pj

+ α

2

∂2V

∂q2
j

∂ρH

∂pj∂qj

)

+α

4

(
∂3V

∂q1∂q2
2

∂ρH

∂p1
+ ∂3V

∂q2
1∂q2

∂ρH

∂p2

)
+ α

2

∂2V

∂q1∂q2

(
∂2ρH

∂p1∂q2
+ ∂2ρH

∂p2∂q1

)

+1

4

∂3V

∂q2
1∂q2

[
α2

(
∂3ρH

∂p1∂q1∂q2
+ 1

2

∂3ρH

∂p2∂q2
1

)
− h̄2

2

∂3ρH

∂p2
1∂p2

]

+1

4

∂3V

∂q1∂q2
2

[
α2

(
∂3ρH

∂p2∂q1∂q2
+ 1

2

∂3ρH

∂p1∂q2
2

)
− h̄2

2

∂3ρH

∂p1∂p
2
2

]

+ 1

16

∂4V

∂q2
1∂q2

2

[
α3

(
∂4ρH

∂p1∂q1∂q2
2

+ ∂4ρH

∂p2∂q2
1∂q2

)
− h̄2α

(
∂4ρH

∂p2
1∂p2∂q2

+ ∂4ρH

∂p1∂p
2
2∂q1

)]
. (13)

It is not easy to solve the Husimi equation of motion (13).
Before we embark on this challenge, we first prove the energy
conservation of the Husimi function in Sec. II C, and then solve
(13) by the test-particle method in Sec. III.

C. Energy conservation

A coarse-grained Hamiltonian, which describes energy
conservation in the Husimi representation, was introduced by
Takahashi [26–28], who identified the quantum corrections to
the classical Hamiltonian in powers of h̄ and then constructed
a conserved Hamiltonian for the Husimi representation by
adding these quantum corrections to the classical Hamilto-
nian. Explicit expressions for this coarse-grained Hamiltonian
were found for a few one-dimensional quantum systems
[26–28]. Here we propose a novel derivation of the conserved
coarse-grained Hamiltonian. Our approach, which involves

no approximation, exploits the analytic properties of the
transformation between the Wigner and Husimi distributions.

We now derive the coarse-grained Hamiltonian for the
two-dimensional Yang-Mills quantum mechanics model. The
derivation for a one-dimensional quantum system is presented
in Appendix B. Our method can be easily extended to
the derivation of the coarse-grained Hamiltonian for higher-
dimensional quantum systems with polynomial potentials.

The expectation value of a Hamiltonian in the Wigner
representation is defined as

E[HW ] =
∫ ∞

−∞
d	q,p H(q,p)W (t ; q,p), (14)

where H is the Hamiltonian, W is the Wigner function defined
in (4), and

d	q,p = d2q d2p
(2πh̄)2

(15)
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is the four-dimensional phase-space measure. In quantum
mechanics, the energy of the system is calculated as 〈Ĥ〉 =
tr(ρ̂Ĥ). Starting from the Liouville equation (8) it is straight-
forward to show that ∂〈Ĥ〉/∂t = 0. It is also easily shown [29]
that 〈Ĥ〉 = E[HW ]. Therefore, E[HW ] is a constant of motion
under the time evolution of the Wigner distribution. We now
apply the convolution theorem to invert the transformation in
(5) and obtain

E[HW ] =
∫ ∞

−∞
d	q,p HH (q,p)ρH (t ; q,p), (16)

where

HH (q,p) = 1

16π4

∫ ∞

−∞
d2q′ d2p′ H(q′,p′)

×
∫ ∞

−∞
d2u d2v exp

[
α

4
u2 + h̄2

4α
v2

− iu · (q′ − q) − iv · (p′ − p)

]
, (17)

and u and v are the Fourier conjugate variables to q
and p, respectively. The expression of HH in (17) is not
mathematically well defined because it involves exponentially
growing Gaussian functions. However, HH can be evaluated
by analytic continuation. Let ξ = −α/4 and η = −h̄2/(4α).
Then we evaluate the last two integrals in (17) in the analytic
region where ξ > 0 and η > 0 and obtain

HH (q,p) = 1

16π2ξ η

∫ ∞

−∞
d2q′ d2p′ H(q′,p′)

× exp

[
− (q′ − q)2

4ξ
− (p′ − p)2

4η

]
. (18)

Again, we evaluate the integrals in (18) in the analytic region
where ξ > 0 and η > 0, and then we substitute ξ = −α/4 and
η = −h̄2/(4α) into its expression, thereby resulting in a real
and finite function HH (q,p). For example, by substituting (12)
into (18) and evaluating (18) according to the above procedure,
we obtain

HH (q,p) = 1

2m

(
p2

1 + p2
2

) + 1

2
g2q2

1q2
2

−1

4
g2α

(
q2

1 + q2
2

) + 1

8
g2α2 − h̄2

2mα
. (19)

The analytic function HH (q,p) in (19) is the coarse-grained
Hamiltonian for the Yang-Mills quantum system whose
conventional Hamiltonian is defined in (12). We now define the
expectation value of the energy in the Husimi representation
as

E[HHρH ] =
∫ ∞

−∞
d	q,p HH (q,p)ρH (t ; q,p), (20)

where HH (q,p) is the coarse-grained Hamiltonian defined in
(19). Using Eqs. (12), (13), and (20), it is straightforward to
prove by explicit calculation that

∂E[HHρH ]

∂t
= 0. (21)

Thus, E[HHρH ] is a constant of motion for the Husimi
equation of motion (13) and can be identified as the total

energy of the system. In Sec. IV A, we verify numerically that
E[HHρH ] is a constant of motion.

III. TEST PARTICLE METHOD

The numerical solution of the Husimi equation of motion
for one-dimensional quantum systems has been investigated,
e.g., in Refs. [30,31]. Because our goal is to apply the Husimi
representation to quantum systems in two or more dimensions,
we need a method that is capable of providing solutions
to the Husimi equation of motion for higher-dimensional
systems. As a practical approach to this problem, we here
adopt the test-particle method. This method was previously
applied by Heller [32], who assumed that the wave function
is a superposition of frozen Gaussian wave packets. The
test-particle method was also used to describe the time
evolution of the Husimi function of one-dimensional quantum
systems by López, Martens, and Donoso [31]. Manipulating
the Husimi equation of motion algebraically, these authors
obtained the equations of motion for the test particles. The
equations of motion for test particles obtained in this manner
exhibit a nonlinear dependence on the Husimi distribution.
However, we note that the true equation of motion for the
Husimi distribution is a linear partial differential equation,
which encodes the superposition principle for quantum states.
The nonlinear dependence of the equations of motion for
the test particles representing the Husimi distribution in
Ref. [31] implies a violation of this principle. We note that the
superposition principle is crucial to our investigation. To study
the entropy production of the Yang-Mills quantum system and
the approach to thermal equilibrium, we need to consider
highly excited states of the system, whose energies form a
quasicontinuum. Thus, the time evolution of the system is
described by the superposition of eigenstates with almost the
same energy. When the superposition principle is violated, we
cannot expect to describe the time evolution of such states
correctly.

Therefore, we here apply the test-particle method in a way
that respects the superposition principle. Instead of adopting
the strategy proposed in Ref. [31], we obtain the equations of
motion for the test particles by taking the first few moments on
the Husimi equation of motion. This approach preserves the
superposition principle for solutions of the Husimi equation
of motion. In Sec. III A we derive the equations of motion for
the test particles, obtain the uncertainty relation for Husimi
distribution, and prove that the energy conservation holds for
each individual test particle. In Sec. III B we describe the
method by which we choose the initial conditions for the
Husimi equation of motion. In Sec. III C we discuss additional
approximations that we use for the Gaussian test functions.

A. Equations of motion for the test particles

Now we briefly describe the test-particle method. Our goal
is to solve the Husimi equation of motion in (13) and obtain
the time dependence of the Husimi distribution. As stated
before, the Husimi distribution is a density distribution on
the phase space, and it is positive semidefinite for all times.
Therefore, we can approximate the time-dependent Husimi
distribution by the superposition of a sufficiently large number

011110-4



ENTROPY PRODUCTION AND EQUILIBRATION IN YANG- . . . PHYSICAL REVIEW E 85, 011110 (2012)

N of Gaussian functions, whose centers can be considered
as the (time-dependent) positions and momenta of N “test
particles.”

For these Gaussian functions, we assume that we can
neglect all correlations between q1 and q2, between p1 and
p2, between q1 and p2, and between q2 and p1. Under these
assumptions, the Husimi distribution can be written as

ρH (t ; q,p) = h̄2

N

N∑
i=1

√
Ñ i(t) exp

{
−1

2
ci
q1q1

(t)
[
q1 − q̄i

1(t)
]2 − 1

2
ci
q2q2

(t)
[
q2 − q̄i

2(t)
]2
}

× exp

{
−1

2
ci
p1p1

(t)
[
p1 − p̄i

1(t)
]2 − 1

2
ci
p2p2

(t)
[
p2 − p̄i

2(t)
]2
}

× exp
{−ci

q1p1
(t)

[
q1 − q̄i

1(t)
] [

p1 − p̄i
1(t)

] − ci
q2p2

(t)
[
q2 − q̄i

2(t)
] [

p2 − p̄i
2(t)

]}
. (22)

In order to satisfy the normalization condition for the Husimi
distribution, ∫ ∞

−∞
d	q,p ρH (q,p; t) = 1, (23)

we normalize each Gaussian according to

Ñ i(t) = �i
1(t)�i

2(t), (24)

where we introduced the abbreviations

�i
1(t) = {

ci
q1q1

(t)ci
p1p1

(t) − [
ci
q1p1

(t)
]2}

, (25)

�i
2(t) = {

ci
q2q2

(t)ci
p2p2

(t) − [
ci
q2p2

(t)
]2}

. (26)

We require that Ñ i(t) > 0 for all times. The assumption of
setting ci

q1q2
(t) = ci

p1p2
(t) = ci

q1p2
(t) = ci

q2p1
(t) = 0 in (22) is

motivated by the fact that ci
q1p1

(t) and ci
q2p2

(t) encode the
dominant correlations induced by the dynamics. For purposes
further down, we have examined numerically that even when
setting ci

q1p1
(t) = ci

q2p2
(t) = 0 for all times, the correlations

between q1 and p1 and between q2 and p2 are produced by
the ensemble of Gaussians as time evolves, by virtue of the
contribution of a large number of test functions. Therefore, the
ansatz in (22) is justified.

Owing to (22), the solution to the Husimi equation of
motion will depend on the chosen particle number N , and so
will the Wehrl-Husimi entropy. In the limit N → ∞ we expect
both, the Husimi distribution and the Wehrl-Husimi entropy,
to approach values that are independent of the test-particle
approximation scheme. We will confirm this expectation in
Sec. IV C by investigating the particle number dependence of
our numerical result for the Wehrl-Husimi entropy.

The main task for us is to determine the optimal solutions for
the time-dependent variables q̄i

1(t), q̄i
2(t), p̄i

1(t), p̄i
2(t), ci

q1q1
(t),

ci
q2q2

(t), ci
p1p1

(t), ci
p2p2

(t), ci
q1p1

(t), and ci
q2p2

(t). In other words,
instead of directly solving (13), we seek a system of the
equations of motion for the ten time-dependent variables. This
goal can be achieved by evaluating the moments on both sides
of the Husimi equation of motion. The resulting equations
constitute a system of ordinary differential equations for the
10 time-dependent variables of each test particle labeled by
i = 1,2, . . . ,N . Overall, we thus have to solve 10N equations
of motion. These can be grouped into N independent systems
of ten coupled differential equations, each of which can be
solved separately.

