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Directed random walks on hierarchical trees with continuous branching:
A renormalization group approach
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We investigate the directed random walk on hierarchic trees. Two cases are investigated: random variables
on deterministic trees with a continuous branching, and random variables on the trees constructed through the
random branching process. We derive renormalization group (partial differential) equations for the branching
models with binomial, Poisson, and compound Poisson distributions of random variables on the links of a tree.
These renormalization group equations are a new class of reaction-diffusion equations in one dimension.

DOI: 10.1103/PhysRevE.85.011109 PACS number(s): 05.40.−a, 11.25.Mj, 75.10.Nr

I. INTRODUCTION

Models on hierarchic trees are rather popular in statistical
physics [1], and those models with random quenched disorder
[2–6] are especially popular objects of research. They are
connected with the random energy model (REM). Due to
special geometry, these models can be solved through recursive
equations [1]. Taking into account random walks (directed
polymers) on trees, the recursive equations for these models
have been approximated with the Kolmogorov-Petrovsky-
Piscounov (KPP) equation.

Statistical physics models with quenched disorder on hier-
archic trees with continuous branching have been the subject
of extensive studies. The models with continuous branching
are especially popular in the financial market literature [7,8]
as well as in studies on turbulence. In Ref. [9], hierarchic trees
with continuous branching were considered when there are
random variables with normal distribution on the tree. Later
investigations were performed in Refs. [10–12], in which the
models were applied to the problems of disordered systems
and string theory. To solve hierarchic models with continuous
branching, a renormalization group equation was used in
Ref. [9]. This equation was first obtained in Ref. [13] and
is similar to the KPP equation; see, Ref. [12] for discussion.
In this paper, we will derive a renormalization group equation
for the general case of the distribution of random variables on
the branches of a hierarchic tree.

We are going to investigate the random directed walks on
hierarchic trees described through the partition function:

Z =
∑

i

exp[−βyi], (1)

where yi is defined on the end points of the tree and β is the
inverse temperature.

The model is defined by considering a tree with branching
number q and K levels of hierarchy, therefore there are qK ≡
eL end points of the tree. At any level of hierarchy, there are q

links from every node, and on every link a random variable εl is
defined. The variable yi entering the definition of the partition
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function Eq. (1) is associated with a unique path going from the
origin O to the ith tree end point, and it amounts to summing
up variables εl along this path,

yi =
∑

l

εl . (2)

One can calculate the mean free energy ln Z using the
identity [4]

〈lnZ〉 =
∫ ∞

0

(
e−p

p
− 〈e−pZ〉

p

)
dp

= �′(1) +
∫ ∞

0
ln pd〈e−tZ〉. (3)

Thus we need to calculate

g(p,β) ≡ GK (x) =
〈

exp

[
− p

∑
i

eβyi

]〉∣∣∣∣∣
εl

, p = e−βx

(4)

for the average 〈exp[−p
∑

i e
−βyi ]〉|εl

over the configurations
on the K-level hierarchic tree.

Having the expression for g(p,β), we can calculate the
moments 〈Z−n〉:

〈Z−n〉 =
∫ ∞

0
dp pn−1/�(n)g(p,β). (5)

In Ref. [2], an equivalent problem has been considered, and
recursive relations have been introduced. Following [5], we
define

G0(x) = exp[−e−βx] (6)

and other K functions Gl(x) = 〈exp[−e−βx
∑

i e
−βyi ]〉|εl

for
the models on the trees with an l level of hierarchy, 0 � l � K .
Then we identify g(p,β) ≡ GK (− ln p/β).

Consider the l-level hierarchic tree. It could be fractured
into q trees, each with a hierarchy level l − 1. The yi at the
end points of the l-level tree can be derived from the yi of
the (l − 1) level tree adding a random variable ε. A simple
consideration gives a recursive relation [2,5]

Gl(x) =
[ ∫

dε Gl−1(x + ε)ρ(ε)

]q

. (7)

011109-11539-3755/2012/85(1)/011109(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.011109


DAVID B. SAAKIAN PHYSICAL REVIEW E 85, 011109 (2012)

Considering recursive relations for 1 � l � K with the bound-
ary condition in Eq. (6), we can calculate GK .

Equation (7), derived in Refs. [2–5], is an exact recursive
relation. Similar recursive equations have been considered in
the research of the real-space renormalization approach to
quantum disorder in d-dimensional space; see Eq. (32) in
Ref. [14]. The latter is some approximation, while Eq. (7) is
an exact relation. There is a more serious difference, i.e., our
random variables ε have independent distributions for different
hierarchy levels l, while at the quantum disorder case [14]
there is some correlation of noise at different hierarchy levels.
To obtain some analytical estimates, Ref. [14] considered the
limit of a large branching number q (K in the notation of [14]),
similar to those used in Ref. [5], and a general distribution of
random variables was used.