Generally, the moment of a function f (t ; q,p) with respect
to a weight function w(q,p) is defined as

Iw[f ] =
∫ ∞

−∞
d	q,p [w(q,p)f (t ; q,p)] . (27)

Therefore, after we apply the 10 moments Iq1 , Iq2 , Ip1 , Ip2 , Iq2
1
,

Iq2
2
, Ip2

1
, Ip2

2
, Iq1p1 , and Iq2p2 to the Husimi equation of motion

(13), we obtain 10 equations of motions for each test particle
i for the 10 variables representing the location in phase space
and width of each test particle. In Eqs. (28)–(31), we present
the equations obtained from the first moments Iq1 , Iq2 , Ip1 , and
Ip2 of (13) associated with the location of the test particle. The
equations for the evolution of the test-particle widths, obtained
from the second moments Iq2

2
, Ip2

1
, Ip2

2
, Iq1p1 , and Iq2p2 of (13),

are presented in Eqs. (A1)–(A6) of Appendix A.
The equations for the first moments of (13) are

˙̄qi
1(t) − 1

m
p̄i

1(t) = 0, (28)

˙̄qi
2(t) − 1

m
p̄i

2(t) = 0, (29)

˙̄pi
1(t) + ∂V

∂q1

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
p2p2

(t)

�i
2 (t)

− α

2

]
∂3V

∂q1∂q2
2

∣∣∣∣
q̄i (t)

= 0,

(30)

˙̄pi
2(t) + ∂V

∂q2

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
p1p1

(t)

�i
1 (t)

− α

2

]
∂3V

∂q2
1∂q2

∣∣∣∣
q̄i (t)

= 0,

(31)

where �i
1(t) and �i

2(t) are defined in (25) and (26), respec-
tively. The subscript q̄i(t) in the partial derivatives of the
potential energy V (q1,q2) in (30) and (31) denotes that the
partial derivatives are evaluated at (q1,q2) = q̄i(t), where

q̄i (t) = (
q̄i

1 (t) ,q̄i
2 (t)

)
. (32)

Instead of solving the Husimi equation of motion (13), we
now solve (28)–(31) and (A1)–(A6) for each test particle
i = 1,2, . . . ,N and then construct the Husimi distribution by
superposition. These test-particle equations of motion can be
solved numerically by applying the Runge-Kutta method when
proper initial conditions are given. The method of choosing the
initial conditions will be discussed in Sec. III B.
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To ensure the existence of the solutions, we need to confirm
that Eqs. (A1)–(A6) are nonsingular. We write the system of
differential equations (A1)–(A6) in the form Av = b, where v

and b are column vectors and

v = (
ċi
q1q1

,ċi
p1p1

,ċi
q1p1

,ċi
q2q2

,ċi
p2p2

,ċi
q2p2

)T
. (33)

The system of equations would be singular if det A = 0, which
implies

�i
1(t)�i

2(t) = 0. (34)

This condition is equivalent to Ñ i(t) = 0. Equation (34)
violates the constraint that Ñ i(t) > 0; therefore, (28) and (31)
and (A1) and (A6) are never singular.

The uncertainty relation for the Husimi distribution for
one-dimensional quantum systems has been derived in, e.g.,
Ref. [29]. Here we generalize their result to the case of
two dimensions. The uncertainty relation for the Husimi
distribution ρH (t ; q1,q2,p1,p2) reads

(�qj )H (�pj )H � h̄, (35)

where

(�qj )2
H =

∫ ∞

−∞
d	q,p

[(
q2

j − 〈qj 〉H
)2

ρH (t ; q,p)
]
, (36)

(�pj )2
H =

∫ ∞

−∞
d	q,p

[(
p2

j − 〈pj 〉H
)2

ρH (t ; q,p)
]
, (37)

for j = 1,2 with

〈qj 〉H =
∫ ∞

−∞
d	q,p qj ρH (t ; q,p), (38)

〈pj 〉H =
∫ ∞

−∞
d	q,p pj ρH (t ; q,p). (39)

We emphasize that the uncertainty relation (35) does not
serve as an additional constraint when we solve the Husimi
equation of motion (13). As long as the initial condition
ρH (0; q1,q2,p1,p2) satisfies (35), the solution to the Husimi
equation of motion satisfies the uncertainty relation (35) for
all times. This results from the fact that the quantum effect is
encoded in the Husimi equation of motion itself.

B. Initial conditions

In order to solve the equations of motions (28)–(31) and
(A1)–(A6), we need to assign initial conditions for the Husimi
distribution at t = 0. We next describe the method we use
to assign the initial conditions, {q̄i

1(0),q̄i
2(0),p̄i

1(0),p̄i
2(0)} and

the initial widths for each test particle i. Our goal is to
assign initial conditions so that the initial Husimi distribution
satisfies the four conditions at t = 0: (1) ρH (0; q,p) � 0, (2)
the normalization condition in (23), (3) the uncertainty relation
in (35), and (4) the relation between moments:∫ ∞

−∞
d	q,p ρH (0; q,p) �

∫ ∞

−∞
d	q,p [ρH (0; q,p)]2 . (40)

Our strategy is as follows. First, we formally write (22) as

ρH (t ; q,p) = 1

N

N∑
i=1

K(q − q̄i(t),p − p̄i(t)), (41)

where K denotes the Gaussian function for each test particle.
For t = 0, the Husimi distribution (41) can be expressed as

ρH (0; q,p) =
∫ ∞

−∞
d	q′,p′ K(q − q′,p − p′)φ(q′,p′), (42)

where φ denotes the distribution of the test-particle locations
in the phase space. We abbreviate the phase-space variables
for clarity: χ = (q1,q2,p1,p2) and χ ′ = (q ′

1,q
′
2,p

′
1,p

′
2). Owing

to the four conditions stated above, we choose the Husimi
distribution at t = 0 to be a Gaussian distribution:

ρH (0; χ ) = h̄2

(
4∏

a=1

γ a
H

)1/2

exp

[
−1

2

4∑
a=1

γ a
H

(
χa − μa

H

)2

]
,

(43)

where γ a
H and μa

H for a = 1, . . . ,4 are to be determined. In
(43) we do not assume any correlation between position and
momentum locations at t = 0, implying that we initially set
ci
q1p1

(0) = ci
q2p2

(0) = 0 for i = 1, . . . ,N in (22).
The main idea of choosing initial conditions is that, accord-

ing to (42), we can represent the initial Husimi distribution (43)
to be the sum of Gaussian test functions by randomly assigning
{q̄i

1(0),q̄i
2(0),p̄i

1(0),p̄i
2(0)} for i = 1, . . . ,N according to the

distribution φ. Our remaining tasks are then to determine the
parameters in (43) and to obtain the functional forms for K and
φ. In (43), μa

H can be assigned freely by choice, but the γ a
H are

subject to conditions 3 and 4. Substituting (43) into conditions
3 and 4, expressed by Eqs. (35) and (40), respectively, we
obtain from condition 3:

4∏
a=1

(
γ a

H

)−1/2 � h̄2, (44)

and from condition 4:
4∏

a=1

(
γ a

H

)−1/2 � h̄2/4. (45)

Since Eq. (44) is the stronger of the two conditions, we adopt it
as the constraint for the initial Husimi distribution. To represent
ρH (0,χ ) in (43), we chose the following functional forms for
K and φ at t = 0:

K(χ − χ ′) = h̄2

(
4∏

a=1

γ a
K

)1/2

exp

[
−1

2

4∑
a=1

γ a
K (χa − χ ′a)2

]

(46)

and

φ(χ ) = h̄2

(
4∏

a=1

γ a
φ

)1/2

exp

[
−1

2

4∑
a=1

γ a
φ

(
χa − μa

φ

)2

]
.

(47)

This choice implies that we represent the initial Husimi distri-
bution as the convolution of test-particle Gaussian functions
K and a Gaussian distribution φ of test-particle locations in
phase space. In (41) at t = 0, ρH is denoted as the sum of
Gaussian functions, each of which may possess distinct widths.
However, when we choose to express (41) at t = 0 in terms of
the convolution of K and φ, we no longer have the flexibility to
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assign different widths for each individual Gaussian. Instead,
for K in (42) and (46) we should assign

γ 1
K = cq1q1 (0), γ 2

K = cq2q2 (0),
(48)

γ 3
K = cp1p1 (0), γ 4

K = cp2p2 (0),

where the suppression of the label i implies that all test
particles possess the same width at t = 0.

It is advantageous to use the convolution of K and φ in
(42) to represent ρH because the parameters in (43), (46), and
(47) can be related to satisfy the constraint imposed by the
uncertainty condition, as described below. In (47), μa

φ denotes
the location of the center of the distribution of loci of the test
particles in the phase space. According to (42), (43), (46), and
(47), it is clear that the center of the distribution of loci of test
particles must coincide with the center of the initial Husimi
distribution. We thus must assign

μa
φ = μa

H , (49)

where μa
H are selected by choice. Moreover, since the γ a

H

are subject to the constraint (44), we obtain relations between
γ a

H , γ a
K , and γ a

φ , which allow us to determine γ a
K and γ a

φ .
By applying the convolution theorem to (42), we obtain the
following relations:

1

γ a
H

= 1

γ a
K

+ 1

γ a
φ

, (50)

for a = 1, . . . ,4. Once we select the values of γ a
H based

on (44), we must determine γ a
K and γ a

φ according to (50).
Furthermore, owing to (48), the choice of γ a

K is subject to the
constraints

γ a
K � γ a

H for a = 1, . . . ,4. (51)

Furthermore, γ a
K must be assigned in the domain where the

solutions of (28)–(31) and (A1)–(A6) are stable. We discuss
our choice of initial conditions in more detail in Sec. IV A.

The number N of test particles plays a crucial role for the
accuracy of numerical results. If we set N = 1 in (41), we find
that ρH = K , and thus γ a

H = γ a
K . This special case is called the

single-particle ansatz. In general, the single-particle ansatz is
insufficient as representation of ρH (t ; q1,q2,p1,p2), because
the Husimi distribution will not retain a Gaussian shape for all
times, even if we initialize it as a Gaussian at t = 0.

As a specific example, we present and compare the solutions
of the Husimi equation of motion in one dimension in Fig. 16
in Appendix B. Figure 16 shows the difference between the
solution ρH (t ; q,p) for the single-particle ansatz [panels (a)
and (b)] and for the many-particle ansatz [panels (c) and (d)],
for the same Hamiltonian defined in Eqs. (B2). The initial
conditions are also discussed in Appendix B. From Fig. 16,
it is obvious that the single-particle ansatz is insufficient in
representing the solution ρH (t ; q,p) for t > 0. We conclude
that we need a sufficiently large test-particle number N in
(41) to represent the evolution of the Husimi distribution. We
discuss the test-particle number dependence of our numerical
results in Sec. IV.

C. Fixed-width ansatz

Once the initial conditions are obtained, the numerical
solutions to Eqs. (28)–(31) and (A1)–(A6) can be obtained by
the Runge-Kutta method. These equations can be dramatically
simplified by fixing the Gaussian widths in our ansatz (22)
for the Husimi distribution. The precise definition of the
fixed-width ansatz reads as follows: For each particle i,

ci
q1q1

(t) = cq1q1 (0), ci
q2q2

(t) = cq2q2 (0),

ci
p1p1

(t) = cp1p1 (0), ci
p2p2

(t) = cp2p2 (0), (52)

ci
q1p1

(t) = cq1p1 (0), ci
q2p2

(t) = cq2p2 (0),

where cq1q1 (0), cq2q2 (0), cp1p1 (0), cp2p2 (0), cq1p1 (0), and cq2p2 (0)
are chosen to be the same for all i.

In the variable-width ansatz, we solve the ordinary differ-
ential equations (28)–(31) and (A1)–(A6) simultaneously for
each test particle i. In the fixed-width ansatz, we fix the values
of ci

q1q1
(t), ci

q2q2
(t), ci

p1p1
(t), ci

p2p2
(t), ci

q1p1
(t), and ci

q1p1
(t) to

be constant for t � 0. Therefore, in the fixed-width ansatz,
Eqs. (A1)–(A6) cannot be satisfied, and Eqs. (28)–(31) are
the only equations of motion for each test particle i. We apply
the fixed-width ansatz because (28)–(31) are obtained from the
first moments of (13) and thus serve as the leading contribution
to (13). From a physical viewpoint, Eqs. (28)–(31) determine
the” locations” of test particles in the phase space as functions
of time, while Eqs. (A1)–(A6) govern the time-varying widths
of each test-particle Gaussian. In Sec. IV we evaluate all of
the numerical results based on the fixed-with ansatz in (52).

The conservation of energy is not only true for ρH , as shown
in Sec. II C, but also holds for each individual test particle. We
now prove the conservation of energy for each individual test
particle in the fixed-width ansatz. The proof can be easily
generalized to the case of variable widths. In the fixed-width
ansatz, the test-particle space is spanned by the test-particle
positions and momenta (q̄,p̄). We define a function H̄H in the
test-particle space as follows:

H̄H (q̄,p̄) =
∫ ∞

−∞
d	q,p HH (q,p) K (q − q̄,p − p̄) , (53)

where HH denotes the coarse-grained Hamiltonian defined in
Sec. II C and K is defined in (41). We note that the functional
form of K is independent of the test-particle label i. With the
help of (21) and (53), it is straightforward to show that

∂H̄H (q̄i(t),p̄i(t))
∂t

= 0, (54)

where i = 1, . . . ,N . In view of (54), H̄H (q̄i(t),p̄i(t)) can be
identified as the energy of an individual test particle i. Due
to (54), the histogram of test-particle energies H̄H (q̄i(t),p̄i(t))
remains unaltered at all times. We apply this result to the
numerical calculation in Sec. IV.

Before we end this section, a general consideration is in
order. In principle, any smooth, positive definite, normal-
izable function on the phase space can be represented to
any desired precision by a sufficient number of sufficiently
narrow Gaussian functions with fixed width. However, it
is important to keep in mind that these conditions are not
satisfied, in general, by the Wigner function or the classical
phase-space distribution of a chaotic dynamical system. The
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Wigner function is in general not positive definite, and the
classical phase-space distribution does not remain smooth for
an arbitrary initial condition. The presence of exponentially
contracting directions in phase space ensures that, over time,
the classical phase-space distribution will develop structure
on exponentially small scales, which cannot be described by
superposition of fixed-width Gaussian functions.

The Husimi transform of the Wigner function cures both
problems. It removes regions of negative values from the
quantum phase-space distribution, and its respect for the
uncertainty relation ensures that the phase-space distribution
remains smooth on the scale set by h̄ and the smearing
parameter α. As a result, the fixed-width Gaussian ansatz will
always be able to represent the Husimi distribution and track
its evolution faithfully over time, if a sufficiently large number
of sufficiently narrow Gaussian test functions is employed.
On the one hand, the width of Gaussian test functions cannot
be larger than the width of the initial Husimi distribution so
that the Gaussian test functions can represent ρH faithfully, as
indicated in (51). On the other hand, the width of Gaussian
test functions must not be too narrow in order to ensure that
the solutions of (28)–(31) are stable. We do not attempt to give
a rigorous proof of these assertion here, but content ourselves
with the heuristic argument presented above. We will explore
the convergence of or numerical solution for the fixed-width
ansatz for large values of N at the end of the next section.

IV. NUMERICAL RESULTS

We now present our numerical results. Throughout our
calculations, we have used the fixed-width ansatz as described
in Sec. III C. In Sec. IV A we present the numerical results for
the evolution of the Husimi distribution and the Wehrl-Husimi
entropy of the Yang-Mills quantum system using N = 1000
test particles. In Sec. IV B we obtain the Lyapunov exponents,
the average Kolmogorov-Sinaı̈ entropy, and the logarithmic
breaking time for Yang-Mills quantum mechanics. In Sec. IV C
we compare the Wehrl-Husimi entropies for N = 1000 and
N = 3000 test particles and explore the test-particle number
dependence of the saturation value of the Wehrl-Husimi
entropy. In Sec. IV D we obtain the partition function and
entropy for the canonical ensemble. Then, in Sec. IV E,
we evaluate the microcanonical distribution and entropy,
and we compare the saturated Wehrl-Husimi entropy to the
microcanonical and canonical entropies.

A. Husimi distribution and Wehrl-Husimi entropy

For our numerical calculations, we fix the parameters m =
g = α = h̄ = 1 in (13). Initially, we set the number of test
particles to N = 1000. We choose a minimum uncertainty
initial Husimi distribution (43) by setting

γ a
H = 1 for a = 1, . . . ,4, (55)

which satisfies the constraint (44). In addition, in (43) we
choose

μ1
H = μ2

H = 0, μ3
H = μ4

H = 10. (56)

Owing to (49) and (56), we then have

μ1
φ = μ2

φ = 0, μ1
φ = μ2

φ = 10. (57)

For a fixed-width ansatz, the solutions of (28)–(31) are stable
under the following constraint:

cq1q1 (0) + cq2q2 (0)

cq1q1 (0) cq2q2 (0)
� α, (58)

which can be confirmed by a linear stability analysis. Besides,
we set cq1p1 (0) = cq2p2 (0) = 0 according to Sec. III B. Thus,
due to (48) and (58), our choices of γ 1

K and γ 2
K are constrained

by

γ 1
K + γ 2

K

γ 1
Kγ 2

K

� α. (59)

In summary, our choice of γ a
K is restricted by the two

constraints (51) and (59) together with the settings (55) and
α = 1. In view of the discussion in Sec. III B, we satisfy these
constraints by the choice

γ a
K = 3

2 , γ a
φ = 3, (a = 1, . . . ,4). (60)

As described in Sec. III B, we randomly generate test-particle
locations {q̄i

1(0),q̄i
2(0),p̄i

1(0),p̄i
2(0)} for i = 1, . . . ,N accord-

ing to φ in (47), with parameters given by (57) and (60). For
the fixed-width ansatz with the initial conditions (60), we solve
(28)–(31) for each test particle i and repeat the procedure for
i = 1,2, . . . ,N .

Using Eqs. (19) and (20) where ρH is obtained from
(41) with N = 1000 fixed-width test particles, we verify
numerically that E[HHρH ] is a constant of motion. This is
illustrated in Fig. 1, which shows that a state with initial
energy E[HHρH ] = 100.707 remains at the same energy with
relative precision better than 10−4 up to t = 10. Since the initial
“locations” of test particles in the phase space are generated
randomly according to φ in (47), different sets of {q̄i(0),p̄i(0)}

t
0 2 4 6 8 10

]
Hρ 

H
H[

E

100

100.1

100.2

100.3

100.4

100.5

100.6

100.7

100.8

100.9

101

FIG. 1. Conservation of the coarse-grained energy (20) during
time evolution of the Husimi distribution. This shows that a state with
energy E[HH ρH ] = 100.707 for t = 0 remains at the same energy
for t > 0, with relative precision better than 10−4 up to t = 10. ρH is
obtained from (41) with N = 1000 fixed-width test particles.
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FIG. 2. Energy histogram for N = 1000 test particles at t = 0.
ε denotes the test-particle energy, which is defined in (61), and the
labels on the vertical axis denote test-particle numbers. A normal
distribution nTP(ε) is used to fit the histogram. A, μ and σ are the fit
parameters for nTP(ε), which are defined in (64). The values for the
fit parameters are shown in the plot.

generated by different runs of the computer program may result
in differences of E[HHρH ] at t = 0 of less than 0.5% . Thus,
for any set of initial locations for N = 1000 test particles, the
energy of the state at t = 0 is E[HHρH ] = 100.6 ± 0.5.

The energies of individual test particles can be studied
by the following method. We denote the test-particle energy
variable ε as

ε = H̄H (q̄,p̄) , (61)

where H̄H (q̄,p̄) is defined in (53). Because we choose the
fixed-width Gaussian K with the parameters γ a

K in (60) and
set m = g = α = h̄ = 1, we obtain

H̄H (q̄1,q̄2,p̄1,p̄2) = 1
2

(
p̄2

1 + p̄2
2

) + 1
2 q̄2

1 q̄2
2

+ 1
12

(
q̄2

1 + q̄2
2

) + 13
72 . (62)

The energy for an individual test particle is denoted as i εi =
H̄H (q̄i(t),p̄i(t)). Owing to (41), the energy of the state is the
average energy of the test particles:

E [HHρH ] = 1

N

N∑
i=1

εi, (63)

provided that N is sufficiently large. In Fig. 2 we plot the
energy histogram at t = 0 for N = 1000 test particles, which
we fit to a normal distribution:

nTP(ε) = A exp

[
− 1

2σ 2
(ε − μ)2

]
. (64)

The values of the fit parameters A, μ, and σ are listed in Fig. 2
for N = 1000. We note that the histogram of test-particle
energies remains unaltered as time evolves, as shown in
Sec. III C.

To visualize the Husimi distribution as a function of time,
it is useful to project the distribution either onto the two-
dimensional position space (q1,q2) or onto momentum space
(p1,p2) by integrating out the remaining two variables. To this
end, we define the following two distribution functions:

Fq (t ; q1,q2) =
∫ ∞

−∞
dp1 dp2 ρH (t ; q1,q2,p1,p2) =2πh̄2

N

N∑
i=1

√
�1�2

cp1p1cp2p2

exp

{
− �1

2cp1p1

[
q1 − q̄i

1(t)
]2 − �2

2cp2p2

[
q2 − q̄i

2(t)
]2
}

;

(65)

Fp (t ; p1,p2) =
∫ ∞

−∞
dq1 dq2 ρH (t ; q1,q2,p1,p2) =2πh̄2

N

N∑
i=1

√
�1�2

cq1q1cq2q2

exp

{
− �1

2cq1q1

[
p1 − p̄i

1(t)
]2 − �2

2cq2q2

[
p2 − p̄i

2(t)
]2
}

.