The KPP-like equation has been applied for investigations
of the quenched disorder model. In the next section, we will
consider the q → 1 limit of Eq. (7), deriving a renormalization
group (KPP-like) partial differential equation for general
distribution of ε.

II. RANDOM WALKS ON A HIERARCHIC TREE

A. Renormalization group equation for hierarchic
trees with continuous branching

While Eq. (7) is derived for integer q, we can consider the
equation for any positive value of q. Let us consider the model
in which the branching number is close to 1. We can now derive
an exact differential equation instead of the iteration equation
(7). We have K = 1/� levels of branching on our tree with
q = eL�v , where L�v � 1. We identify

Gl(x) ≡ G(x,v), v = l

K
, g(p,β) = G

(
− ln p

β

)
. (8)

To define a distribution for random variable εl , let us start with
some random distribution ρ̂(x). In the next step, we calculate
the distribution for the sum of L random variables with such
distributions. For our purposes, it is convenient to use the
following representation for ρ̂:

ρ̂(x) = 1

2π

∫ ∞

−∞
dh exp[φ(ih) − ihx]. (9)

Then for ε, a sum of L random variables x, we get the
composed distribution ρ(L,ε) just by multiplying φ in the
exponent of Eq. (9) by L:

ρ(L,ε) = 1

2π

∫ ∞

−∞
dh exp[Lφ(ih) − ihε]. (10)

To ensure the probability balance condition, there is a
constraint

φ(0) = 0. (11)

We consider the Taylor expansion

φ(ik) =
∑
l�1

bl(ik)l . (12)

According to our notations, ρ̂(x) ≡ ρ(1,x). A concrete case
of distribution by Eq. (10) with φ(ih) = ln cosh(h) has been
used while considering the diluted REM [15]. Here we will

consider another distribution that is popular in turbulence and
financial theory.

We take ρ(L,yi) as a distribution of yi . The L in the
exponent of Eq. (10) gives correct scaling for the 〈eβyi 〉,

〈eyi 〉 = exp[Lφ(β)], (13)

where eL is the number of end points of the hierarchic tree.
As yi is a sum of 1/�v random variables ε on our tree, we

define the following distribution for the distribution of random
variables on the links ρ(ε):

ρ(ε) ≡ ρ(L�v,ε) = 1

2π

∫ ∞

−∞
dh exp[φ(ih)L�v − ihε].

(14)

For L�v � 1, we expand in the exponent the terms with
bl,l > 1 and derive∫

dε G(x + ε,v)ρ(ε)

= 1

2π

∫ ∞

−∞
dh exp[iLb1�v − ihε]

×
(

1 + Ldv
∑

l

bl(ih)l
)

G(x + ε,v)

=
∫

dε

[
δ(ε − b1L�v) + L�v

∑
l�2

bl(ih)l
1

2π

×
∫ ∞

−∞
dh exp(−ihε)

]
G(x + ε,v). (15)

We assume a smooth behavior of G(x,v) at the infinity
x → ±∞, and ∂nG(v,x)

(∂x)n |x=±∞ = 0 for n � 1.
Integrating by parts, we derive∫
dε G(x + ε,v)ρ(ε) = G(x,v) + L�vφ

(
∂

∂x

)
G(x,v).

(16)

Thus we obtain

G(x,v) → [G + L�v φ(∂x)G(x,v)]1+L�v

≈ G(x,v) + �v L[φ(∂x)G(x,v)

+G(x,v) ln G(x,v)] (17)

or

∂G(x,v)

∂v
= φ(∂x)G(x,v) + G(x,v) ln G(x,v), (18)

where 0 � v � 1 plays the role of time from the reaction-
diffusion equation, and we should solve the equation with the
initial distribution

G(x,0) = exp[−e−βx]. (19)

Due to the proper choice of scaling in the exponent of Eq. (14),
there is no L dependence in Eq. (18).

Contrary to the KPP equation for the models in Ref. [2],
Eq. (18) is an exact equation. Solving Eq. (18) for the initial
distribution by Eq. (19), we can calculate ρ(Z) using the
inverse Fourier transformation.
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B. Different distributions

Consider different distributions, popular in cascade
processes.

1. Normal distribution

Taking

φ(k) = k2/2, (20)

we obtain

∂G(x,v)

∂v
= ∂2G(x,v)

∂x2
+ G ln G. (21)

We derived Eq. (21) in Ref. [9] solving the continuous
branching model. This equation was derived for the first time
in Ref. [13] to investigate nonlinear diffusion.

2. Binomial distribution

We have

ρ̂(ε) = α2δ(ε − (1 − α1))
α1 + α2

+ α1δ(ε − (1 + α2))
α1 + α2

. (22)

We get for φ(k) an expression

φ(k) = k(1 − α1) + ln

[
α2

α1 + α2

]
+ ln

[
1 + α2

α1
e−k(α1+α2)

]

= (1 − α1) + ln

[
α2

α1 + α2

]
+

∑
n�1

(−1)n

n!

[
α2

α1
e−k(α1+α2)

]n

.

(23)

Eventually we get the following partial differential equation
(PDE):

∂G(x,v)

∂v
= G ln G + (1 − α1)

∂G(x,v)

∂x
+ ln

[
α2

α1 + α2

]

+
∑
n�1

(−1)n

n!

[
α2

α1
G(v,x + n(α1 + α2))

]n

. (24)

We are seeking solutions in which G(x,v) → 0 for x → ∞,
therefore our equation is well-defined.

3. Gamma distribution

Now we consider the following distribution for positive ε:

ρ̂(ε) = γ ε

�(γ )
e−γ ε. (25)

We have the following expression for φ(k):

φ(k) = γ ln(1 + k/γ ). (26)

While we can formulate formally a PDE in this case,

∂G(x,v)

∂v
= γ ln

[
1 + 1

γ

∂

∂x

]
G(x,v) + G ln G, (27)

the equation can be better formulated in Fourier space.

4. Poisson distribution

This distribution is popular in the financial mathematics
literature. We have integer values of ε,

ρ̂(ε) = e−γ γ ε/ε!. (28)

Equation (9) gives φ(k) = γ (−1 + ek). Then from Eq. (18)
we derive

∂G(x,v)

∂v
= γ [−G + G(x + 1)] + G ln G. (29)

This renormalization group equation differs from Eq. (21)
in that the second-order derivative is replaced by a finite
difference.

5. Compound Poisson distribution

Cascade processes with this type of distribution are also
rather popular in the literature. Now we have a Poisson
distribution for integers n given by Eq. (28), i.e., p1(n) =
e−γ γ n/n!, and we define ε as a sum of n random variables
xl with some random distribution p(x), defined through the
representation

p(x) = 1

2π

∫ ∞

−∞
dh exp[α(ih) − ihε]. (30)

Thus

α(k) = ln
∫ ∞

−∞
p(y)dy exp[ky]. (31)

A simple calculation gives the function φ(k) for the distribution
of ε,

φ(k) = γ (eα(k) − 1). (32)

Thus we get the following PDE for G(v,x):

∂G(x,v)

∂v
= γ

[
eα( ∂

∂x
) − 1

]
G(x)] + G ln G (33)

or, using Eq. (31),

∂G(x,v)

∂v
= γ

[ ∫
dy p(y)G(x + y,v) − G(x,v)

]
+ G ln G.

(34)

C. Phase-transition point

1. General case of distribution

The free energy of the directed polymer model Eq. (7) for
any q is equivalent to the free energy of the corresponding
REM with the same number of energy configurations and the
same distribution of yi . This issue is well discussed in the REM
literature [2,3,5,6].

We have M = eL end points of the tree, and any yi has a
distribution by ρ(L,y); see Eq. (10). Let us consider the REM
with an M energy level and an independent distribution of
energy by Eq. (10).

In the high-temperature phase, assuming 〈ln Z〉 = ln〈Z〉,
we have [3]

〈ln Z〉 = L[1 + φ(β)]. (35)

The phase transition is at the point where the entropy of free
energy by Eq. (35) disappears [3],

1 + φ(βc) − βcφ
′(βc) = 0. (36)
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2. Binomial distribution

Now we have the following expression for the free energy
in the high-temperature phase:

ln Z

L
= ln

[
α2

α1 + α2
eβ(1−α1) + α1

α1 + α2
eβ(1+α2)

]
. (37)

Equation (36) has no solution in this case, therefore the system
is always in the high-temperature phase.

3. Gamma distribution

Now we have the following expression for the free energy
in the high-temperature phase:

ln Z

L
= 1 + γ ln

(
1 + β

γ

)
. (38)

Equation (36) has no solution in this case, therefore the system
is always in the high-temperature phase.