(66)

We note that the projected functions of the Husimi distribution
are the marginal distributions of the Wigner function smeared
by Gaussian functions in the position and momentum space,
respectively. The proof is shown as follows. From Eq. (4) it
can be shown that the marginal distributions for the Wigner
function are [5]

∫ ∞

−∞

d2p
(2πh̄)2

W (t ; q,p) = 〈q| ρ̂ (t) |q〉 , (67)

∫ ∞

−∞

d2q
(2πh̄)2

W (t ; q,p) = 〈p| ρ̂ (t) |p〉 . (68)

The marginal distributions of the Husimi distribution for a
one-dimensional system are obtained in Ref. [33]. We obtain
the marginal distributions for the Husimi distribution for a
two-dimensional system:

∫ ∞

−∞
d2p ρH (t ; q,p)

= 4πh̄2

α

∫ ∞

−∞
d2q′ exp

[
− 1

α
(q′ − q)2

]
〈q′|ρ̂(t)|q′〉,

(69)
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∫ ∞

−∞
d2q ρH (t ; q,p)

= 4πα

∫ ∞

−∞
d2p′ exp

[
− α

h̄2 (p′ − p)2
]

〈p′|ρ̂(t)|p′〉.
(70)

Therefore, in Eqs. (65) and (66), Fq (t ; q) is interpreted as the
marginal distribution in (67) smeared by a Gaussian function in
the position space, while Fp (t ; p) is interpreted as the marginal
distribution in (68) smeared by a Gaussian function in the
momentum space.

Based on the above interpretations, we can conve-
niently visualize the evolution of the Husimi distribu-
tion ρH (t ; q1,q2,p1,p2) by showing contour plots of the
two-dimensional projections Fq(t ; q1,q2) and Fp(t ; p1,p2).
Figure 3 shows Fq and Fp side by side at times t = 0,
t = 2, and t = 10, respectively. At the initial time, Fq(0; q1,q2)
is chosen as a Gaussian distribution centered around the
origin in position space, while Fp(0; p1,p2) is a Gaussian
function centered around (p1,p2) = (10,10). The projected
initial distributions are shown in panels (a) and (d) of Fig. 3. As
shown next in panels (b) and (e) of Fig. 3, Fq and Fp at t = 2 are
beginning to split into distinct clusters. This behavior is caused
by the fact that test particles bounce off the equipotential curves
defined by ε = H̄H (q̄,0).

Closer inspection of the time evolution of Fq(t ; q1,q2)
and Fp(t ; p1,p2) reveals that gross features of the Husimi
distribution ρH (t ; q,p) remain approximately unchanged for
t � 6.5. To wit, panels (c) and (f) of Fig. 3, presenting Fq and
Fp at t = 10, show that the contours of Fq(10; q1,q2) follow

equipotential lines, while the contours of Fp(10; p1,p2) are
shaped as concentric circles, i.e., lines of constant kinetic en-
ergy. The time evolution of Fq demonstrates that test particles
starting from their initial positions localized around the origin
in position space (q1,q2) eventually spread all over the region
enclosed by the equipotential curves defined by ε = H̄H (q̄,0).
This behavior is a result of the fact that the Yang-Mills quantum
system is chaotic, implying a strong sensitivity of test-particle
trajectories on their initial conditions.

Because the Husimi distribution is related to the Wigner
function by (5), we obtain the Wigner function from the
Husimi distribution by the deconvolution process. We define
the smearing Gaussian function in (5) as

G (q1,q2,p1,p2) = 1

(πh̄)2 exp

[
− 1

α
q2

1 − 1

α
q2

2

]

× exp

[
− α

h̄2 p2
1 − α

h̄2 p2
2

]
. (71)

Due to the convolution theorem, the Fourier transforms of the
Wigner function and Husimi distribution are related by

F [ρH ] = (2π )2 F [W ] F [G] , (72)

where F denotes the Fourier transform. Then the Wigner
function is obtained by

W = 1

(2π )2
F−1

[
F [ρH ] (F [G])−1

]
, (73)

where F−1 denotes the inverse Fourier transform. By Eq. (73)
and assuming the fixed-width ansatz and cq1p1 = cq2p2 = 0, we
obtain the Wigner function:

W (t ; q1,q2,p1,p2) = h̄2

(2π )2N

N∑
i=1

√
cq1q1cq2q2cp1p1cp2p2√

1 − αcq1q1/2
√

1 − αcq2q2/2
√

1 − h̄2cp1p1/(2α)
√

1 − h̄2cp2p2/(2α)

× exp

{
−cq1q1

[
q1 − q̄i

1(t)
]2

2 − αcq1q1

− cq2q2

[
q2 − q̄i

2(t)
]2

2 − αcq2q2

}

× exp

{
−cp1p1

[
p1 − p̄i

1(t)
]2

2 − h̄2cp1p1/α
− cp2p2

[
p2 − p̄i

2(t)
]2

2 − h̄2cp2p2/α

}
. (74)

We note that the Wigner function in (74) depends on the smearing parameter α because it is obtained by deconvoluting the
Husimi distribution. We obtain the position and momentum projections of the Wigner function:

FW
q (t ; q1,q2) =

∫ ∞

−∞

dp1 dp2

(2πh̄)2
W (t ; q1,q2,p1,p2) = 1

(2π )3N

N∑
i=1

√
cq1q1cq2q2√

1 − αcq1q1/2
√

1 − αcq2q2/2

× exp

{
− cq1q1

2 − α cq1q1

[
q1 − q̄i

1(t)
]2 − cq2q2

2 − α cq2q2

[
q2 − q̄i

2(t)
]2
}

; (75)

FW
p (t ; p1,p2) =

∫ ∞

−∞

dq1 dq2

(2πh̄)2
W (t ; q1,q2,p1,p2) = 1

(2π )3N

N∑
i=1

√
cp1p1cp2p2√

1 − h̄2cp1p1/(2α)
√

1 − h̄2cp2p2/(2α)

× exp

{
− cp1p1

2 − h̄2cp1p1/α

[
p1 − p̄i

1(t)
]2 − cp2p2

2 − h̄2cp2p2/α

[
p2 − p̄i

2(t)
]2
}

. (76)
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FIG. 3. Two-dimensional projections of the Husimi distribution on position space Fq (t ; q1,q2) at times (a) t = 0, (b) t = 2, and (c) t = 10,
and on momentum space Fp(t ; p1,p2) at times (d) t = 0, (e) t = 2, and (f) t = 10. The number of test particles is N = 1000. Fq (t ; q1,q2) and
Fp(t ; p1,p2) are defined in (65) and (66), respectively. Note that the projections of the Husimi distribution cannot be interpreted as probability
densities, as explained in the text.

Due to Eqs. (67) and (68), FW
q and FW

p in Eqs. (75) and
(76) are interpreted as the probability densities in the (q1,q2)
and (p1,p2) spaces, respectively. Figure 4 shows FW

q and FW
p

side by side at times t = 0, t = 2 and t = 10, respectively.
The widths of the test-particle Gaussians for FW

q (FW
p ) are

about 70% of the widths of the test-particle Gaussians for Fq

(Fp). Comparing the corresponding panels of Figs. 3 and 4,
the differences result from the distinctions between the widths
(and amplitudes) of the test-particle Gaussians for ρH and W .

The Wehrl-Husimi entropy SH (t) defined in (6) is the
coarse-grained entropy of the quantum system. The numerical
evaluation of the four-dimensional integral in the definition (6)
of the entropy SH (t) is nontrivial because the upper (lower)
limits of the integral in each dimension are infinite, and the
width of each test-particle Gaussian is tiny. Therefore, we
use the following method to evaluate the integrals efficiently.
For each discretized time step tk , we find the largest absolute
values of the test-particle positions and momenta. Since each
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FIG. 4. Two-dimensional projections of the Wigner function on position space F W
q (t ; q1,q2) at times (a) t = 0, (b) t = 2, and (c) t = 10,

and on momentum space F W
p (t ; p1,p2) at times (d) t = 0, (e) t = 2, and (f) t = 10. The number of test particles is N = 1000. F W

q (t ; q1,q2)
and F W

p (t ; p1,p2) are defined in (75) and (76), respectively.

Gaussian is narrow and the Husimi distribution is nearly
zero outside the regions of support of the test particles, we
can assign ±(maxi |q̄i

1(tk)| + b) as the limits of integration
over the variable q1. We choose b = 6(γ 1

K )−1/2 to ensure
that the Gaussians of all test particles are fully covered by
the integration range within our numerical accuracy. Similar
limits are assigned to the integrations over q2, p1, and p2,
respectively. These integration limits ensure that the integrals
run over the whole domain of phase space where the Husimi

distribution has support. We verify the accuracy of Simpson’s
rule by evaluating the normalization for ρH (t ; q,p) for various
time t . We find that the numerical results coincide with (23)
within errors of less than 0.3%. We then perform the numerical
integration by Simpson’s rule.

Our results for the Wehrl-Husimi entropy SH (t) for N =
1000 test particles are shown in Fig. 5. We evaluate SH (t)
for Yang-Mills quantum mechanics (YMQM) and for the
harmonic oscillator (HO) for comparison. The Hamiltonian
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FIG. 5. The time evolution of the Wehrl-Husimi entropy SH (t)
for Yang-Mills quantum mechanics (YMQM), the fit function Sfit(t)
for the Wehrl-Husimi entropy, and SH (t) for the harmonic oscillator
(HO). We set the same initial condition at t = 0 both for YMQM and
HO. The figure shows that SH (t) for YMQM starts from SH (0) ≈ 2.0
and saturates to 7.6 for t � 6.5, while SH (t) for HO remains at 2.0
for all times. The fit parameters for Sfit(t) are listed in the figure.

for YMQM is given in (12), while the Hamiltonian for HOis

H = 1

2m

(
p2

1 + p2
2

) + 1

2
v2

(
q2

1 + q2
2

)
, (77)

where we set m = v = 1. We remind the reader that initially
ρH (0) is chosen as a minimum uncertainty distribution
satisfying the constraints (44) and (55) with the total number of
test particles N = 1000. We assign the same initial condition
both for YMQM and HO, and we compare the difference in
their Wehrl-Husimi entropies as time evolves. Figure 5 shows
that SH (0) ≈ 2.0, and SH (0) � 2 for t � 0 for YMQM, in
agreement with the conjecture (7). For late times, Fig. 5 reveals
that SH (t) for YMQM saturates to 7.7 for t � 6.5. In order to
find the characteristic time for the growth of the entropy, we
fit SH (t) for YMQM to the parametric form:

Sfit(t) = s0 − s1 exp(−t/τ ), (78)

where s0, s1, and τ are fit parameters. The fit shown as a dash-
dotted line in Fig. 5 corresponds to the parameters s0 ≈ 7.7,
s1 ≈ 6.0, and τ ≈ 1.9. On the other hand, SH (t) for HO starts
from SH (0) ≈ 2.0 and then remains at 2.0 for all times.

In Fig. 5 we note that the coarse-grained entropy does
not increase continuously as time evolves. This fact can be
interpreted in the framework of Zwanzig’s formalism for
the time evolution of “relevant” density operator [34,35]. In
Zwanzig’s formalism, one defines the relevant density operator
as ρ̂R(t) = P̂ ρ̂(t), where P̂ denotes the projection operator.
The transition of the density operator ρ̂(t) → ρ̂R(t) and of
corresponding entropies S[ρ̂(t)] → S[ρ̂R(t)] is referred to as
generalized coarse graining [35,36]. By applying P̂ to (8),

one obtains the equation for time evolution of ρ̂R(t). The
non-Markovian part of this equation reads

∂ρ̂R(t)

∂t
= −

∫ t

0
dt ′ Ĝ(t ′)ρ̂R(t − t ′), (79)

where Ĝ denotes the so-called memory kernel [34–36]. It can
be shown that dS[ρ̂R(t)]/dt receives contributions from the
non-Markovian term indicated in (79). Therefore, S[ρ̂R(t)]
in general does not increase monotonically as a function of
time. The Husimi equation of motion in (10) contains a similar
memory effect. Therefore, in Fig. 5 the coarse-grained entropy
SH (t) does not increase continuously as time evolves, and the
second law of thermodynamics holds only in a time-averaged
sense [35].

B. Lyapunov exponents

Since the classical system corresponding of YMQM is
almost chaotic, we evaluate the average Kolmogorov-Sinaı̈
(KS) entropy for this system. For a two-dimensional system,
the KS entropy is defined as

hKS =
4∑

j=1

λj θ (λj ), (80)

where λj are the Lyapunov exponents (LEs). To obtain the full
spectrum of the LEs, we utilize the following procedure. First,
we divide a large time interval, from t = 0 to t = tmax, into a
number of slices. Each time slice is labeled by its final time tk ,
where k = 1,2, . . . ,kmax. Let χ̄ i(t) = (q̄i

1(t),q̄i
2(t),p̄i

1(t),p̄i
2(t))

denote the position of test particle i in phase space. At
t = 0, we perform four orthogonal perturbations on the initial
condition: π i

j (0) = χ̄ i(0) + ε êj , for j = 1, 4, where êj are
orthonormal vectors and we set ε = 10−4. For each time
slice t ∈ [tk−1,tk], we solve Eqs. (28)–(31) and obtain one
reference trajectory χ̄ i(t) and four modified trajectories π i

j (t),
where j = 1, . . . ,4. Define the four deviation vectors: δi

j (t) =
π i

j (t) − χ̄ i(t). After obtaining the four deviations δi
j (tk), we

orthogonalize these four vectors and rescale their lengths back
to ε. We store the four rescaling factors ri

j (tk) for each j and
k, and we repeat the above procedures for the representative
test particles i = 1, . . . ,Nrep, where Nrep � N . For the case of
N = 1000, we choose Nrep = 100. In addition, we set tk = 2k

and tmax = 100, and therefore kmax = 50. Finally, we obtain
the full Lyapunov spectrum:

λj = 1

Nrep

Nrep∑
i=1

1

tmax
ln

[
kmax∏
k=1

ri
j (tk)

]
, (81)

where j = 1, . . . ,4. The numerical values of the LEs for
YMQM are

λ1 = 1.216, λ2 = 2.344 × 10−2,
(82)

λ3 = −2.349 × 10−2, λ4 = −1.223.

If we take the classical limit h̄ → 0 and α → 0 for (13) and
repeat the above procedure, we obtain the LEs for the regular
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classical equations of motion without the quantum (Husimi)
corrections:

λc
1 = 1.283, λc

2 = 1.599 × 10−2,
(83)

λc
3 = −1.629 × 10−2, λc

4 = −1.287.

From (82) and (83), we observe that classical solutions
conserve the energy and the phase space better than the
quantum solutions. By (80) and (82), we obtain the average
KS entropy for YMQM: hKS ≈ 1.24.

In addition, we calculate the logarithmic breaking time for
YMQM, which is defined as [37–39]:

τh̄ ≈ 1

�
ln

(
I

h̄

)
, (84)

where I is the characteristic action and � is the characteristic
Lyapunov exponent. We set � = hKS for YMQM. We utilize
two methods for obtaining the action I . One of these is to
obtain I from the classical dynamical variables (q,p):

I =
∮

C

p · dq . (85)

The integration is taken over the curve C constrained by H =
E, where H is defined in (12) and E denotes the classical
energy of the system. If we consider the case where a classical
particle moves along the line q1 = q2 in the position space and
is subject to the potential energy 1

2q2
1q2

2 , we obtain the period
of motion of this classical particle:

T = 4
∫ qmax

0

dq√
E − 1

2q4
, (86)

where q = q1 = q2 and qmax = (2E)1/4. In the following nu-
merical calculation, we set E = 100. Considering the periodic
motion of this particle, we obtain by (84)–(86) that I = 263,
T = 1.97, and τh̄ ≈ 4.5. Alternatively, we evaluate the action
by integrating along test-particle trajectories obtained by
(28)–(31), which are the Husimi (quantum) equations of
motion in the fixed-width ansatz. Thus the action is

I = 1

N

N∑
i=1

∫ T

0
dt p̄i(t) · ˙̄qi(t), (87)

where T is defined in (86). In (87), we estimate the time interval
by the period of a classical particle moving along q1 = q2

in the position space and is subject to the potential energy
1
2q2

1q2
2 . By (84) and (87), we obtain I = 267 and τh̄ ≈ 4.5

in excellent agreement with the result of the first method.
Moreover, comparing τh̄ to τ defined in (78), we conclude that
τh̄ and τ are in the same order of magnitude, and τh̄ > τ .

C. Particle-number dependence

In Sec. IV A, we studied the Husimi distribution and the
Wehrl-Husimi entropy for Yang-Mills quantum system by
using N = 1000 test particles. We note that the results of the
test-particle method we used to obtain SH (t) depend on the
number of test particles. The Husimi distribution ρH (t ; q,p)
depends on the particle number N through the ansatz in (41),
and so does the Wehrl-Husimi entropy SH (t).

Our main goal in this section is to quantify the dependence
of the saturated Wehrl-Husimi entropy on the test-particle
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FIG. 6. Energy histograms of the test particles at t = 0. The total
numbers of test particles are N = 1000, N = 3000, and N = 8000. ε
denotes the test-particle energy, which is defined in (61), and the labels
on the vertical axis denote test-particle numbers. The initial locations
of the test particles in the phase space are generated according to the
normal distribution φ defined in (47) with the parameters given in
(57), (60). In this plot, we show that μ and σ are independent of N,

notwithstanding small fluctuations. By fitting the energy histograms
for various choices of N , we obtain μ = 100.6 and σ = 8, with
fluctuations less than 0.5% and 5%, respectively.

number N . We proceed with this study by the following
method. First, we plot the energy histograms for several
different numbers of test particles (we choose N = 1000,
N = 3000, and N = 8000) in Fig. 6. The distribution of the
initial locations of the test particles in the phase space are
generated according to the normal distribution φ defined in
(47), with the parameters given in (57) and (60). Figure 6
shows that the ranges of the test-particle energies differ only
slightly for N = 1000, N = 3000, and N = 8000. In other
words, for the energy distribution nTP (ε) defined in (64), the
center μ and width σ are independent of N, notwithstanding
small fluctuations. By fitting the energy histograms for various
choices of N , we obtain

μ = 100.6, σ = 8, (88)

with fluctuations less than 0.5% and 5%, respectively. We also
define the normalized energy distribution of the test particles
as

n̄TP(ε) = nTP(ε)∫ ∞
0 dε nTP(ε)

. (89)

Thus we conclude that the energy histograms for all choices
of N correspond to a unique normalized energy distribution,
n̄TP(ε), which is unaltered by the time evolution and indepen-
dent of N , provided that N is sufficiently large.

Next, we compute the Wehrl-Husimi entropy SH (t) for N =
3000 under the same set of initial parameters (55)–(57) and
(60) we used in Sec. IV A to calculate SH (t) for N = 1000. We
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FIG. 7. The Wehrl-Husimi entropy SH (t) for N = 1000 and N =
3000 respectively. In both cases, the test particles are generated at
t = 0 by the same set of initial parameters in (55)–(57) and (60). The
Wehrl-Husimi entropies for both values of N agree well for t � 2,
but gradually diverge for t > 2. SH (t) for N = 3000 saturates to 8.1,
while SH (t) for N = 1000 saturates to 7.6. The saturation level is
reached in both cases for t � 6.5.

plot the Wehrl-Husimi entropy SH (t) for the two values of N

in Fig. 7. We observe that the Wehrl-Husimi entropy SH (t) for
N = 1000 and N = 3000 agree well for t � 2, but gradually
diverges when t > 2. For both cases, the entropy begins to
saturate at almost the same time, viz., t � 6.5. However, the
saturation values are different: For N = 3000, SH (t) saturates
to 8.1, while for N = 1000, SH (t) saturates to 7.6.

Based on the above results, we decided to analyze the
saturation values of SH (t) as a function of N . From Fig. 7 we
conclude that the saturation is reached for t � 6.5, independent
of how large N is. We thus use SH (10) as a proxy for the
saturation value of SH (t). In Fig. 8 we plot SH (10) for several
different test-particle numbers N and fit the curve by the
function S̃fit(N ), defined as

S̃fit(N ) = s2 − s3

Na
, (90)

where s2, s3, and a are parameters determined by the fit. We
obtain

s2 = 8.73, s3 = 76.4, a = 0.6115. (91)

If our hypothesis is correct that SH (10) represents the satura-
tion value of SH (t) for any N , this implies that the saturated
value of SH (t) approaches 8.73 for N → ∞ for the initial
conditions chosen for our numerical simulation.

D. Canonical partition function and entropy

We now consider the Yang-Mills Hamiltonian system in
(12) for various classical ensembles. In the following numeri-
cal calculation, we use the same numerical parameters as those
specified in Sec. IV A. We begin by obtaining the canonical
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FIG. 8. SH (10) for several different test-particle numbers N ,
indicated by the filled circles. We fit the curve by a fit function S̃fit(N )
defined in (90). The fit parameters are shown in the figure.

partition function and the canonical entropy for this system.
We first determine the temperature of canonical ensemble of
the Hamiltonian in (12) that would be reached if the system
would approach thermal equilibrium. This temperature can be
obtained by the following procedure. First, the total energy of
the system is defined in (20) and was evaluated numerically
to be E [HHρH ] = 100.6 ± 0.5, as shown in Sec. IV A.
On the other hand, the canonical ensemble average of the
Hamiltonian H

〈H〉C = 1

Z

∫ ∞

−∞
d	q,p H exp (−H/T ) , (92)

where T is the temperature and the partition function is defined
as

Z =
∫ ∞

−∞
d	q,p exp (−H/T ) . (93)

We then fix 〈H〉C to the total energy of the system E [HHρH ]:

E [HHρH ] = 〈H〉C, (94)

from which we determine the temperature Tχ of the equivalent
canonical ensemble.

When we try to evaluate (94) by substituting the Hamil-
tonian of the Yang-Mills system (12) into (92), we encounter
a problem associated with the classical limit of the quantum
system. The integrals over q1 and q2 exhibit a logarithmic
divergence owing to the special form of the potential V (q1,q2),
which vanishes along the axes q1 = 0 and q2 = 0. A classical
particle can therefore escape toward infinity in the hyperbolic
channels along the q1,q2 axes [40]. In contrast, the escape
of a quantum mechanical particle to infinity is forbidden by
quantum fluctuations. The channels grow narrower as the
particle moves away from the origin, and more and more
energy is required to localize the particle in the direction
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orthogonal to the channel. The uncertainty relation thus
provides for effectively finite boundary conditions; as a result,
the energy levels of the quantum system are discretized [41].

Matinyan and Müller [40,42] showed that this quantum
effect could be accounted for in the semiclassical limit by
adding a harmonic term to the Hamiltonian:

H = 1

2m

(
p2

1 + p2
2

) + 1

2
g2q2

1q2
2 + g2h̄2

2mT

(
q2

1 + q2
2

)
, (95)

where the last term encodes the quantum correction. Thus,
instead of inserting the classical Hamiltonian into (12), we
apply the Hamiltonian with quantum corrections:

H = 1

2m

(
p2

1 + p2
2

) + 1

2
g2q2

1q2
2 + 1

2
mω2

(
q2

1 + q2
2

)
, (96)

where

ω2 = h̄2g2

2m2T
. (97)

The additional term arises from the commutator of the kinetic
and potential energy in the semiclassical expansion of the
partition function [42]. After setting m = g = h̄ = 1 we can
now solve Eq. (94) for the equivalent temperature Tχ . We
obtain Tχ ≈ 67.1 and ω ≈ 0.0863.