4. Poisson distribution

For this case, we derive the following for the free energy of
the high-temperature phase and transition point:

ln Z

L
= 1 + γ (eβ − 1), 1 + γ [eβc (1 − βc) − 1] = 0. (39)

In the next sections, we will use the traveling-wave anal-
ysis to investigate the paramagnetic phase solution of our
equations and to identify the transition point. To investigate
the spin-glass-like solutions, one needs to use the advanced
mathematics of [16].

5. Compound Poisson distribution

Now we have the following expression for the free energy
in the high-temperature phase:

ln Z

L
= 1 + γ (eα(β) − 1) = 1 + γ

(∫
dx p(x)eβx − 1

)
.

(40)

For the critical point, we get the equation

1 + γ

[ ∫
dx p(x)eβcx − 1 − β

∫
dx p(x)eβcxx

]
= 0. (41)

D. KPP equation versus new renormalization group equation

Let us try to describe our hierarchic tree model using the
KPP equation,

∂Q(x,v)

∂v
= ∂2Q(x,v)

∂x2
+ Q − Q2. (42)

In Ref. [2], Eq. (42) was derived as an approximation of
Eq. (7) for the special case of Eq. (20). Later, Eq. (42)
was derived in Ref. [17] as an approximate renormalization
group equation for the models of random disorder with
logarithmic correlations. While [2,5] already considered the
general distribution, the KPP equation has been derived only
for the normal distribution. Although the authors of [14] used
a general distribution of random variables, they did not use the
KPP equation. The reason is clear: for the general distribution
of random variables on the tree, the KPP equation gives

incorrect results even for the transition point, contrary to our
new renormalization group equation, which is exact.

To compare, we take the case of Eq. (28) with γ = 1. The
KPP version, having the same variance of distribution ρ(ε),
gives

∂G(x,v)

∂v
= ∂G(x,v)

∂x
+ ∂2G(x,v)

∂x2
+ G − G2. (43)

Using the mapping

G(x,v) = Q(x + t,v), (44)

we return to the KPP equation by Eq. (42). This equation
is well investigated in the literature. It describes a transition
between the spin-glass and paramagnetic phases at

βc =
√

2, (45)

and the free energy in the paramagnetic phase is

〈ln Z〉 = L(1 + β + β2). (46)

The correct transition points of the model and free energy are:

βc = 1, 〈ln Z〉 = Leβ. (47)

Thus the KPP equation incorrectly describes the model, and
we need a new exact renormalization group equation for the
general form of distribution of random variables on the tree.

Let us investigate Eq. (29). G(v,x) is a monotonic function
of x according to the definition by Eqs. (4) and (7),

G(x,v) → 1 for x → ∞,
(48)

G(x,v) → 0 for x → −∞.

Consider the case of small p in Eqs. (4) and (7). The direct
calculations give

G(x,v) = exp{−p exp βx + v[1 + γ (eβ − 1)]}. (49)

The latter expression is not a solution of Eq. (43). Nevertheless,
it is the solution of Eq. (29) when

p exp{βx + v[1 + γ (eβ − 1)]} � 1. (50)

Let us investigate the behavior of the asymptotic solution
for the situation that is more general than the case of Eq. (50).

Following [2,5,17], we assume a traveling-wave-like
asymptotic solution

G(x,v) = g(x + cv). (51)

We get the ODE:

cg′(x) = [−g(x) + g(x + 1)] + g(x) ln g(x). (52)

Equation (52) describes a traveling wave with a front at

x = −cv. (53)

We assume that for large negative x, there is a solution

g(x) = exp[−eβx]. (54)

Putting the latter expression into Eq. (52), we get the following
equation for c:

c(β) = [eβ − 1]γ + 1

β
. (55)
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Equations (51), (54), and (55) give the free-energy expression
by Eq. (46).

We can identify the phase-transition point as the value of β

giving the maximum velocity, which yields the equation

c′(βc) = 0. (56)

Equation (56) gives the result of Eq. (47), βc = 1, for the case
γ = 1.

At high values of β there is another solution for c(β), but
for its derivation one needs to use the advanced mathematical
approach of [16]. Thus the investigation of our renormalization
group equation, using the qualitative approach of [2,5,17],
gives an exact expression for the free energy.

III. RANDOM BRANCHING MODEL

In the previous section, we derived a new renormalization
group equation using continuous deterministic branching,
later considering the q → 1 limit. Let us derive a similar
renormalization group equation using a less abstract model
of random branching [2].

We again have a tree. It starts at some point O and grows
down, where the vertical coordinate measures the time v. We
put a random variable εl with a distribution from Eq. (8) on the
links (between two adjacent nodes of the tree), replacing �v

by the difference of the time coordinate between two nodes of
the branch. During the period of time dv, there is a branching
with a probability dt .