Starting from the Hamiltonian (96), we obtain the partition
function for the canonical ensemble [43,44]:

Z (ω,T ) = mT 3/2

√
2πgh̄2

exp

(
m2ω4

4g2T

)
K0

(
m2ω4

4g2T

)
, (98)

where K0(z) denotes the modified Bessel function of the
second kind. Since the free energy in the canonical ensemble
theory is F = −T ln Z and the entropy is given by SC =
−∂F/∂T , the entropy of our system in the canonical ensemble
is

SC(ω,T ) = 3

2
+ m2ω4

4g2T

[
K1

(
m2ω4

4g2T

)
K0

(
m2ω4

4g2T

) − 1

]

+ ln

[
mT 3/2

√
2πgh̄2

exp

(
m2ω4

4g2T

)
K0

(
m2ω4

4g2T

)]
.

(99)

The partition function Z diverges for ω = 0, and so does
the canonical entropy SC . Both divergences are cured by
the quantum correction to the Hamiltonian (96). In view of
the discussion above, we obtain the canonical entropy as
SC(ω,Tχ ) ≈ 9.70.

E. Microcanonical distribution and entropy

In this section we compare the late-time Husimi distribution
to the microcanonical distribution. Since the Yang-Mills
quantum system is an isolated system, we anticipate that the
Husimi distribution after equilibration would approach the
microcanonical distribution.

We obtain the appropriate microcanonical distribution by
the following procedure. First, we construct the microcanoni-
cal distribution in the test-particle space by

ρ̄MC(q̄,p̄) = 1

�

∫ ∞

0
dε δ[H̄H (q̄,p̄) − ε]n̄TP(ε), (100)

where H̄H (q̄,p̄) is defined in (53), ε is defined in (61), n̄TP(ε)
is defined in (89), and � is the normalization constant. We note
that the initial energy distribution for our system is not strictly
a delta function δ[H̄H (q̄,p̄) − ε], because we generated the
test-particle positions in phase space randomly according to
the distribution φ defined in Eq. (47). Therefore, ρ̄MC (q̄,p̄)
must be defined as δ[H̄H (q̄,p̄) − ε] folded with the energy
distribution of test particles shown in (100). According to (54),
the energy is conserved for each test particle individually, and
thus n̄TP (ε) remains unchanged as time evolves. Using (64),
(89), and (100), we easily obtain

ρ̄MC (q̄,p̄) = 1

�′ exp

{
− 1

2σ 2

[
H̄H (q̄,p̄) − μ

]2
}

, (101)

where μ and σ are input from (88), �′ is the redefined
normalization constant and H̄H (q̄,p̄) is obtained from (62).
In the test-particle space, ρ̄MC is normalized as∫ ∞

−∞
d	q̄,p̄ ρ̄MC(q̄,p̄) = 1. (102)

To obtain the microcanonical distribution in the phase space
ρMC (q,p), we convolute ρ̄MC with test-particle Gaussian K ,
which yields

ρMC (q,p) =
∫ ∞

−∞
d	q̄,p̄ρ̄MC (q̄,p̄) K (q − q̄,p − p̄) ,

(103)

where ρ̄MC is defined in (101) and K is defined in (46). The
microcanonical entropy is then obtained as

SMC = −
∫ ∞

−∞
d	q,p ρMC(q,p) ln ρMC(q,p). (104)

Before we proceed, we briefly comment on the reason
why ρMC (q,p) should be constructed by (103). In statistical
physics, the microcanonical distribution of an isolated system
of energy E is conventionally obtained by ρMC = δ(H −
E)/�, where � is the total number of microstates that satisfies
the constraint H = E. If we substitute this conventional
definition of ρMC into (104), it is straightforward to show
that SMC is not well defined. However, if one approximates
δ(H − E) by a Gaussian distribution centered on E with a
finite width σg , SMC becomes well defined and is a function of
both, E and σg . Therefore, ρMC(x,p) in (103) is defined in a
way that encodes the coarse-grained energy of the system, the
width of energy distribution, and the widths for the test-particle
Gaussians, all of which must be equivalent to those specified
in our choice of the initial Husimi distribution ρH (0; x,p) in
Secs. III B and IV A.

Owing to the complexity of (101) and the multidimensional
integrals (103) and (104), we adopt an alternative approach to
evaluate ρMC (q,p), instead of directly evaluating Eq. (103).
Our approach is briefly described as follows. Since ρ̄MC (q̄,p̄)
in (101) is a non-negative function and normalized by (102), we
generate a sufficiently large number of test functions in (q̄,p̄)
space according to the distribution ρ̄MC (q̄,p̄). Thus ρ̄MC (q̄,p̄)
can be represented as a sum of these test functions:

ρ̄MC(q̄,p̄) = 1

M

M∑
s=1

[δ(q̄ − q̄s)δ(p̄ − p̄s)], (105)
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where (q̄s ,p̄s) denotes the locations of the test functions,
and M is the total number of test functions. We generate
(q̄s ,p̄s) by the Metropolis-Hastings algorithm using 5 × 106

iterations. After excluding the first 105 iterations, we randomly
select, for instance, M = 8 × 104 points (q̄s ,p̄s) from the
remaining 4.9 × 106 iterations. In view of the shapes of
the position and momentum projections of ρ̄MC (q̄,p̄), we
make the following change of coordinates: ū = q̄1q̄2 and
v̄ = tan−1(q̄2). To ensure that the locations of the test functions
are ergodic in (q̄,p̄) space, we impose periodic boundary
conditions to the random walks in the Metropolis-Hastings
algorithm. For instance, when setting μ = 100.6 and σ = 8
in (101), we can map the entire domain in each dimension
periodically to the region: |ū| � 16, |v̄| � (π/2 − 10−5),
|p̄1| � 16.5, and |p̄2| � 16.5. In this case the acceptance rate is
about 22%.

To verify the validity of the resulting microcanonical
distribution, we plot the energy histogram of the test functions
and compare it to the energy histogram of the test particles
used to represent the Husimi distribution. In Fig. 9 we plot the
energy of the test functions for the microcanonical distribution.
According to (61), εs = H̄H (q̄s ,p̄s) denotes the energy for
the test function s, for s = 1, . . . ,M . We fit the energy
histogram for the test functions for ρ̄MC (q̄,p̄) by the normal
distribution

nMC (ε) = Ã exp

[
− 1

2σ 2
MC

(ε − μMC)2

]
. (106)
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FIG. 9. Energy histogram of test functions for ρ̄MC (q̄,p̄), which
is defined in (101). The test functions are generated by Metropolis-
Hastings algorithm, and the total number of test functions is M =
8 × 104. ε denotes the test-particle energy, which is defined in (61),
and the labels on the vertical axis denote test-particle numbers. A
normal distribution nMC(ε) is used to fit this histogram. Ã, μMC and
σMC are the fit parameters for nMC(ε), which are defined in (64). The
values for the fit parameters are shown in the plot.
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FIG. 10. ū-histogram of test functions for ρ̄MC (q̄,p̄), which is
defined in (101). The test functions are generated by Metropolis-
Hastings algorithm, and the total number of test functions is M =
8 × 104. ū is defined as ū = q̄1q̄2; the labels on the vertical axes
denote test-particle numbers.

The values of the fit parameters Ã, μMC, and σMC are listed in
Fig. 9 for M = 8 × 104. We obtain

μMC = 101.1, σMC = 7.975. (107)

We define the normalized energy distribution for test functions
as

n̄MC(ε) = nMC(ε)∫ ∞
0 dε nMC(ε)

. (108)

Comparing (88) to (107), we obtain μMC ≈ μ and σMC ≈ σ ,
with the errors less than 0.5%. Therefore, we conclude that
n̄MC(ε) in (108) is practically identical to n̄TP(ε) in (89), with
the errors of less than 0.5%. Furthermore, in Fig. 10 we plot
the ū histogram of the test functions for ρ̄MC (q̄,p̄), where ū =
q̄1q̄2. Figure 10 shows that the distribution of test functions is
symmetric in the ū coordinate.

Substituting (105) to (103), we obtain

ρMC (q,p) = 1

M

M∑
s=1

K(q − q̄s ,p − p̄s), (109)

where K is defined in (46), and we choose γ a
K = 3/2 in (60).

Clearly, ρMC is normalized by∫ ∞

−∞
d	q,p ρMC(q,p) = 1. (110)

We visualize ρMC (q,p) in (109) by projecting on the (q1,q2)
and (p1,p2) subspaces, respectively:

F MC
q (q1,q2) =

∫ ∞

−∞
dp1 dp2 ρMC(q1,q2,p1,p2), (111)

F MC
p (p1,p2) =

∫ ∞

−∞
dq1 dq2 ρMC(q1,q2,p1,p2). (112)
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FIG. 11. The position and momentum projections of the microcanonical distribution function (a) F MC
q (q1,q2) and (b) F MC

p (p1,p2), defined in
Eqs. (111) and (112). The test functions are generated by Metropolis-Hastings algorithm, and the total number of test functions is M = 8 × 104.
Note that the projections of the Gaussian smeared microcanonical distribution shown here cannot be interpreted as probability densities.

We plot F MC
q (q1,q2) and F MC

p (p1,p2) in Fig. 11 for the number
of test functions M = 8 × 104. In addition, for the initial
conditions specified in Sec. IV A with the choice of the number
of test particle N = 8 × 104, we plot in Fig. 12 the position and
momentum projections of the Husimi distribution at t = 10,
i.e., Fq(10; q1,q2) and Fp(10; p1,p2). The interpretation of Fq

and Fp has been discussed in Sec. IV A. When we compare
Fig. 12 to Fig. 11, we find that Fq and Fp at time t = 10 are
very similar in shape to F MC

q and F MC
p , respectively. Contour

lines of both Fq(t = 10) and F MC
q follow equipotential curves,

while the contour lines of both Fp(t = 10) and F MC
p are shaped

as concentric circles.
To quantify the similarities between ρH (t ; q,p) at late times

and ρMC(q,p), we compare their momentum projections. By

switching to polar coordinates p1 = p cos θ and p2 = p sin θ ,
we define the following two projections:

G(t ; p) =
∫ 2π

0
dθ Fp (t ; p cos θ,p sin θ ) , (113)

GMC(p) =
∫ 2π

0
dθ F MC

p (p cos θ,p sin θ ) , (114)

where Fp and F MC
p are defined in (66) and (112), respectively.

In Fig. 13 we plot G(10; p) and GMC(p) in comparison.
G(10; p) is obtained from the momentum projection of
ρH (10; q,p) composed of N = 104 test particles, and GMC(p)
is obtained from the momentum projection of ρMC(q,p)
composed of M = 2 × 104 test functions. The figure shows
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FIG. 12. Two-dimensional projections of the Husimi distribution at t = 10 on (a) position space Fq (10; q1,q2) and (b) momentum space
Fp(10; p1,p2), defined in Eqs. (65) and (66), respectively. The total number of test particles is N = 8 × 104. Note that the projections of the
Husimi distribution cannot be interpreted as probability densities, as explained in the text.
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FIG. 13. Comparison of G(t ; p) at t = 10 and GMC(p). We define
G(t ; p) and GMC(p) in (113) and (114), respectively. G(10; p) is
obtained from the momentum projection of ρH (10; q,p) composed of
N = 104 test particles, while GMC(p) is obtained from the momentum
projection of ρMC(q,p) composed of M = 2 × 104 test functions.

that G(10; p) and GMC(p) have similar values for all p, and the
largest deviation occurs at low p. G(10; p) and GMC(p) at low
p receive contributions from the test functions located at the
narrow “channels” along the coordinate axes in the position
projections of ρH and ρMC, respectively. Since the numbers
of test functions, N and M , are finite, one expects larger
fluctuations of the contributions from these narrow “channels,”
which explains the observed deviation at small p. Overall,
the close similarity between G(10; p) and GMC(p) suggests
that ρH (t ; q,p) asymptotically approaches the microcanonical
density distribution ρMC(q,p).

Finally, we obtain the microcanonical entropy SMC by
substituting (109) into (104). We evaluated SMC with the
help of Simpson’s rule and by applying the same integration
techniques as those described in Sec. IV A. We verified
the numerical precision of our approach by evaluating the
normalization for ρMC(q,p) for various choices of M and found
that the numerical result coincides with (110) within errors
of less than 0.6%. In addition to the errors associated with
the use of Simpson’s rule, SMC possesses an additional error,
typically less than 0.5%, which arises from the Monte-Carlo
calculation of ρ̄MC(q̄,p̄) in (105). In Fig. 14 we plot SMC for
several different test function numbers M . We fit the data by
the function

S̄fit(M) = s4 − s5

Mc
. (115)

The parameters determined by the fit are

s4 = 8.788, s5 = 1258, c = 0.9517. (116)

We thus conclude that SMC ≈ 8.79 is the microcanonical
entropy for our chosen initial conditions.
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FIG. 14. The microcanonical entropy SMC as a function of M ,
indicated by the filled circles. SMC is defined in (104). M denotes the
total number of test functions, as revealed in (105) and (109). We set
μ = 100.6 and σ = 8 in (101). In addition, we fit the curve by a fit
function S̄fit(M) defined in (115). The fit parameters are shown in the
figure.

In Sec. IV A, we obtained the value SH (t = 10) → 8.73
in the limit N → ∞ for the initial conditions chosen for
our numerical simulation. Under the same initial conditions,
we found SMC → 8.79 when M → ∞. We conclude that the
saturation value of the Wehrl-Husimi entropy coincides with
the microcanonical entropy within errors, estimated at 1%.
Apart from numerical errors, the difference between the two
entropy values may also be accounted for by the fact that at t =
10 the system may not yet be completely equilibrated. Since
SMC < SC , we also conclude that the Yang-Mills quantum
system is equilibrated microcanonically but not thermalized.
The system does not have enough degrees of freedom to render
the microcanonical and the canonical ensemble approximately
identical.

In the above calculation, we studied the microcanonical
distribution SMC for the Yang-Mills quantum mechanics model
at the coarse-grained energy μ = E[HHρH ] ≈ 100.6. We now
briefly comment on how SMC depends on the coarse-grained
energy of the system. In Appendix C, we show that while the
Yang-Mills Hamiltonian H possesses a scale invariance, the
scale invariance of HH is partially broken when we demand
that the smearing function in (5) should retains its minimal
uncertainty. The reason is that, for any coarse-grained average
energy μ, the relation ξη = h̄2/4 constrains our ability to
rescale ξ and η in (18). Alternatively, we observe that the
additional terms in the expression for H̄H (q̄,p̄) break the
scaling symmetry of the original Yang-Mills Hamiltonian.

Despite the fact that the scaling properties of HH are
partially broken, we can examine numerically how SMC

changes when μ scales as μ → λ4
sμ, where λs is the scaling
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FIG. 15. The microcanonical entropy SMC as a function of M

for the coarse-grained energies μ = 50.6, 100.6, and 200.6. The
corresponding widths σ , defined in (101), for these energies are
σ = 5.8, 8.0, and 11.5. We fitted these points by the function S̄fit(M)
defined in (115) and use the fit parameters to determine the asymptotic
values of SMC for M → ∞, which are SMC = 7.88, 8.77, and 9.54
(from bottom to top).

parameter. In analogy to (C4), we parametrize the change in
the microcanonical entropy as

SMC(μ) → SMC(μ) + r ln λs, (117)

where r is a constant to be determined numerically. In order
to find the value of r , we calculated SMC by numerically
evaluating (104) for various choices of μ in (101). In Fig. 15
we show SMC as a function of M for μ = 50.6, μ = 100.6,
and μ = 200.6, respectively. The corresponding widths σ ,
defined in (101), for these energies are σ = 5.8, 8.0, and 11.5,
respectively. In Fig. 15 we fitted these curves by S̄fit(M) defined
in (115). The fit parameters again determine the asymptotic
values of SMC for M → ∞. The results are SMC = 7.88, 8.77,
and 9.54, respectively. From these results we can deduce the
value r = 5.0 ± 0.2.

In Appendix C we show that the scale invariant Yang-Mills
Hamiltonian H implies the value r ′ = 6, where r ′ is defined
in (C4). The difference between r and r ′ is attributed to the
following reason: Since we demand the Gaussian smearing
function in (5) retains its minimal uncertainty encoded in the
relation ξη = h̄2/4, we are breaking the scaling symmetry of
the Husimi HamiltonianHH , as discussed in Appendix C. This
argument suggests that SMC(μ) changes less strongly under
a scale transformation than naı̈vely expected. Comparing the
numerical value for r with the analytical value for r ′, we indeed
obtain r < r ′, which confirms our expectation.

V. CONCLUSIONS

We have developed a general method to solve the Husimi
equation of motion for two-dimensional quantum mechanical
systems. We proposed a new method for obtaining the
coarse-grained Hamiltonian whose expectation value serves
as a constant of motion for the time evolution of Husimi
distribution. We solved the Husimi equation of motion by the
Gaussian test-particle method, using fixed-width Gaussians.
Having obtained the Husimi distribution, we evaluated the
Wehrl-Husimi entropy as a function of time for the Yang-Mills
quantum system.

By comparing the Wehrl-Husimi entropy SH (t) obtained
from different particle numbers, N = 1000 and N = 3000, we
found that the values of SH (t) agree for t < 2, and saturation
is reached in both cases after t � 6.5. However, SH (t) for
N = 3000 saturates to a higher value than for N = 1000. This
result suggests that for a larger number of test particles the
Husimi distribution is more evenly distributed in the phase
space, and thus a larger value of N results in a higher saturation
value of the Wehrl-Husimi entropy. By evaluating SH (10) for
various different N , we concluded that SH (10) → 8.73 for
N → ∞ for our chosen initial conditions.

In order to address the question of equilibration, we
studied the Yang-Mills Hamiltonian system in the canonical
and microcanonical ensembles. The canonical entropy for
the system is SC ≈ 9.70. We obtained the microcanonical
distribution by generating M test functions. We observed that
the saturated Husimi distribution closely resembles the micro-
canonical distribution. Moreover, we obtained the microcanon-
ical entropy SMC → 8.79 as M → ∞ for the same choice
of initial conditions. Therefore, comparing the saturation
value of the Wehrl-Husimi entropy to the microcanonical and
canonical entropies, we conclude that (SH )max ≈ SMC < SC .
This implies that, at late times, the Yang-Mills quantum system
is microcanonically equilibrated but not thermalized.

It is straightforward to generalize the method introduced
here to solve the Husimi equation of motion in three or more
dimensions. However, for higher dimensions, the evaluation
of the Wehrl-Husimi entropy becomes even more challenging
owing to the increasing numbers of integrals. A new method
will then be needed for the reliable evaluation of entropy.
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APPENDIX A: EQUATIONS OF MOTION FOR THE
TEST PARTICLES

In Sec. III we obtained the equations of motion for the ten
variables, q̄i

1, q̄i
2, p̄i

1, p̄i
2, ci

q1q1
, ci

q2q2
, ci

p1p1
, ci

p2p2
, ci

q1p1
, and

ci
q2p2

, where i labels the test particle. In (28)–(31) we listed
the equations obtained from the first moments Iq1 , Iq2 , Ip1 ,
and Ip2 of Eq. (13). The equations obtained from the second
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moments Iq2
1
, Iq2

2
, Ip2

1
, Ip2

2
, Iq1p1 , and Iq2p2 of (13) are listed below:{

2ċi
q1p1

(t)ci
q1p1

(t)ci
p1p1

(t) − ċi
q1q1

(t)
[
ci
p1p1

(t)
]2 − ċi

p1p1
(t)

[
ci
q1p1

(t)
]2
}

+ 2

m
ci
q1p1

(t)�i
1(t) = 0, (A1)

{
2ċi

q2p2
(t)ci

q2p2
(t)ci

p2p2
(t) − ċi

q2q2
(t)

[
ci
p2p2

(t)
]2 − ċi

p2p2
(t)

[
ci
q2p2

(t)
]2
}

+ 2

m
ci
q2p2

(t)�i
2(t) = 0, (A2)

{
2ċi

q1p1
(t)ci

q1p1
(t)ci

q1q1
(t) − ċi

q1q1
(t)

[
ci
q1p1

(t)
]2 − ċi

p1p1
(t)

[
ci
q1q1

(t)
]2
}

−
{

2
∂2V

∂q2
1

∣∣∣∣∣
q̄i (t)

+
[

ci
p2p2

(t)

�i
2(t)

− α

2

]
∂4V

∂q2
1∂q2

2

∣∣∣∣
q̄i (t)

}
ci
q1p1

(t)�i
1(t) = 0, (A3)

{
2ċi

q2p2
(t)ci

q2p2
(t)ci

q2q2
(t) − ċi

q2q2
(t)

[
ci
q2p2

(t)
]2 − ċi

p2p2
(t)

[
ci
q2q2

(t)
]2
}

−
{

2
∂2V

∂q2
2

∣∣∣∣
q̄i (t)

+
[

ci
p1p1

(t)

�i
1(t)

− α

2

]
∂4V

∂q2
1∂q2

2

∣∣∣∣
q̄i (t)

}
ci
q2p2

(t)�i
2(t) = 0, (A4)

{
ċi
q1q1

(t)ci
p1p1

(t)ci
q1p1

(t) + ċi
p1p1

(t)ci
q1q1

(t)ci
q1p1

(t) − ċi
q1p1

(t)
[
ci
q1q1

(t)ci
p1p1

(t) + (
ci
q1p1

(t)
)2
]}

+
{

h̄2

2mα
− 1

m

[
ci
q1q1

(t)

�i
1(t)

]
+

[
ci
p1p1

(t)

�i
1(t)

− 1

2
α

]
∂2V

∂q2
1

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
p1p1

(t)

�i
1(t)

− α

2

][
ci
p2p2

(t)

�i
2(t)

− α

2

]
∂4V

∂q2
1∂q2

2

∣∣∣∣
q̄i (t)

} [
�i

1(t)
]2 = 0, (A5)

{
ċi
q2q2

(t)ci
p2p2

(t)ci
q2p2

(t) + ċi
p2p2

(t)ci
q2q2

(t)ci
q2p2

(t) − ċi
q2p2

(t)
[
ci
q2q2

(t)ci
p2p2

(t) + (
ci
q2p2

(t)
)2
]}

+
{

h̄2

2mα
− 1

m

[
ci
q2q2

(t)

�i
2(t)

]
+

[
ci
p2p2

(t)

�i
2(t)

− 1

2
α

]
∂2V

∂q2
2

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
p1p1

(t)

�i
1(t)

− α

2

][
ci
p2p2

(t)

�i
2(t)

− α

2

]
∂4V

∂q2
1∂q2

2

∣∣∣∣
q̄i (t)

} [
�i

2(t)
]2 = 0, (A6)

where i = 1,2, . . . ,N , and �i
1 (t), �i

2 (t), and q̄i(t) are defined in (25), (26), and (32), respectively.