Consider the dynamics of the partition sum Z(β,v) defined
as

Z(β,v) =
∑

j

eβyj . (57)

Here the index j numerates the end points of our tree at
time v.

Z(β,v) has a deterministic behavior at v = 0:

Z(β,0) = 1. (58)

Z(β,v) is a random variable at v > 0 due to both the
randomness of branching and the randomness of εl .

Then one has the following recursive equation for the
random partition function [2]:

Z(β,v + dv) = Z(β,v)e−βε, (59)

with probability 1 − dv, and

Z(β,v + dv) = [Z1(β,v) + Z2(β,v)]e−βε, (60)

with probability dv. Here Z1(β,v) and Z2(β,v) are random
independent variables with the same probability distribution
as Z(β,v).

We identify Z(0,v) with the number of end points of the
tree, and Eqs. (59) and (60) give the intuitive result

〈Z(0,v)〉 = exp(t), (61)

confirming the self-consistency of the choice Eqs. (59)–(61).
Actually, the random process Z(t) is defined completely
through Eqs. (58)–(60), and we can work with these equations
without any reference to the branching trees.

We define now, following [2],

G(x,v) = 〈exp[−e−βxZ(v)]〉. (62)

Equations (59) and (60) give

G(x,v + dv)

= (1 − dv)
∫

dε ρ(ε)G(v,x + ε) + dv G(v,x)2. (63)

Eventually, we get the following equation:

∂G(x,v)

∂v
= φ(∂x)G(x,v) − G(x,v)[1 − G(x,v)]. (64)

For the binomial distribution, we get

∂G(x,v)

∂v
= −G(1 − G) + (1 − α1)

∂G(x,v)

∂x
+ ln

[
α2

α1 + α2

]

+
∑

n

(−1)n

n!

[
α2

α1
G(x + n(α1 + α2),v)

]n

. (65)

For the Poisson distribution, we get

∂G(x,v)

∂v
= γ [−G(x,v) + G(x + 1,v)] + G(x,v)2 − G(x,v).

(66)

We can repeat the derivations of Sec. II D, and again get the
same solutions for the free energy of the paramagnetic phase
and the critical temperature.

For the compound Poisson distribution, we get

∂G(x,v)

∂v

= γ

[ ∫
dy p(y)G(x + y,v) − G(x,v)

]
+ G(G − 1).

(67)

IV. CONCLUSIONS

We provided an exact (renormalization group) partial
differential equation for the analysis of models on a hierarchic
tree with continuous branching and general distribution of
random variables. We derived a new class of reaction-diffusion
equation (18), which sometimes has a finite difference,
Eqs. (24), (29), and (34). While recursive equations for hier-
archic models with a general distribution of random variables
on the tree have been well known [2,14], our paper is the first
to replace these recursive equations with the correct PDE.

Our derivation of the renormalization group equation is
quite rigorous. The renormalization group equation is exact,
including finite-size corrections, while the renormalization
group equation in Ref. [17] is an approximation and could be
applied to calculate only bulk characteristics of corresponding
models.

The KPP equation, used in Refs. [2,5,17], correctly (exact
in the thermodynamic limit) describes the bulk free energy
and critical temperature for the hierarchic tree models with a
normal distribution of random variable [2,5], as well as for
the finite-dimensional models of disorder with logarithmic
correlations [17]. However, as per our analysis, the KPP
equation failed to describe correctly the hierarchic models
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with non-normal distributions. That is why the general case
of the hierarchic model, given by the recursive equation (7)
derived in Ref. [2], was not investigated using the KPP
equation in Refs. [2,5]. To verify our new renormalization
group equations, we used the idea of the traveling wave and
the methods of [5,17]. Analyzing our equations, we found
the correct expression for the free energy in the paramagnetic
phase and the phase-transition temperature.

It remains an open problem to construct the finite-
dimensional models of disorder, which could be described by
our new equations, as the models of [17] are described by the
KPP equation. We hope to succeed using dynamic stochastic
processes in the one-dimensional case.

Our approach (continuous branching) can be applied to in-
vestigate quantum disorder in d-dimensional space. In the case
of continuous branching, we derived exact PDE equations that
can be solved numerically, while in the alternative approach

of [14], approximate renormalization group equations have
been derived and there are errors O(1) in the expression of
free energy (bulk term ∼L).

The normal distribution version Eq. (21) has a deep
mathematical meaning: in some sense, it describes the p-adic
space with p = 1 [18]. We hope that the investigation of these
new reaction-diffusion equations will be further encouraged.

Our renormalization group equations can also be applied
to calculate the complicated correlation function, as has been
done in Ref. [11] for the string case.
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