APPENDIX B : HUSIMI EQUATION OF MOTION IN ONE DIMENSION

The Husimi equation of motion for one-dimensional quantum systems was derived in Ref. [19]. For the potential energy V (q)
being a C∞-differentiable function of q, the Husimi equation of motion in one dimension is

∂ρH

∂t
= − 1

m

(
p + h̄2

2α

∂

∂p

)
∂ρH

∂q
+

∑
λ,μ,κ

[
(ih̄)λ−1

2λ+μ−1

αμ−κ

λ!κ! (μ − 2κ)!

∂λ+μV (q)

∂qλ+μ

∂λ

∂pλ

∂μ−2κ

∂qμ−2κ
ρH

]
, (B1)

where λ, μ, and κ are summed over all non-negative integers subject to the constraints that λ is odd and μ − 2κ � 0.
We discuss the energy conservation for the one-dimensional Hamiltonian. As a specific example, we start from the following

one-dimensional Hamiltonian in the Wigner representation:

H(q,p) = p2

2m
− κ

2
q2 + ζ

24
q4, (B2)

where λ and ζ are positive-valued parameters. We derive the corresponding one-dimensional coarse-grained Hamiltonian as
follows. The Husimi distribution for a one-dimensional quantum system can be obtained from the Wigner distribution by

ρH (t ; q,p) = 1

πh̄

∫ ∞

−∞
dq ′ dp′ e−(q ′−q)2/α−α(p′−p)2/h̄2

W (t ; q ′,p′). (B3)
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Starting from (B3) and proceeding like in Sec. II C, we obtain an expression similar to that of (17), which reads

HH (q,p) = 1

(2π )2

∫ ∞

−∞
dx ′ dp′ H(q ′,p′)

∫ ∞

−∞
du dv exp

[
α

4
u2 + h̄2

4α
v2 − iu(q ′ − q) − iv(p′ − p)

]
. (B4)

Here u and v are Fourier conjugate variables to q and p, respectively. Similar to the calculation in Sec. II C, we set ξ = −α/4 and
η = −h̄2/(4α). We evaluate the integrals in (B4) in the analytic region where ξ > 0 and η > 0, and then substitute ξ = −α/4
and η = −h̄2/(4α) into the resulting analytical expression. In this manner we obtain the coarse-grained Hamiltonian:

HH (q,p) = p2

2m
− 1

2

(
κ + αζ

4

)
q2 + ζ

24
q4 − h̄2

4mα
+ 1

32
α(αζ + 8κ). (B5)

Proceeding similarly as in Sec. II C, we use Eqs. (B1) and (B5) to prove that E [HHρH ] is a constant of motion for the
Husimi equation of motion in one dimension. Thus E [HHρH ] should be identified as the total energy corresponding to the
Hamiltonian (B2).

Next, we solve the Husimi equation of motion (B1) by using the test-particle method described in Sec. III. We begin by writing
the Husimi distribution as

ρH (t ; q,p) = h̄2

N

N∑
i=1

√
�i(t) exp

{
−1

2
ci
qq(t)

[
q − q̄i(t)

]2
}

exp

{
−1

2
ci
pp(t)[p − p̄i(t)]2

}

× exp
{−ci

qp(t)[q − q̄i(t)]
[
p − p̄i(t)

]}
, (B6)

where i = 1, . . . ,N, and we define

�i(t) =
{
ci
qq (t)ci

pp(t) − [
ci
qp(t)

]2
}

. (B7)

The moment of a function f (t ; q,p) with respect to a weight function w(q,p) is defined as

Iw[f ] =
∫

dq dp

2πh̄
[w(q,p)f (t ; q,p)] . (B8)

Applying the five moments Iq , Ip, Iq2 , Ip2 , and Iqp to the Husimi equation of motion (B1), we obtain five equations of motions
for each test particle i for the five variables representing the location in phase space and width of each test particle.

These equations are

˙̄qi(t) − 1

m
p̄i(t) = 0, (B9)

˙̄pi(t) + ∂V

∂q

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
pp(t)

�i (t)
− α

2

]
∂3V

∂q3

∣∣∣∣
q̄i (t)

= 0, (B10)

{
2ċi

qp(t)ci
qp(t)ci

pp(t) − ċi
qq (t)

[
ci
pp(t)

]2 − ċi
pp(t)

[
ci
qp(t)

]2
}

+ 2

m
ci
qp(t)�i(t) = 0, (B11)

{
2ċi

qpci
qpci

qq − ċi
qq(t)

[
ci
qp (t)

]2 − ċi
pp(t)

[
ci
qq (t)

]2
}

−
{

2
∂2V

∂q2

∣∣∣∣∣
q̄i (t)

+
[

ci
pp(t)

�i(t)
− α

2

]
∂4V

∂q4

∣∣∣∣
q̄i (t)

}
ci
qp(t)�i(t) = 0, (B12)

{
ċi
qq (t)ci

pp(t)ci
qp(t) + ċi

pp(t)ci
qq(t)ci

qp(t) − ċi
qp(t)

[
ci
qq(t)ci

pp(t) + (ci
qp(t))2

]}
+

{
h̄2

2mα
− 1

m

[
ci
qq(t)

�i(t)

]
+

[
ci
pp(t)

�i(t)
− 1

2
α

]
∂2V

∂q2

∣∣∣∣
q̄i (t)

+ 1

2

[
ci
pp(t)

�i(t)
− α

2

]2
∂4V

∂q4

∣∣∣∣
q̄i (t)

}
[�i(t)]2 = 0, (B13)

where i = 1, . . . ,N . By solving (B9)-(B13) simultaneously for i = 1, . . . ,N , we obtain q̄i , p̄i , ci
xx , ci

pp, and ci
xp as functions of

time.
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Finally, we solve these 5N equations of motions for the
Hamiltonian system in (B2), with κ = ζ = 1. For choosing
the initial conditions, we adopt the method similar to that
introduced in Sec. III B. Here we briefly outline the ideas
without showing the details. We choose the initial conditions
setting the initial Husimi distribution to be

ρH (0; q,p) =
∫ ∞

−∞

dq ′ dp′

2πh̄
K(q−q ′,p−p′)φ(q ′,p′), (B14)

where K and φ are defined in Sec. III B. We express ρH , K

and φ in the forms of (43), (46), and (47), respectively, with
the redefined variables χ = (q,p) and χ ′ = (q ′,p′) and the
redefined indices a = 1,2 for χa , χ ′a , μa

H , μa
φ , γ a

H , γ a
K , and

γ a
φ . By the convolution theorem, we obtain that

1

γ a
H

= 1

γ a
K

+ 1

γ a
φ

, (B15)

for a = 1,2. At t = 0, we choose γ a
H = 1. In the many-particle

ansatz, we choose N = 1000, γ a
K = 3/2, and γ a

φ = 3, and
we choose μa

H = μa
φ = 0. In the single-particle ansatz, ρH

FIG. 16. Solutions of the Husimi equation of motion in one dimension. The Hamiltonian is defined in (B2) of Appendix B. The parameters
as chosen as κ = 1 and ζ = 1. The initial conditions are discussed in Appendix B. Panels (a) and (b) show ρH (t ; x,p) for a single test particle,
at time (a) t = 0 and (b) t = 2. Panels (c) and (d) show ρH (t ; q,p) or the many test particles, at times (c) t = 0 and (d) t = 2. It is obvious that
for t > 0 this single-particle ansatz is insufficient to represent the solution.

remains a single Gaussian for all times, and thus we choose
γ a

H = 1 and μa
H = 0. We plot ρH (t ; q,p) for both the single-

particle and many-particle ansatz in Fig. 16. We discuss the
meaning of these results in Sec. III B.

APPENDIX C : EFFECTS OF COARSE GRAINING ON THE
SCALE INVARIANCE OF THE YANG-MILLS

HAMILTONIAN

In this appendix we discuss the effects of coarse graining on
the scale invariance of the Yang-Mills Hamiltonian. We begin
by constructing an alternative microcanonical distribution ρ ′

MC
in terms of the conventional Hamiltonian H in (12) and
the conventional energy E, and we obtain the scaling of
the microcanonical entropy S ′

MC with respect to that of E.
Furthermore, we show that, whileH is scale invariant, the scale
invariance of the coarse-grained Hamiltonian HH is partially
broken, due to the requirement that the smearing Gaussian
function in the Husimi transformation (5) should retain its
minimal quantum mechanical uncertainty.
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For the conventional Hamiltonian in (12), we construct an
alternative microcanonical distribution ρ ′

MC as

ρ ′
MC = 1

�
exp

(
−H − E

2σ 2
g

)
. (C1)

As discussed in Sec. IV E, approximating δ(H − E) by a
Gaussian distribution is a way to construct a microcanonical
distribution that leads to a well-defined entropy. Define λs as
a scaling parameter. As the position and momentum scales as
q → λsq and p → λ2

s p, respectively, it is straightforward to
show that H → λ4

sH and thus E → λ4
sE. The normalization

condition ∫
d	q,p ρ ′

MC(q,p) = 1 (C2)

must be scale invariant. Owing to the scaling 	q,p → λ6
s	q,p

we obtain � → λ2
s� and σg → λ4

s σg . The microcanonical
canonical entropy S ′

MC is defined as

S ′
MC = −

∫
d	q,p ρ ′

MC(q,p) ln ρ ′
MC(q,p), (C3)

where ρ ′
MC is given in (C1). The scaling of S ′

MC follows from
the scaling of H and E:

S ′
MC(E) → S ′

MC(E) + r ′ ln λs, (C4)

where r ′ = 6.

The coarse-grained Hamiltonian HH (q,p) given in (19)
is obtained from H(q,p) by the transformation (18). We now
examine howHH (q,p) scales when the positions and momenta
scale as q → λsq and p → λ2

s p, respectively. The uncertainty
relation of a quantum state reads

�qi�pj � h̄

2
δij , (C5)

where i,j = 1,2. We note the difference by a factor of
2 between (C5) and (35), which was pointed out in
Ref. [29]. From (18) and (C5), it is straightforward to
show that, when q → λsq and p → λ2

s p, HH will scale
as HH → λ4

sHH only if the smearing parameters ξ and
η scale as ξ → λ2

s ξ and η → λ4
s η, respectively. In addi-

tion, the constraint λs � 1 is imposed by the uncertainty
relation (C5).

The Husimi distribution is defined as a minimally smeared
Wigner function, as can be seen from (5). For the smearing
Gaussian with minimal uncertainty, we have �qj�pj = h̄/2
for j = 1,2, and thus ξη = h̄2/4. Therefore, we do not
have the flexibility to scale the parameters ξ and η in the
required way if we demand that the smearing Gaussian in (5)
should retains its minimal uncertainty. As a consequence, the
scaling symmetry of HH is partially broken. We compare the
different scaling behavior of S ′

MC(E) and SMC(μ) at the end of
Sec. IV E.
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